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Introduction 

Deterministic chaos has been attracting a lot of attentions for the last 50 years. There are many systems in 
which deterministic chaos could possibly characterize the essential part of underlying dynamics. However, there 
are few real systems which are demonstrated as deterministic chaos. In this presentation, we show that the 
dynamics of a squid giant axon is of deterministic chaos. 

Dataset used here 

The dataset we analyzed in this presentation was obtained by stimulating a squid giant axon by pulses. The 
membrane potentials were observed stroboscopically at the leading edge of each stimulating pulse. We nor­
malized the dataset so that the values range between 0 and 1. The total length of the dataset was 500. First 
we cut down the initial transient part. Then we confirmed using the method of Kennel [1] that the dataset is 
stationary. The used part of the dataset is shown in Fig. 1 (a) and (b). This is one of the three datasets analyzed 
in Ref. [2]. 

Devaney's chaos 

We follow the definition of deterministic chaos by Devaney [3]. The definition consists of three parts: topological 
transitivity, denseness for the set of periodic orbits, and sensitive dependence on initial conditions. However, 
his definition is difficult to be confirmed when a time series of a finite length is given. 

Recently, we relaxed his definition of deterministic chaos so that these three conditions can be checked using 
a recurrence plot obtained from a time series of finite length [4]. Since the relaxed conditions are weaker than 
the original conditions, one can deny the possibility of Devaney's chaos if one of the relaxed properties is not 
fulfilled. 

We applied the method of Ref. [4] to the dataset of giant squid axon. A recurrence plot for the dataset is 
shown in Fig. 1 (c). We found that the dataset satisfies the three relaxed conditions, meaning that the dataset 
is consistent with deterministic chaos in Devaney's sense. 

Pesin's equality 

Actually this dataset fulfils the Pesin's equality [5], i.e., the sum of positive Lyapunov exponents is equal to the 
metric entropy. We estimated the maximal Lyapunov exponent by using the method of Kantz [6] (see Fig. 1(d)). 
In addition, we estimated the metric entropy by first estimating a generating partition for this dataset by the 
method of Ref. [7] (see Fig. 1(b) for the estimated generating partition for the dataset) and then estimating the 
entropy rate by the method of Ref. [8]. Both estimated values agreed well. It means that the squid giant axon 
has the typical property for deterministic chaos. 

Conclusions 

In sum, the dynamics of squid giant axon is consistent with Devaney's chaos. It also satisfies Pesin's equality, 
which is one of characteristics for deterministic chaos. Therefore, the dynamics of squid giant axon is a typical 
example of deterministic chaos. 
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Figure 1: Analysis of giant squid axon used in this presentation. (a) Time series data. (b) Return plot. Shown 
with different colors is a generating partition for the dataset. (c) Recurrence plot of the dataset. (d) Maximal 
Lyapunov exponent was estimated as 0.42 bits/observation, which coincided with the metric entropy obtained 
by the generating partition of (b). 
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