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Logic operations that have previously been numerically demonstrated for intrinsic localized modes (ILMs) in 
a driven nonlinear lattice are analyzed using van der Pol phase planes. The time dependent application of a 
vibrational impurity mode at the lattice site of interest either can produce or destroy an incipient ILM that is 
the input. The appearance or absence of the resulting ILM can be understood via paths in the phase plane 
controlled by the evolving attractors associated with the time dependent impurity mode. 

Introduction 

Micro-electro mechanical systems (MEMS) now have a variety of applications. With the continuing decrease 
in size the nonlinear vibrational properties of such MEMS resonators can no longer be ignored. We have 
studied driven MEMS nonlinear lattices and found a nonlinear localized excitation called an intrinsic 
localized mode (ILM).[1] Driver locked ILMs are self sustained localized oscillations and are stationary 
stable. This feature makes them attractive for information processing. 

Previously we have demonstrated logic operations based on ILM-impurity interactions by means of 
numerical simulations.[2] Logic "1" or "0" is coded with the existence or absence ofthe ILM. The lattice is a 
micro-cantilever array, and the sign of the nearest-neighbour nonlinearity is positive. Linear mode analysis 
presents a band of normal mode frequencies. Because of the positive sign of the nonlinearity, an ILM can be 
generated above this frequency band, maximum frequency OJm , and appear in the form of dynamical 
localized excitation with frequency OJ0 • To produce an ILM at a specific lattice location and specific 
frequency the driver is set to the desired frequency and a lattice defect is introduced at that site in the array so 
that it produces a linear defect mode above the top of the band. The strength of the defect is increased with 
time until the corresponding impurity mode frequency coincides with the driver frequency. The resultant 
signal is an amplitude modulated cantilever vibration because of the transient response. Next the impurity is 
removed from the lattice by decreasing its strength. Depending on the relative phase of the amplitude 
modulation at the time when the impurity mode strength is decreased either an ILM is generated or no ILM 
appears in the perfect lattice. 

Analysis and Discussion 

Although it may appear that this nonlinear system involves many degrees of freedom an ILM spans 
only a few lattice sites; in addition, the amplitude of the driver locked vibration is determined by the driver 
frequency as for a single Duffing oscillator. Thus, we introduce here the van der Pol phase plane as an 
analysis tool, although it is usually used to describe a single resonator. The ILM center motion is 
decomposed into a ( t) cos O.t + b ( t) sin O.t using the cosine driver at frequency n as a reference. Because 
the simulation model includes both the driver and damping, the system has attractor(s). A novel feature of 
this presentation scheme is that since the strength of the impurity mode changes with time the attractor(s) 
will move with time. 

Figure 1 displays the entire van der Pol phase paths for (a) ILM development and (b) no-ILM result 
when the impurity mode frequency is varied fromw0 / OJm = 1.00 ~ 1.013 ~ 1.00. The solid and dashed 
curves in (a) and (b) are the trajectories for the ILM and no-ILM cases, respectively. In both frames, the 
paths start from the origin, and spiral around the impurity mode attractor; however, depending on the relative 
phase of the amplitude modulation at the time when the impurity mode strength is decreased (a) shows the 
change into the large amplitude ILM while (b) does not. 

To better understand this switching process we now examine the last part of the two paths where 
w0 / OJm = 1.013 ~ 1.00 since the end result strongly depends on the removal timing relative to the phase of 
the AM modulation. These van der Pol plots are shown in Fig. 2. With the impurity mode at full strength the 
AM modulated impurity mode path is given by the solid curve in Fig. 2(a), starting at the bottom of the 
figure and circling around the fixed attractor center, identified by the triangle. At the open circle position the 
strength of the impurity mode begins to decrease and the resultant path for this no-ILM is represented by the 
dashed curve that peels off to the left, away from that particular attractor. The time dependence of the center 
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Figure 1 :(a) Complete van der Pol phase path for the 
generation of the large amplitude ILM when the 
impurity mode frequency is varied from 
%I OJm = 1.00 ~ 1.013 ~ 1.00 . The initial spiral path 
is that of the driven impurity mode. (b) The dashed 
curve represents the corresponding path for the 
trajectory in the no-ILM case. See text for details. The 
thick arc in (a,b) shows the time dependent attractor for 
the ILM. 

of the no-ILM attractor is identified in the figure. If, on the other hand, the strength of the impurity mode 
begins to decrease at a later time, represented by the solid dot then the path peels off to the right, moving in 
the same direction as that time dependent ILM attractor as shown. To follow the paths relative to the 
attractors, their basins are calculated for three different impurity mode frequencies, the maximum frequency 
plus two smaller values: m0 l mm = 1.013, 1.011, 1.010. Figure 2(b,c,d) are for the ILM case. The solid dot 
represents the ILM path position for that particular local mode frequency and the open circles in Fig. 2(e,f,g) 
represent the no-ILM positions for the same local mode frequencies. In each case the path just follows the 
spiral orbit towards its attractor located at that particular time (local mode frequency). Another interesting 
feature is the appearance of two attractors as the local mode frequency decreases. This illustrates how the 
impurity mode changes to an impurity-trapped ILM. Finally compare the solid and open circles of Fig. 2( c,f) 
with those in Fig. 2(d,9). Initially, both trajectories are in the same basin of the high amplitude trapped-ILM 
state. However, at m0 f mm = 1. 0 10 , the so lid circle remains in the same basin while the open circle is in 
another basin of the lower amplitude (no ILM) state. 
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Figure2: (a)Trajectories of the ILM and the no ILM for the initial decent of the impurity mode frequency. 
Origin is marked by"+". The open circle indicates the initial decent time for the no ILM case (dotted curve). 
The solid dot indicates the corresponding time for the ILM case. The one attractor located at the triangle 
position evolves into the final two attractors shown in gray. Fig. 2(b-g) Evolution of the attractor basins with 
changing impurity mode frequency (gray spirals). Frames (b,c,d): Each solid circle is a point on the 
trajectory of the solid curve in Fig. 2(a) at impurity mode frequency m0 l mm = 1.013, 1.011, 1.010 , 
respectively. These solid circles are superimposed on the spiral orbit basins leading toward the attractor(s) 
for the same impurity mode frequencies. Frames ( e,f,g): The same development, using open circles for the 
same three moments, is shown for the no-ILM dashed curve in Fig. 2(a). 

Conclusions 

Logic operations are analyzed using van der Pol phase planes. The trajectory in the phase plane of a driven 
ILM are explained by the motion of attractors that are controlled by application of a time-depended impurity 
mode. If the initial decent in impurity mode frequency, after seeding the ILM, is positioned in the upper half 
of the van der Pol spiral path around the attractor, a large amplitude ILM can be formed; while, if it is 
positioned in the lower half no ILM results. 
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