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An important aspect in the study of random dynamical systems is the estimation of state variables that are 
often hidden, based on observational data. Sensor data are sparse and usually contain noise, and mathematical 
models are limited in accuracy due to model uncertainties. But, when used together, the resulting prediction of 
the state of large-scale dynamical systems is superior to using either the models or the data alone. The optimal 
estimate is given by the conditional expectation and can be generated by a recursive equation, called the filter, 
driven by the observation process. Multi-scale properties are ubiquitous in science and engineering and complex 
behavior can occur in a wide range of dynamical systems. N onlinearities of the governing physical processes 
allow energy transfer between different scales, and many aspects of this complex behavior can be represented by 
stochastic models. Multi-scale problems are commonly recognized for their complexity, yet the main challenge 
in multi-scale modeling is to recognize their simplicity, and make use of it to see how information interacts with 
these complex structures and scales. This paper outlines efficient methods that combine the information from 
the observations with the dynamics of coupled ocean - atmosphere models. 

We present a reduced-order particle filtering algorithm, the Homogenized Hybrid Particle Filter (HHPF), for 
state estimation in nonlinear multi-scale dynamical systems. This method combines stochastic homogenization 
with nonlinear filtering theory to construct an efficient multi-scale particle filtering algorithm for the approxi
mation of a reduced-order nonlinear filter for multi-scale systems. In this work, we show that the HHPF gives a 
good approximation of the conditional law of the coarse-grained dynamics in the limit as the scaling parameter 
E--+ 0, and the number of particles n--+ oo. 

Problem Formulation and Theoretical Results 

Consider the signal process (X£' zn E ]Rn X JRffi governed by: 

dX% = [b(X%, Z%) + c-1b1 (X%, Z%)] dt +a- (X%, Z%) dWt, X0 = e; 
dZ% = c-1 f (X%, Z%) dt + c- 112g (X%, Z%) dvt, Zo = rJ 

(1) 

with associated probability space (0, §, IP') and observation process Yt E JRd, 

d~c: = h (X%, Z%) dt + dBt, Y0c: = 0. 
Wt, vt and Bt are independent Wiener processes, e and rJ are random initial conditions, independent of Wt, 

vt and Bt, and the small parameter c measures the ratio of the timescale separation between the slow, X£, and 
fast, Z£, processes. 

We assume that (Doeblin condition) for any test function f E Cb(JRm) and Z{ denoting the fast process 
with fixed x, lEz [f(Z{)] --+ J f(z)J-Lx(dz) as t--+ oo uniformly in x and z in any compact set, where J-Lx(dx) is 
an invariant measure attained by Z£. Then, averaging theory results tell us that, as c --+ 0, the generator .zc: 
of the system ( 1) converges to a generator .!2 with the associated homogenized process governed by 

dX~ = b (X~) dt +a (X~) dWt, xg = e, (2) 

where xc: ~ X 0 . 

For the filtering problem, we are interested in obtaining the best estimate of xc: based on observations yc:, 
i.e. obtaining 1ri(cp) = IE[cp(X£)1~/] = p:(cp)jp:(1), for 1r[ a finite measure on JRm and <p E Cb(JRm,JR), where 
~c: is the a--algebra of the observation process and Pi is the unique solution of the Zakai equation: 

dpHcp) = p~(.Zc:cp)dt + p~(hcp)d~c:, Po('P) = IE(cp(Xo)). (3) 

As long as we are only interested in the slow component, we want to take advantage of the fact that xc: ~ X 0 , 

by showing that, for small c, pf is close to the solution of the filter equation for the homogenized process X2: 

dp~(cp) = p~(.f2cp)dt + p~(iicp)d~€' pg(cp) = IE(cp(X8)), (4) 
Note that the homogenized filter of (4) is still defined in terms of the real observation ~c: instead of the fictitious 
"homogenized observation" ~0 (d~0 = h (X?) dt + dBt, Y0° = 0). 

Our goal is to obtain a strong result by showing £P-convergence of the filters: 

lim IE [sup d( 1r~, 7r~'n)pl = 0, V T > 0, 
c:-+0, n-+oo tS:T 
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where d denotes the Prokhorov distance on the space of probability measures and 1r~,n represents the homog
enized particle filter with n particles. The desired convergence result will be achieved by invoking the dual 
representations of the filters and applying backward stochastic differential equations techniques and existing 
results on homogenization and particle filter convergence. On this premise, the HHPF was developed to numer
ically approximate the nonlinear filter for the coarse-grained dynamics of a multiscale system from the reduced 
filtering equation ( 4). 

Homogenized Hybrid Particle Filter 

The HHPF incorporates the homogenization technique of the HMM developed in [2] with the nonlinear filtering 
method of the BPF of [1] to numerically approximate the solution to (4) using a system of branching particles 
with varying weights. Particle weights are updated based on actual observation Y[~,t] using a continuous ver-

sion of the Kallianpur-Streibel formula: wxfi+l)b. = exp (Ji~+I)~ h(xf) dYt - ~ h~+I)~ ih(xf) l2dt) where h is the 

averaged sensor function, approximated using the HMM, similar to b. Particles xf are branched into offspring 
or eliminated based on the corresponding weights. Using the algorithm in [1], the random variables o(i+ 1)~ for 
the numbers of offspring generated are correlated with minimal variance. Through this correlation, sample size 
kept constant at N 8 , thus avoiding sample size blow up or particle degeneracy. 

Numerical Example 

We apply the HHPF to Lorenz [3] atmospheric model to illustrate its potential for high-dimensional complex 
problems. 

J 
· . hxL · 1 

Xk = -Xk-1(Xk-2- Xk+1)- Xk + F +- Z· k Z· k = -( -Z·+1 k(Z+2 k- Z·-1 k)- Z· k + h Xk) 
X J J, ' ], E J ' J ' J ' J, z 

·=1 
The Lorenz-96 model is used to describe lhe dynamics of an atmospheric quantity, Xj, such as tempera-

ture (macroscopic variable) at N-equally distributed grid points on a circle of constant latitude defined over a 
latitude circle in the mid-latitude region [3]. The latitude circle is divided into K sectors, where each Xk is 
coupled to its neighbors, and generalized to all values of k by letting xk+K = Xk-K = xk. The macroscopic 
dynamical equation in the above Lorenz model comprises of an advective-like nonlinear term that conserves the 
total energy, a linear dissipation, an external forcing F, and an average contribution from the local "convective
like" microscopic processes, Bk = h_; L,f=1 Zj,k, where hx is the associated coupling strength. 

Conclusions 

The HHPF is a numerical scheme that incorporates homogenization techniques with particle filtering to approx
imate the solution to a reduced nonlinear filtering equation. The resulting scheme overcomes the dimensionality 
issues associated with particle filtering for high-dimensional systems and is more computationally efficient, ap
plicable to complex, multi-scale systems. Works in progress on the development of the HHPF are application 
to high-dimensional multi-scale systems and the development of a rigorous convergence proof for the numerical 
scheme, which will be presented in the symposium. 
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