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Chaos is considered to be one of the origins of irreversibility appearing in macroscopic systems, 
such as N-body systems [1]. Accordingly, stability of the system has been extensively examined nu
merically, especially in anN-body system interacting with short-range potentials. However, numerical 
irreversibility due to round-off errors may behave as if it were a physical irreversibility, although it 
is not a physical one [2]. The influence of round-off errors should be a more serious problem in an 
N-body system interacting with 'long-range potentials', e.g., self-gravitating systems [3]. For instance, 
in a typical star-rich cluster with a million stars, each star feels enough of the granularity of the grav
itational field of the other stars that the consequent perturbations lead to a total loss of memory of 
the initial conditions of its orbit [4]. However, in N-body simulations, numerical fluctuations due to 
round-off errors could behave as if they were the physical perturbations. Therefore, we have investi
gated numerical irreversibility and instability of the self-gravitating system, through the Loschmidt 
reversibility paradox based on a velocity inversion technique [5]. Consequently, the memory loss time, 
when the simulated trajectory completely forgets its initial conditions, increases approximately linearly 
with the Lyapunov time. 

Because of long-range attractive potentials, such a self-gravitating system exhibits several peculiar 
features, such as gravothermal catastrophe, negative specific heat and nonextensive statistical mechan
ics [6, 7]. In particular, the negative specific heat causes thermodynamic instability during dynamical 
evolutions of the system and, therefore, it has been investigated theoretically and numerically from 
a thermodynamic viewpoint [8, 9]. However, velocity distributions and velocity relaxations have not 
yet been extensively discussed in long-term nonequilibrium processes except for a few studies [10, 11], 
although they should play an important role in the thermodynamic properties and irreversibility of 
the system [12]. For example, Iguchi et al. proposed universal non-Gaussian velocity distributions 
for a spherical collapse in a violent gravitational process of a collisionless stage (t < Tr) [10], while 
Ispolatov et al. discussed Gaussian velocity distributions in core-halo states in a collisional stage 
(t >> Tr) [11]. (Here Tr represents the relaxation time, which is driven by the two-body encounter [6]). 
These works may suggest that long-range attractive interacting systems should finally relax towards 
a Boltzmann-like state thorough a collapse process [12]. 

In the present study, to clarify irreversibility and thermodynamic properties of self-gravitating N
body systems, we numerically examine long-term evolution of those systems, from an early relaxation 
to a collapse, especially focusing on velocity relaxations [12]. For this purpose, we observe a cold 
collapse process under a restriction of constant mass and energy. To simulate the dynamical evolution, 
we consider a typical small N-body system (N = 125) enclosed in a spherical container with adiabatic 
walls [11, 12]. In our units, the relaxation time Tr of the system is evaluated as Tr :::::: 0.5 [2]. To 
examine whether the simulated velocity distribution function is Gaussian, a q-Gaussian distribution 
function is defined as Jq( v) = A[1 - B(1 - q)v2]lf(l-q), where q is the Tsallis entropic parameter 
[7]. (A and B correspond to a normalization parameter and an inverse of temperature, respectively.) 
Moreover, to examine an overview of the velocity distributions, we employ the normalized ratio of 
velocity moments VM, i.e., a ratio of velocity moments < vi 2 >2 / < vi4 > is normalized by a specific 
value corresponding to a Gaussian distribution [12]. (Here Vi and <X > represent the velocity speed 
of the i-th particle and the mean of X at timet, respectively.) When the velocity or speed distribution 
is Gaussian, q or VM approaches 1, respectively. 

In this abstract, we observe time evolutions of typical properties of the cold collapse process. As 
shown in Fig. 1, VM and q deviate from 1 in an early relaxation ( t < 1). Accordingly, the velocity 
distribution is non-Gaussian (VM < 1 and q > 1) in this stage. Thereafter, VM and q further deviate 
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Figure 1: Time evolutions of the properties of the cold collapse process [12]. To mimic a cold collapse, 
the initial kinetic energy is set to be negligible values smaller than the order of 1% of the total energy. 
The total energy is E = -0.8. The results are averaged over at least 30 simulations. To determine q, 
the q-Gaussian distribution function /q( v) is fitted with the simulated velocity distribution function. 

from 1. In fact, the number Nc of core particles starts to increase at t ~ 1-2. This suggests that 
the velocity distribution undergoes higher non-Gaussian distributions, especially when the core forms 
rapidly in the collapse process. However, the velocity distribution gradually relaxes toward a Gaussian
like distribution (VM, q "' 1), after the core forms sufficiently (t ~ 200). We found that the velocity 
distribution does not monotonically relax towards a Gaussian-like distribution. We clearly show such 
a transition of the velocity distribution, based not only on the Tsallis entropic parameter q but also 
on the normalized ratio of velocity moments VM. Of course, we have not yet clarified irreversibility 
in the strong nonequilibrium process of self-gravitating systems. However, our studies open up a 
new theoretical and numerical approach for examining irreversibility, instability and thermodynamics 
appearing in long-range interacting systems. 
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