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Many long molecules may be understood as strands of individual charged units. Generally, the dynam­
ics of such strands depends both on the local elastic deformations of the strand and the nonlocal (screened 
electrostatic) interactions of charged units across the folds in the molecule. These electrostatic interactions in 
turn depend on the spatial distances and relative orientations between the individual charged units in different 
locations along the strand. 

Continuum approaches to the dynamics of molecular strands offer an alternative theoretical understanding to 
the direct numerical simulation of molecular dynamics. One source of this theoretical understanding arises from 
the recognition of fundamental mathematical properties in the formulation of this dynamics. Many previous 
studies have addressed the elastic dynamics of the strands using Kirchhoff's approach, which is inherently 
local: the equations of motion are formulated in the system of coordinates that follows all the bends and twists 
along the strand. Although many important results have been obtained by this approach, it has a limitation. 
Namely, the generalization of the classical Kirchhoff theory to account for the torque caused by the long-range 
electrostatic interaction of molecules in different spatial locations along a flexible strand has not been achieved, 
although the force due to electrostatic interaction has been considered before. This is due to the fact that in 
order to find the position and orientation of a point on the strand, one needs to find a solution for the strand's 
configuration, and that in turn is impossible to achieve without knowing Euclidian distance between the points 
on the strand. It is still possible to find a solution for the stationary sates of the non-locally interacting strand 
using energy minimization techniques in Kirchhoff's approach, but the derivation of the dynamics using classical 
tools seems difficult, if not impossible. 

Our paper introduces a framework that allows treatment of both torques and forces from electrostatic 
interactions using the exact geometric theory of elastic rods. The equations of motion for the dynamical folding 
of charged molecular strands such as DNA and polymers are derived in the context of flexible continuous 
filamentary distributions of interacting rigid charge conformations, as shown on Figure 1. The new feature 
is that the equations of motion for the dynamics of such molecular strands are nonlocal when the screened 
Coulomb interactions, or Lennard-Jones potentials between pairs of charges (or any other charges depending on 
the Euclidian distances), are included. These nonlocal dynamical equations are derived using modified Euler­
Poincare and Hamilton-Pontryagin variational formulations that illuminate the various approaches within the 
framework of symmetry reduction of Hamilton's principle for exact geometric rods [1, 2]. In the absence of 
nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. 

In order to demonstrate a concrete application of our theory, we show how to naturally generate helical 
molecules and analyze their stability using this geometric approach. We consider an (infinitely) long molecule 
consisting of repeated conformations of charges, positioned on an elastic backbone, as a model for a polymer like 
PVDF (polyvinylidene fluoride) polymers. The equations for strands of rigid charge configurations interacting 
non-locally are formulated on the special Euclidean group, SE(3) representing the rotations and translations 
of Euclidian space. We show that helical conformations give exact stationary solutions of the equations of 
motion, and we find and classify all these solutions using energy minimization method. The energy landscape 
for such a molecule is complex with a large number of energy minima, even when limited to helical shapes. The 
question of linear stability and selection of stationary shapes is studied using a dynamical SE(3) formulation 
that naturally accounts for the helical geometry. We investigate the linear stability of a general helical polymer 
that possesses torque-inducing non-local self-interactions and find the exact dispersion relation for the stability 
of the helical shapes with an arbitrary interaction potential. We explicitly determine the linearization operators 
and compute the numerical stability for the particular example of a linear polymer comprising a flexible rod 
with a repeated configuration of two equal and opposite off-axis charges, thereby showing that even in this 
simple case the non-local terms can induce instability that leads to the rods assuming helical shapes [3]. 

Finally, in order to show the prowess of the geometric method, we demonstrate how to apply our theory to 
the dendronized (dendritic) polymers. These compound molecular structures are formed by assembling multiple 
dendrimers (a low molecular weight unit to which a number of dendrons, or branches, is attached) that are each 
connected by its base to a long polymeric backbone. Loosely, these structures can be described as "trees of 
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Figure 1: Rigid conformations of charges are distributed along an elastic curve. Such a configuration of charges 
leads to both forces and torques at each conformation. 

charges" on an elastic backbone, and the first patent for synthesizing them was filed in 1987. These structures 
are playing an ever-increasing role in modern chemistry. While some work has been done in the area using 
atomistic chain models and Monte-Carlo methods, we are not aware of any previous work capable of describing 
the spatia-temporal evolution of a dendronized polymer. Our geometric approach allows us to formulate the 
equations of motion for an arbitrary number of "branches" on the "trees", and arbitrary interaction potential 
between the charges on these "branches" [4]. 
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