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Introduction 

Spatially localized excitations in nonlinear lattices have attracted great interest since the ground-breaking work 
by Takeno et al. [1]. The localized modes are called discrete breathers (DBs) or intrinsic localized modes 
(ILMs). The DB is expected to be a quite general object emerging in a variety of nonlinear space-discrete 
systems in nature. Indeed, experimental evidence for the existence of DB has been reported in various systems. 
Considerable progress has been achieved in understanding the nature of DB so far (e.g., [2]). From the theoretical 
point of view, the DB is a time-periodic and spatially localized solution of the equations of motion, which emerges 
due to nonlinearity and discreteness of the system. The existence of DBs has been proved rigorously with several 
mathematical methods in various nonlinear lattice models such as weakly coupled nonlinear oscillators [3) or the 
diatomic Fermi-Pasta-Ulam (FPU) lattice [4). Another important issue, associated with DBs, is the stability 
of DB solutions. However, analytical methods for the linear stability analysis of DBs have not yet been fully 
developed. Rigorous results on the linear stability problem are still limited to a few lattice models, and no 
analytical result has been obtained for the diatomic FPU type lattices. Therefore, developing a new method 
to prove the existence of single/multi-site DBs of various configurations and evaluate their linear stability, we 
have obtained a stability criterion for DBs in the diatomic FPU type lattices in small mass ratio regime. 

Model 

We consider the one-dimensional diatomic FPU type lattice described by the Hamiltonian 

N-1 N 

H = L -1
- P;; + L V(Qn- Qn-1), 

2m n=1 n n=1 
(1) 

where Qn E lR and Pn E lR represent the position and momentum, respectively, and mn represents the masses 
giveri by m 2j_1 = 1, m 2j = m > 1, j E N. For concreteness, we employ the fixed-end boundary conditions, 
i.e., Qo = QN = 0, and assume that N is even. Thus, the number of degrees of freedom is N- 1 and the 
both ends at n = 0, N are heavy particles. Let W(X, JL) : lR x 0---+ lR be a C 2 function of X and JL such that 
W(X, 0) = 0, where JL E JRZ is a set of parameters and 0 ~ JRZ is a neighbourhood of JL = 0. We suppose the 
interaction potential V of the form 

(2) 

where k ;::: 4 is an even integer. 
Our results will hold for large m >> 1. The limit m---+ oo looks singular at first sight, however, it is known 

that the limit can be regularized by introducing the perturbation parameter [4) 

1 
c = v:m. (3) 

Using this parameter, we define new coordinates qn as 

if n = 2j -1, 

if n = 2j, 

In the rescaled coordinates, Hamiltonian (1) is rewritten as 

j = 1, ... ,N/2. 

N-1
1 

N/2 · 

H = L 2 P~ + L [ V(cq2j - q2j-1) + V(q2j-1 - cq2j-2) J, 
n=1 j=1 

(4) 

(5) 

where Pn is the momentum conjugate to qn defined by P2j-1 = P2j-1 and P2j = cP2j· The boundary conditions 
are q0 = qN = 0. The equations of motion derived from Hamiltonian (5) are given by 

ii2j-1 V'(cq2j- q2j-1)- V'(q2j-1- cq2j-2), (6) 

ii2j = cV'(q2j+1- cq2j)- cV'(cq2j- q2j-1)· (7) 

These equations of motion decouple with each other in the limit c = 0, which is called the anti-continuous limit. 
In what follows, we use the rescaled coordinates qn and Pn, and describe our results for Hamiltonian (5). 
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Main result 

Let us consider the case of c = 0 and J-L = 0, i.e., the anti-continuous limit of the homogeneous potential lattice. 
In this case there are a number of periodic solutions to Eqs. (6) and (7) of the form 

j = 1, ... ,N/2, 

where cr2j _ 1 E { -1, 0, 1} and <p( t) is a non-constant periodic solution of the differential equation 

cp + <pk-1 = 0. 

(8) 

(9) 

Equation (9) has the integral cp2 /2 + <pk /k = h, where h > 0 is an integration constant. The period T of <p(t) 
depends on h and it is given by 

kl/k 

T = 2J2 h-(1/2-1/k) { 1 dx. 
Jo J1-xkjk 

(10) 

This indicates that T continuously varies from T = +oo to 0 as h varies from h = 0 to +oo since the integral in 
Eq. (10) is independent of h. This implies that for any given T > 0, there exists a solution <p(t) with the period 
T. Thus, for any code sequence cr = (cr1,cr3, ... ,cr2j-1,···,crN-1) E {-1,0,1}N/2 and any T > 0, there exists 
the T-periodic solution of Eqs. (6) and (7) given by Eq. (8). We denote this periodic solution by f(t; cr, T): i.e., 
r(t; cr, T) = (qb ... 'qN-1,P1, .· .. ,PN-1), where qn is given by Eq. (8) and Pn = iJ.n· 

When cr consists of a small number of nonzero components, the periodic solution of the form (8) with 
this cr represents a localized solution or a superposition of some localized solutions, i.e., discrete breather: for 
example, cr = ( ... , 0, 1, 0, ... ) corresponds to a single-site DB and cr = ( ... , 0, 1, 0, 0, -1, 0, ... ) corresponds to 
two single-site DBs located separately. In this study, more generally, we deal with an arbitrary code sequence 
cr. Let A be the set A= {1, 2, ... , N /2} and ACT be its subset consisting of the indices for nonzero components 
of cr, i.e., ACT = {j; CT2j-1 =:J 0} ~ A. Suppose that cr contains m excited sites and ACT = {j1,]2, ... ,jm }, 
where j 1 < j 2 < · · · < Jm· Consider two adjacent excited sites in f(t; cr, T), which are represented by cr2ji-1 

and cr2ji+t-1· We say this pair of adjacent excited sites is in-phase if CT2ji-1 = cr2ji+ 1 -1 and anti-phase if 
CT2ji-1 = -CT2ji+t-1· Let Nin(cr) be the function of cr defined by 

m-1 1 
Nin(cr) = L 2lcr2ji-1 +cr2ji+1 -1l· (11) 

i=1 

If m = 1, we define Nin(cr) = 0. This function counts the number of in-phase pairs of adjacent excited sites. 
Therefore, Nin(cr) = 0 if and only if a single site is excited, m = 1, or all the adjacent excited sites are anti-phase 
form 2:: 2. The main theorem is stated as follows (for the proof, see [5]). 

Theorem 1. For any cr =:J 0 and T > 0, there exist a constant Ec > 0 and, for c E [0, cc), a family r c: ( t; cr, T) 
ofT -periodic solutions of lattice (5) with J-L = 0 such that r c:(t; cr, T) is analytic with respect to c and t and 
f 0 (t; cr, T) = f(t; cr, T). For each c E (0, cc), there exist a neighbourhood Uc:(O) ~ ~l of J-L = 0 and, for 
J-L E Uc:(O), a family r c:,p,(t; cr, T) of periodic solutions of lattice (5) such that r c:,p,(t; cr, T) is C 1 with respect to J-L 
and t, r c:,o(t; cr, T) = r c:(t; cr, T), and the period Tc:(J-L) is a C 1 function of J-L satisfying Tc:(O) = T. The continued 
periodic solution fc:,p,(t; cr, T) is linearly stable if and only if Nin(cr) = 0, otherwise it is linearly unstable with 
exactly Nin ( cr) unstable characteristic multipliers. 
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