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Coupled systems of differential equations are often used as models of physical systems. For example they 
have been used by Hadley et al. [5] and Aronson et al. [2] to model arrays of Josephson junctions, by Kopell and 
Ermentrout [1, 6, 7] and Rand et al. [12] to model coupled oscillators and central pattern generators (CPGs) 
in biological systems, by Pecora and Caroll [11] to investigate synchronization of chaotic oscillators, and, more 
recently, by Susuki, Takatsuji, and Hikihara [13] to study power grid systems. In these works the symmetry of 
the network is important in determining the patterns of collective behavior that the system can support. One 
particular pattern of behavior that is commonly found in symmetric coupled systems is cycling behavior, in 
which solution trajectories can linger around steady states and periodic solutions for increasingly longer periods 
of time. These type of cycles are formally called heteroclinic if the solutions that are part of the cycle are all 
different. Otherwise the cycles are called homoclinic. 

In this paper we discuss the existence and stability of heteroclinic cycles in coupled systems and show how 
they can be exploited to design and fabricate a new generation of highly-sensitive, self-powered, sensor devices. 
More specifically, we present theoretical and experimental proof of concept that coupling-induced oscillations 
located near the bifurcation point of a heteroclinic cycle can significantly enhance the sensitivity of an array 
of magnetic sensors. In particular, we consider arrays made up of fl.uxgate magnetometers inductively coupled 
through electronic circuits, see Figure 1. 

Figure 1: (Left) Prototype of an array of three fluxgates inductively coupled. (Right) Phase-space shows coupling­
induced oscillations near a heteroclinic cycle (bold curve). 

At the center of this discovery is the phenomenon of coupling-induced oscillations, in which the topology 
of connections, i.e., which sensors are coupled with each other, and the nonlinearities of materials can be 
exploited to produce self-oscillations that limit in a heteroclinic cycle. This phenomenon is dictated by symmetry 
conditions alone. In other words, the ideas and methods are device-independent: similar principles can be readily 
applied to enhance the performance of a wide variety of sensor devices so long as the symmetry conditions are 
satisfied. 

From a mathematical point of view, a heteroclinic cycle is a collection of solution trajectories that connects 
sequences of equilibria, periodic solutions or chaotic invariant sets via saddle-sink connections. For a more 
precise description of heteroclinic cycles and their stability, see Melbourne et al. [10], Krupa and Melbourne [9], 
the monograph by Field [3], and the survey article by Krupa [8]. Such behavior is unusual in a general dynamical 
system. It is, however, a generic feature of dynamical systems that possess symmetry. Indeed, the presence of 
symmetry can lead to invariant subspaces under which a sequence of saddle-sink connections can be established, 
resulting in cycling behavior. As time evolves, a typical trajectory would stay for increasingly longer period of 
time near each solution (which could be either an equilibrium, a periodic orbit or a chaotic invariant set) before 
it makes a rapid excursion to the next solution. Since saddle-sink connections are robust, these cycles called 
heteroclinic cycles-are robust under perturbations that preserve the symmetry of the system. 
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