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Poiseuille and thermal transpiration flows of a highly rarefied gas are investigated
on the basis of the linearized Boltzmann equation, with a special interest in the
over-concentration of molecules on velocities parallel to the walls. An iterative
approximation procedure with an explicit error estimate is presented, by which the
structure of the over-concentration is clarified. A numerical computation on the basis
of the procedure is performed for a hard-sphere molecular gas to construct a database
that promptly gives the induced net mass flow for an arbitrary value of large Knudsen
numbers. An asymptotic formula of the net mass flow is also presented for molecular
models belonging to Grad’s hard potential. Finally, the resemblance of the profiles
between the heat flow of the Poiseuille flow and the flow velocity of the thermal
transpiration is pointed out. The reason is also given.
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1. Introduction
Poiseuille and thermal transpiration flows are among the most fundamental

problems in rarefied gas dynamics or in microfluidics and have been investigated by
many researchers. At the early stage of the modern rarefied gas dynamics, analyses
were made by the use of arbitrary assumptions on the velocity distribution function,
such as the variational and moment methods. Direct numerical computations were
also carried out, first on the basis of the model equations, such as the Bhatnagar–
Gross–Krook (BGK or Boltzmann–Krook–Welander) model (Bhatnagar, Gross &
Krook 1954; Welander 1954), and then of the original Boltzmann equation. An
exhaustive list of references is beyond the scope of the present paper. The reader is
referred to, e.g., Cercignani (2006) and Sone (2007) and the references therein for the
background and representative results. Some references rather directly related to the
present work will be cited at proper occasions.

In the present paper we come back to the above classical problems, especially those
in the two-dimensional channel, because there occurs an interesting phenomenon of
the over-concentration of molecules on velocities parallel to the walls in the highly
rarefied regime (see figures 3 and 6 in Ohwada, Sone & Aoki 1989). We shall focus

† Email address for correspondence: takata@aero.mbox.media.kyoto-u.ac.jp
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on this issue and clarify its structure. We also propose a numerical method that
handles the difficulty arising from this phenomenon. The method enables us to obtain
the net mass flow through the channel in that regime accurately. For the linearized
Boltzmann equation, an accurate deterministic numerical method was established in
the late 1980s (Sone, Ohwada & Aoki 1989) for the intermediate rarefied regime, and
there is a general asymptotic theory for the slightly rarefied regime (Sone 1969, 1991).
Thus, the proposed method fills the last gap for preparing the database of net mass
flow that covers the entire range of the Knudsen number Kn , i.e. from the continuum
to the free molecular regime.

In the case of the two-dimensional channel, the flows in the highly rarefied regime
have been studied analytically by Cercignani (1963) for the Poiseuille flow and by
Niimi (1971) for the thermal transpiration on the basis of the BGK equation. They
reported that the net mass flow grows logarithmically in Kn (Kn � 1) as Kn is
increased. In the analyses, they used an advantageous property of the model equation
that the basic equation and its boundary condition can be reduced to a set of integral
equations for macroscopic quantities. The same reduction can be applied to more
sophisticated model equations such as the ellipsoidal statistical model (Holway 1963,
1966; Andries et al. 2000) and the McCormack model for gas mixtures (McCormack
1973). It cannot, however, be applied to the original Boltzmann equation. As a result,
analyses of the flows in the highly rarefied regime on the basis of the Boltzmann
equation have not been carried out for a long time, though the logarithmic growth in
Kn has been expected.

Recently, Chen et al. (2007) studied the thermal transpiration in the highly rarefied
regime on the basis of the linearized Boltzmann equation for hard-sphere (HS)
molecules and proved rigorously mathematically the logarithmic growth of the induced
mass flow. They introduced a pointwise estimate of the velocity distribution function
in addition to the norm estimates that are widely used in mathematical studies of the
Boltzmann equation. The pointwise estimate plays a key role in the proof of logar-
ithmic growth. In the present paper, motivated by their result, we construct an iterative
approximation method and clarify the behaviour of the gas in the highly rarefied
regime for both the Poiseuille flow and thermal transpiration problems. The method is
rather ordinary, but we will ensure its convergence and estimate the order of error at
each stage of iteration explicitly. Consequently, we will have a clear view of practical
numerical analyses, by which the structure of the over-concentration will be clarified.

The paper is organized as follows. We start from the statement and formulation
of the problems in § 2 and summarize the mathematical estimates by Chen et al.
(2007) in § 3. Then in § 4.1 we present an iterative approximation procedure and show
its convergence and explicit error estimates at each stage of iteration in the highly
rarefied regime. In § 4.2, we clarify the structure of the over-concentration on the basis
of § 4.1. In § 4.3, we present the actual numerical method to be adopted that is based
on the procedure in § 4.1. Numerical results are shown in § 5. Finally in § 6 we present
an asymptotic formula of the net mass flow through the channel for large Kn , which
is available not only for HS molecules but also for any molecular model belonging
to Grad’s hard potential (Grad 1963). We will also point out that the profiles of the
heat flow in Poiseuille flow and of the flow velocity in thermal transpiration agree
well with each other in the highly rarefied regime. The reason is also given.

2. Problem and formulation
Consider a rarefied gas between two parallel resting plates located respectively at

X1 = ± D/2 (D > 0), where Xi are the Cartesian coordinates. The two plates are
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kept at the temperature T0(1 + βT X2/D) (βT is a constant), and a uniform pressure
gradient is imposed on the gas in the direction of X2; i.e. the pressure is given by
p0(1 + βP X2/D). (It can be shown that the pressure is independent of X1.) We will
investigate the behaviour of the gas under the following assumptions:

(i) The behaviour of the gas can be described by the Boltzmann equation for
hard-sphere molecules with a common diameter σ and mass m. (The restriction to
HS molecules will be relaxed later in § 6.1.)

(ii) The gas molecules are diffusely reflected on the surface of the plates.
(iii) |βT |, |βP | � 1, so that the equation and boundary condition can be linearized

around the reference equilibrium state at rest with temperature T0 and pressure p0.
Usually, the above problem with βT = 0 (the case that the plate temperature is

uniform) is called the Poiseuille flow problem, while that with βP = 0 (the case of
no pressure gradient) is called the thermal transpiration problem. We call the gap
between the plates occupied by the gas the (two-dimensional) channel. It is known
that a flow is induced along the channel in both problems.

Let us denote the molecular velocity by (2RT0)
1/2ζ and the velocity distribution

function by ρ0(2RT0)
−3/2[1 + φ(x, ζ )]E(|ζ |), where x = X/D, E(t) = π−3/2 exp(−t2),

ρ0 =p0/RT0 and R is the specific gas constant. Then, the problem is described by the
following boundary-value problem for φ:

ζi

∂φ

∂xi

= −ν

k
φ +

1

k
K(φ), (2.1)

φ = (|ζ |2 − 2)βT x2 ± 2
√

π

∫
ζ1�0

ζ1φE dζ , for ζ1 � 0, x1 = ±1

2
, (2.2)

where

K(φ) =

∫
κ(ζ ∗, ζ )φ(ζ ∗)E(|ζ ∗|) dζ ∗, (2.3)

κ(ζ ∗, ζ ) =

√
π√
2

1

|ζ − ζ ∗| exp

(
|ζ ∗ × ζ |2
|ζ ∗ − ζ |2

)
−

√
π

2
√

2
|ζ − ζ ∗|, (2.4)

ν(|ζ |) =
1

2
√

2

[
exp(−|ζ |2) +

(
2|ζ | +

1

|ζ |

)∫ |ζ |

0

exp(−s2) ds

]
, (2.5)

k =

√
π

2

	0

D
, 	0 =

1√
2πσ 2(ρ0/m)

, (2.6)

and 	0 is the mean free path of a gas molecule at the reference equilibrium state.
Note that we shall use k in place of the Knudsen number Kn ( = 	0/D) to indicate
the degree of gas rarefaction (see (2.6)). The above φ should be consistent with the
imposed pressure field p0(1 + βP X2/D), which is reduced to the following condition:

2

3

∫
|ζ |2φE dζ = βP x2. (2.7)

Since the problem is linear, we can seek the solution φ, independent of x3, in the
form

φ = βP [x2 + φP (x1, ζ )] + βT

[(
|ζ |2 − 5

2

)
x2 + φT (x1, ζ )

]
, (2.8)
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where φJ (x1, ζ ) (J = P, T ) is a solution of the following boundary-value problem:

ζ1

∂φJ

∂x1

= −ν

k
φJ +

1

k
K(φJ ) − IJ (J = P, T ), (2.9a)

φJ = 0, for ζ1 � 0, x1 = ± 1
2
, (2.9b)

IP = ζ2, IT = ζ2

(
|ζ |2 − 5

2

)
. (2.9c)

Throughout this paper, the subscript J represents the problem indicator P or T : the
former indicates the Poiseuille flow and the latter the thermal transpiration. Here φJ

is considered to be odd in ζ2, even in ζ3 and symmetric in the following sense:

φJ (x1, ζ1, ζ2, ζ3) = φJ (−x1, −ζ1, ζ2, ζ3). (2.10)

Macroscopic quantities can be obtained once φ is known. Because of (2.8), the
density, temperature, pressure and stress tensor of the gas are simply expressed as
ρ0[1 + (βP − βT )x2], T0(1 + βT x2), p0(1 + βP x2) and

p0(1 + βP x2)I − p0βP x1

⎡
⎢⎣

0 1 0

1 0 0

0 0 0

⎤
⎥⎦ (I: the identity matrix), (2.11)

while the flow velocity (2RT0)
1/2u and the heat flow vector (1/2)ρ0(2RT0)

3/2 Q have
their x2-components only, which are expressed as a moment of φ as follows:

u2 =

∫
ζ2φE dζ , Q2 =

∫
ζ2

(
|ζ |2 − 5

2

)
φE dζ . (2.12)

For the sake of later convenience, we introduce the notation convention that

u[f ] =

∫
ζ2f E dζ , Q[f ] =

∫
ζ2

(
|ζ |2 − 5

2

)
f E dζ , M[f ] =

∫ 1/2

−1/2

u[f ] dx1.

(2.13)
Then, u2 and Q2 may be rewritten by u2 = u[φ] = βP u[φP ] + βT u[φT ] and Q2 =
Q[φ] = βP Q[φP ] + βT Q[φT ]. The net mass flow through the channel per unit length
in X3 is expressed by ρ0D(2RT0)

1/2M[φ], where M[φ] = βP M[φP ] + βT M[φT ].

3. Preliminary arguments
The problem (2.9) can be solved formally as

φJ = φ
(0)
J + φR

J , (3.1a)

φ
(0)
J = −k

ν

[
1 − exp

(
−ν

k

|x1 ± (1/2)|
|ζ1|

)]
IJ , ζ1 � 0, (3.1b)

φR
J =

1

kζ1

∫ x1

∓1/2

exp

(
−ν

k

|s − x1|
|ζ1|

)
K(φJ ) ds, ζ1 � 0. (3.1c)

In accordance with (3.1a), u, M and Q may be written as

u[φJ ] = u
[
φ

(0)
J

]
+ u
[
φR

J

]
, M[φJ ] = M

[
φ

(0)
J

]
+ M
[
φR

J

]
, Q[φJ ] = Q

[
φ

(0)
J

]
+ Q
[
φR

J

]
.

(3.2)

We primarily discuss the former two quantities; Q will be considered in § 6.2.
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Chen et al. (2007) studied the thermal transpiration problem φT by the use of the
formal solution (3.1) and proved mathematically the following for k � 1:

(i) There is a unique solution φT ∈ L∞, where L∞ is defined with the norm
‖f ‖∞ = supζ |f |E1/2 for each x1.

(ii) There is a constant C > 0 independent of k such that

|φT E1/2| � C

(
|ζ1| +

1

k

)−1

, |K(φT )E1/2| � C(1 + ln k). (3.3)

(iii) There are constants C2 � C1 > 0 and C3 > 0 independent of k such that

C1 ln k � u
[
φ

(0)
T

]
� C2 ln k,

∣∣u[φR
T

]∣∣ < C3(1 + ln k)2/k. (3.4)

The last estimate (3.4) implies that in the highly rarefied regime the flow u[φ(0)
T ] induced

by the known inhomogeneous term corresponding to the temperature gradient is
predominant, and the contribution of the remainder u[φR

T ] is much smaller than

u[φ(0)
T ], i.e. O(k−1 ln k) relative to u[φ(0)

T ]. Since (3.4) is a uniform estimate in x1, M[φR
T ]

and M[φ(0)
T ] follow the same estimate as (3.4).

By the analysis parallel to that of Chen et al. (2007), we can show for the Poiseuille
flow problem that statements (i) and (ii) with φT being replaced by φP hold as they
are and that (iii) is replaced by the following:

(iii)′ There are constants C2 � C1 > 0 and C3 > 0 independent of k such that

−C1 ln k � u
[
φ

(0)
P

]
� −C2 ln k,

∣∣u[φR
P

]∣∣ < C3(1 + ln k)2/k (3.5)

(see Appendix A). Again, because of the uniform estimate in x1, M[φR
P ] and M[φ(0)

P ]
follow the same estimate as (3.5).

Remark. One may think that dropping the first two terms on the right-hand side
of (2.9a) would give a reasonable approximation in the highly rarefied regime. It,
however, leads to the divergence of flow velocity, which has been known for a long
time. Physically, the divergence is caused by completely neglecting the scattering of
molecules with a velocity parallel to the walls (ζ1 = 0). In the dominant part φ

(0)
J of the

solution, the effect of such a scattering is partially included (only the term K(φJ )/k

is dropped from (2.9a)), which prevents the divergence for every fixed k and captures
the asymptotic behaviour as k → ∞. See, e.g., Cercignani (1988) and Sone (2007) for
related discussions.

Figure 1 shows M[φ(0)
J ], the expression of which is eventually reduced to (4.6) that

appears later. The direct numerical solution of M[φJ ] by Ohwada et al. (1989) is also
shown for comparison. The relative error of M[φ(0)

T ] to M[φT ] is less than 17 %, 13 %

and 11 % for k = 10, 15 and 20, while that of M[φ(0)
P ] to M[φP ] is less than 19 %, 15 %

and 12 % for k = 10, 15 and 20. Thus, it is strongly suggested that the use of φ
(0)
J as the

initial guess is effective for an iterative solution method in the highly rarefied regime.

4. Structure of the over-concentration and solution method
4.1. Iterative approximation: method and error estimate

Motivated by the result shown in figure 1, we consider a sequence of functions φ
(0)
J ,

φ
(1)
J , φ

(2)
J , . . . generated by the following procedure:

φ
(n)
J = φ

(0)
J +

∫ x1

∓1/2

1

kζ1

exp

(
−ν

k

|s − x1|
|ζ1|

)
K
(
φ

(n−1)
J

)
ds, ζ1 � 0, (n = 1, 2, . . .). (4.1)
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1.5

1.0

M
[φ

T(0
) ]

0.5

100 102

k
104 100 102

k
104

0

–M
[φ

P(0
) ]

1

3

2

(a) (b)

Figure 1. M[φ(0)
J ] for large Knudsen numbers. (a) M[φ(0)

T ] versus k and (b) M[φ(0)
P ] versus

k. In each panel, M[φ(0)
J ] is shown by a solid line. Numerical results of M[φJ ] by Ohwada

et al. (1989) for intermediate Knudsen numbers are also shown for comparison by the closed
symbols.

By using both the norm and pointwise estimates following Chen et al. (2007), we can
prove the following for k � 1 (see Appendix A):

(a) {φ(n)
J } is a Cauchy sequence in L∞ and thus has a limit in L∞. Further, this

limiting function is a solution of (3.1): φJ = limn→∞ φ
(n)
J .

(b) By introducing ψ
(0)
J = φ

(0)
J and ψ

(n)
J =φ

(n)
J − φ

(n−1)
J (n= 1, 2, . . .), φ

(n)
J is rewritten

as φ
(n)
J =
∑n

i = 0 ψ
(i)
J . In order to have the sequence {φ(n)

J }, we may use the following

generating procedure for {ψ (n)
J } in place of (4.1):

ψ
(n)
J =

∫ x1

∓1/2

1

kζ1

exp

(
−ν

k

|s − x1|
|ζ1|

)
K
(
ψ

(n−1)
J

)
ds, ζ1 � 0. (4.2)

Then there are positive constants C0 and C1 independent of k such that∣∣ψ (i)
J E1/2
∣∣ � C0(|ζ1| + k−1)−1[C1k

−1(ln k + 1)]i , (4.3a)∥∥ψ (i)
J

∥∥
∞ � C0k[C1k

−1(ln k + 1)]i , (4.3b)∣∣K(ψ (i)
J

)
E1/2
∣∣ � C0(ln k + 1) [C1k

−1(ln k + 1)]i , (4.3c)

where i = 0, 1, 2, . . . . Thus the error of φ
(i)
J E1/2 is O(k−i(1 + ln k)i+1).

(c) There are positive constants C0 and C1 independent of k such that∣∣u[ψ (i)
J

]∣∣, ∣∣M[ψ (i)
J

]∣∣ � C0[C1k
−1(ln k + 1)]i(ln k + 1). (4.4)

Remark. Equation (4.1) or (4.2) is a rather common iterative approximation
procedure. Here the point is that we can prove (a)–(c) in the present problems,
which have not been known so far. Incidentally, the above convergence rates (4.3a)
and (4.4) of the sequences are faster than those suggested in remark 4.4 of Chen et al.
(2007). This is because we make use of (4.3c) at each stage of iteration in the estimate
(see Appendix A).

4.2. Structure of over-concentration

Estimate (4.3a) clearly shows the structure of the over-concentration of molecules on
ζ1 ∼ 0. Further, φ

(0)
J E1/2 (or ψ

(0)
J E1/2) has a peak O(k) around ζ1 = 0, remains O(k)
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1/k 1/k 1/k 1/k
k

ln k + 1

0
O(1)

O(1)

O(1)

(ln k + 1)/k (ln k + 1)/k

[(ln k + 1)/k]2

(ln k + 1)2/k

[(ln k + 1)/k]21/k 1/k

ζ1 0 ζ1 0 ζ1

|φJ
(0)| |ψJ

(1)| |ψJ
(2)|

(a) (b) (c)

Figure 2. Change of (a) φ
(0)
J , (b) ψ

(1)
J and (c) ψ

(2)
J for small |ζ1| as k is increased (k � 1). In

each panel, the rate and the direction of change when k is increased are shown.

φ∼ T(0
) /k

1

0
0

x1 = 0

x1 = 1/4
x1 = 1/2 x1 = 0

x1 = 1/4

x1 = 1/2

x1 = 0

x1 = 1/4

x1 = 1/4

x1 = 1/2

x1 = 1/2

x1 = 0

x1 = 0

x1 = 1/4

x1 = 1/4

x1 = 1/2

x1 = 1/2

x1 = 0

2 4–2

kζ1

–4

(a) 1

0
0 2 4–2

kζ1

–4

(b) 1

0
0 2 4–2

kζ1

–4

(c)

Figure 3. φ̃
(0)
T /k versus kζ1 at ζρ = 0.611 on three spatial points (x1 = 0, 1/4 and 1/2), where

ζρ = (|ζ |2 − ζ 2
1 )1/2. (a) k =10, (b) k = 102 and (c) k = 103. Here, φ̃

(0)
T ≡ φ

(0)
T E1/2/ζ2 is a function

of x1, ζ1 and ζρ .

for |ζ1| = O(k−1) and decreases down to O(1) for |ζ1| ∼ 1. As a result, its L∞ norm,

which picks up the peak value, is O(k), while its averages such as u[φ(0)
J ] and M[φ(0)

J ]

are smaller quantities O(ln k + 1). At each stage of iteration, ψ
(n)
J E1/2 is scaled down

by the factor O(k−1(ln k + 1)) with the peak position essentially unchanged.
In summary, the over-concentration in the highly rarefied regime occurs in the range

of |ζ1| =O(k−1). This phenomenon should be captured correctly by taking into account

the first correction ψ
(1)
J to the initial guess φ

(0)
J in the present iterative procedure,

because ψ
(2)
J E1/2 and higher-order corrections decrease with the rate O(k−1(ln k +1)2)

as k increased, as is clear from the above estimates. The feature is schematically
shown in figure 2. Strictly speaking, estimate (4.3a) is not necessarily optimal, so that
the actual peak and the range of over-concentration may be smaller and thinner than
estimated. However, figure 3 and the data to be shown in § 5, which we obtained
numerically, demonstrate that the estimate is actually optimal.

4.3. Overview of computational method

Most plainly, a straightforward iterative finite-difference scheme would be used for
numerical computation, especially for intermediate Knudsen numbers. The scheme is
obtained by discretizing in both x1 and ζ the following equation arising from (2.9):

ζ1

∂φ
(n)
J

∂x1

= −ν

k
φ

(n)
J +

1

k
K
(
φ

(n−1)
J

)
− IJ , (4.5a)

φ
(n)
J = 0, for ζ1 � 0, x1 = ± 1

2
. (4.5b)
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Equation (4.1), which was the basis of the discussion of § 4.2, is also obtained by
analytical integration of (4.5) with respect to x1. Thus, the sequence of functions
φ

(0)
J , φ

(1)
J , . . . generated by (4.1) is identical to that generated by (4.5) with φ

(−1)
J = 0.

Thus, the finite-difference scheme that is based on (4.5) should converge also with the
rate O(k−1(ln k + 1)) in the highly rarefied regime, which actually gives a numerical
solution in that regime only by several (or even a few) iterations. Nevertheless, the
straightforward finite-difference approach will be faced with a difficulty. The difficulty
lies in the discretization. As described before, M[φJ ] is a quantity O(ln k) (see (3.4)
and (3.5)). The contribution from the region in ζ1 where φJ decreases down from O(k)
to O(1) is O(ln k), while the contribution from the remaining region is O(1) (see (3.3)).
Thus, a well-balanced arrangement of grid points both to the thin over-concentration
part and to the remaining part is required, which becomes difficult to realize for large
k, especially when the knowledge in § 4.2 is lacking. (Note that, in practice, ln k is not
so different from 1 when k is large. Compare 1, ln k and k when k = 103.)

Because of the above observation, we carry out the numerical computations in the
following way. Here the main concern is the net mass flow M[φJ ]. We first calculate
the zeroth and first approximations, which are responsible for the over-concentration,
analytically as much as possible. In this step, thanks to the simple form of φ

(0)
J (see

(3.1b)), M[φ(0)
J ] is eventually reduced to

M
[
φ

(0)
J

]
=

1√
π

∫ ∞

0

[(
1 − a2

12k2

)
Ei
(

−a

k

)
+

1

12

(
1 − a

k

)
e− a

k

− 1

2

k

a

{
1 +

(
5

3
− k

a

)(
1 − e− a

k

)}]
t3ĨJ e−t2dt, (4.6)

where Ei is the exponential integral defined by Ei(−x) = −
∫ ∞

x
t−1 exp(−t)dt (x > 0)

and

a =
ν(t)

t
, Ĩ P = 1, Ĩ T =

(
t2 − 5

2

)
. (4.7)

The remaining integration with respect to t is easily performed numerically. The
results shown in figure 1 are thus obtained. For n � 1, ψ

(n)
J is expressed by (4.2). The

corresponding net mass flow is expressed as

M
[
ψ

(n)
J

]
= 2

∫ 1/2

−1/2

∫
ζ1>0

ζ2

ν

(
1 − exp

(
−ν

k

(1/2) − s

ζ1

))
K
(
ψ

(n−1)
J

)
E(|ζ |) dζ ds,

(4.8)
because the integration with respect to x1 from −1/2 to 1/2 can be performed
analytically after changing the order of integration. As to ψ

(1)
J and M[ψ (1)

J ], the
integration with respect to s and a part of the others can be performed analytically,
thanks to the simple form of φ

(0)
J (see (3.1b)). As a result, (4.2) and (4.8) are eventually

reduced to three- and fivefold integrations of a given function respectively. These
integrations are performed numerically by first applying the double exponential
transformation (Takahasi & Mori 1974; Mori & Sugihara 2001; Mori 2005) and then
using the trapezoid formula for transformed variables.

By the method in the previous paragraph, we can deal with the over-concentration
and its contribution to the net mass flow accurately. In the extremely highly rarefied
regime, the first (or even zeroth) approximation is accurate enough, thanks to the
convergence rate O(k−1(ln k + 1)) in one iteration. Further iterations are required
only in the regime close to the intermediate rarefied regime. The required number of
iterations increases as k is decreased, because the convergence rate O(k−1(ln k + 1))
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Figure 4. ψ̃
(1)
T /(1 + ln k) versus kζ1 at ζρ = 0.611 [ζρ = (|ζ |2 − ζ 2

1 )1/2] on three spatial points

(x1 = 0, 1/4 and 1/2), where ψ̃
(1)
T ≡ ψ

(1)
T E1/2/ζ2 is a function of x1, ζ1 and ζρ . (a) k = 10,

(b) k = 102 and (c) k = 103.

becomes worse. Fortunately, however, we do not expect a serious numerical difficulty
in that regime, because the range of the over-concentration in ζ1, which is O(k−1),
is no longer too thin. The main technical problem in solving ψ

(2)
J and higher-order

corrections is that only the discretized data of ψ
(n−1)
J are available in (4.2) and

(4.8) and that the integration with respect to s cannot be carried out analytically.
The integration with respect to ζ is performed by using the trapezoid formula
after the double exponential transformation. As to the integration with respect to
s, K(ψ (n−1)

J ) is approximated by the piecewise quadratic interpolation of the data

on grid points. Then the integration of the approximated K(ψ (n−1)
J ) multiplied by

1 − exp(−ν((1/2) − s)/(kζ1)) in (4.8) or exp(−ν|s − x1|/(k|ζ1|)) in (4.2) is carried

out analytically. In the actual numerical computations, we seek ψ
(n)
J (x1, ζ ) in the

form of (ζ2/ζρ)Ψ
(n)
J (x1, ζ1, ζρ) (ζρ =

√
|ζ |2 − ζ 2

1 ), following Ohwada et al. (1989). The

same similarity applies to K(ψ (n)
J ). Thus, the computations have been carried out for

functions of x1, ζ1 and ζρ . In the computations, 11, 97 and 113 grid points have been
arranged in the half-ranges of x1 and ζ1 (i.e. 0 � x1 � 1/2 and ζ1 > 0) and in the
whole range of ζρ(>0). Grid points in −1/2 � x1 � 0 and ζ1 < 0 have been arranged
symmetrically with respect to x1 = 0 and ζ1 = 0.

5. Numerical results and discussions
5.1. Velocity distribution functions

Figures 4 and 5 show an example of ψ
(1)
T and K(φ(0)

T ) obtained numerically. The

behaviour of K(φ(0)
T ) and ψ

(1)
T in the figures actually follows estimate (4.3). That is,

as is seen in figure 4, ψ
(1)
T is O(ln k + 1) and is localized in the range of |kζ1| � 1.

On the other hand, as is seen in figure 5, K(φ(0)
T ) is also O(ln k + 1), but there is no

trace of the over-concentration observed in φ
(0)
T ; i.e. K(φ(0)

T ) behaves moderately in ζ1.

These facts mean that the localization of φ
(0)
T disappears by the action of K but is

reproduced by the action of integration (4.2). Note that ψ
(1)
T and φ

(0)
T are similar to

each other (see figures 3 and 4). Thus, roughly speaking, with the action of integration
(4.2) after K as a unit process, the original distribution is reproduced with the scale
reduced by the factor of k−1(ln k + 1). Figure 6 shows the transition from φ

(0)
T to ψ

(4)
T

that is obtained numerically for k = 10. The figure shows the expected invariance of
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Present results

Thermal transpiration Poiseuille flow Literaturea

k M[φ(0)
T ] M[φ(1)

T ] M[φ(n)
T ] M[φ(0)

P ] M[φ(1)
P ] M[φ(n)

P ] M[φT ] M[φP ]

10 0.3530 0.4117 0.4241(7)b −0.8267 −0.9805 −1.0159(7) 0.4241 −1.0159
15 0.4064 – – −0.9360 – – 0.4668 −1.0907
20 0.4451 0.4924 0.4982(5) −1.0146 −1.1322 −1.1477(5) 0.4982 −1.1477
102 0.6673 0.6893 0.6900(3) −1.4621 −1.5125 −1.5143(3) – –
103 0.9910 0.9960 0.9960(2) −2.1102 −2.1210 −2.1210(2) – –
104 1.3157 1.3166 1.3166(1) −2.7596 −2.7615 −2.7615(1) – –
105 1.6404 1.6406 1.6406(1) −3.4091 −3.4094 −3.4094(1) – –
106 1.9652 1.9652 1.9652(1) −4.0587 −4.0587 −4.0587(1) – –

aDirect numerical solution by Ohwada et al. (1989). The data refined by Kosuge et al. (2005),
which may differ at most by 2 at the last digit from those of Ohwada et al. (1989), are shown in
the table.
bConverged data. The superscript number in parentheses indicates the order of approximation n.

Table 1. Net mass flows in the highly rarefied regime.
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Figure 5. K̃(φ(0)
T )/(1+ ln k) versus ζ1 at ζρ = 0.611 [ζρ = (|ζ |2 − ζ 2

1 )1/2] on three spatial points

(x1 = 0, 1/4 and 1/2), where K̃(φ(0)
T ) ≡ K(φ(0)

T )E1/2/ζ2 is a function of x1, ζ1 and ζρ . (a) k = 10,

(b) k = 102 and (c) k = 103. In each panel, the solid, dash-dotted and dashed lines indicate
the profile at x1 = 0, 0.25 and 0.5, respectively.

the form of ψ
(n)
J in the iterative process. This implies that estimate (4.3a) is actually

optimal, as mentioned at the end of § 4.2.

5.2. Net mass flows

The net mass flows that have been obtained numerically for several values of k are
shown in table 1. In table 1, the zeroth-, first- and higher-order iterative approximation
solutions (M[φ(0)

J ], M[φ(1)
J ] and M[φ(n)

J ]) are presented, where the data in the columns

of M[φ(n)
J ] have converged to five digits. We have also prepared a database that

promptly gives the net mass flows for arbitrary values of k � 10 in the same way as
Kosuge & Takata (2008). The details are given in Appendix B. The data taken from
the database are shown by the solid lines in figure 7, together with the numerical
results by Ohwada et al. (1989) and Kosuge et al. (2005) for intermediate Knudsen
numbers (open symbols), the asymptotic solutions in Sone (2007) for small Knudsen
numbers (dash-dotted lines) and the asymptotic formula (6.1) for large Knudsen
numbers that appears later (dashed lines). As is clear from the table and the figure,
the present results (solid lines) are smoothly connected to those of Ohwada et al.
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Figure 6. Transition from φ
(0)
T to ψ

(4)
T (φ(0)

T → K(φ(0)
T ) → ψ

(1)
T → K(ψ (1)

T ) → ψ
(2)
T → K(ψ (2)

T ) →
ψ

(3)
T → K(ψ (3)

T ) → ψ
(4)
T ) in the case of k = 10 at ζρ = 0.611 (ζρ = (|ζ |2 − ζ 2

1 )1/2). In each panel,

rescaled φ̃
(0)
T = φ

(0)
T E1/2/ζ2, ψ̃

(n)
T = ψ

(n)
T E1/2/ζ2 (n = 1, . . . , 4) or K̃(·) = K(·)E1/2/ζ2, which is a

function of x1, ζ1 and ζρ , is shown in place of φ
(0)
T , ψ

(n)
T or K(·). The solid, dash-dotted and

dashed lines indicate the profile at x1 = 0, 0.25 and 0.5, respectively. Note the difference of the
scale of abscissa between two groups of panels, i.e. (a), (c), (e), (g) and (i ) versus (b), (d ), (f )
and (h). The factor 0.4 in the ordinate corresponds to the constant C1 in (4.3).

(1989) and Kosuge et al. (2005) for intermediate Knudsen numbers. (Kosuge et al.
2005, who studied the case of binary gas mixtures, obtained the data for a pure gas
as a special case, though they are not shown in the paper. Those data are mentioned
when the work of Kosuge et al. 2005 is cited in the present paper.)

6. Further discussions on asymptotic behaviour as k → ∞
6.1. Grad’s hard potential and asymptotic formula for M[φJ ]

In obtaining (4.6), we have changed the order of integration, which is allowed because
there is a positive constant ν∗ such that ν � ν∗ > 0. Expression (4.6) is valid for
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Figure 7. Net mass flows as a function of k. (a) M[φT ] versus k and (b) M[φP ] versus k.
The solid lines indicate the data taken from the present database (see (B 1)), the dashed lines
the asymptotic formula (6.1a), the dash-dotted lines the asymptotic theory for small k (Sone
2007) and the open symbols the numerical data by Ohwada et al. (1989) and Kosuge et al.
(2005).

any molecular model if its ν(|ζ |) has a positive lower bound. Grad (1963) showed
that such a positive lower bound exists for his hard-potential model (Grad’s hard
potential; see Appendix C), which contains the HS model as a special case. Further,
by using the mathematical estimates of Grad (1963), we can show that estimates
(a)–(c) in § 4.1 are valid also for Grad’s hard potential. Thus, the discussion so far
also applies to Grad’s hard potential. Besides the HS model, various practical models
such as the cutoff inverse-power-law (IPL) model with the exponent s � 5 (s = 5 is
the cutoff Maxwell molecule), the variable hard-sphere (VHS) model (Bird 1994) with
the viscosity index 1/2 � ω � 1 and the variable soft-sphere (VSS) model (Koura &
Matsumoto 1991) with 1/2 � ω � 1 and the exponent of cosine of deflection angle
α � 1 belong to Grad’s hard potential. (As to the notation ω and α we follow Bird
1994, while as to s we follow Grad 1963. The viscosity index of the IPL model with
the exponent s is given by ω = (s + 3)/[2(s − 1)].)

One useful consequence of the above facts is that M[φJ ] can be expressed by the
right-hand side of (4.6) for any molecular model belonging to Grad’s hard potential
within the error O(k−1(ln k)2). Examining the behaviour of the integrand in (4.6) as
k → ∞ leads to the following simple asymptotic formula for M[φJ ] for Grad’s hard
potential:

M[φJ ] = CJ0 ln k + CJ1 + CJ [ν] + O(k−1(ln k)2), (6.1a)

where

CP0 = − 1

2
√

π
, CP1 = −3

4

1√
π

(1 − γ ), CT 0 =
1

4
√

π
, CT 1 =

1

8
√

π
(1 − 3γ ),

(6.1b)

CJ [ν] =
1√
π

∫ ∞

0

t3 ln ν(t)ĨJ e−t2 dt, (6.1c)

and γ is the Euler constant (γ = 0.577216). Note that CP0 and CT 0 are independent of
molecular models. Thus, as far as the leading order is concerned, M[φJ ] is independent
of molecular models in the highly rarefied regime. This is not obvious from (3.1b).
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Molecular model Viscosity index ωa
√

πCP [ν]
√

πCT [ν]

HS 1/2 0.0310229 0.120791
VHS (helium or neon) 0.66 0.0237010 0.0832157
VHS (argon) 0.81 0.0147201 0.0471379
VHS (xenon) 0.85 0.0119477 0.0373583
Pseudo-Maxwell 1 0 0

aTaken from table A1 in Bird (1994).

Table 2. Coefficients CP [ν] and CT [ν] in (6.1).

Further, CP [ν] and CT [ν] can be obtained easily. Some examples are shown
in table 2, where ν is normalized in such a way that ν defined by ν :=
(4/

√
π)
∫ ∞

0
t2ν(t)e−t2 dt is unity. For instance, for the VHS and IPL models with

the viscosity index ω, ν is commonly given by

ν(t) =
2ω−2

Γ (−ω + (5/2))

1

t

∫ ∞

0

r3−2ω(exp(−|t − r |2) − exp(−|t + r |2)) dr. (6.2)

Thus, formula (6.1a) for the VHS model is identical to that for the IPL model with the
same viscosity index. They can be different from each other at O(k−1(ln k)2) or higher
order of k−1, because of the difference of K in (2.9a). Incidentally, if ν is normalized
in such a way that ν �= 1, we rewrite (6.1a) as M[φJ ] = CJ0 ln(k/ν) + CJ1 + CJ [ν/ν] +
O(k−1(ln k)2) and identify the values of

√
πCJ [ν/ν] with those of

√
πCJ [ν] in table 2.

In the case of the HS model, the actual error of formula (6.1) (the first three terms)
is less than 20 %, 3.6 %, 0.52 % and 0.073 % for k = 10, 102, 103 and 104, respectively.
For k � 104, formula (6.1) gives the same values as those of M[φ(0)

J ] at least to five
digits.

The asymptotic formula corresponding to (6.1) can be obtained along the same
lines for Poiseuille and thermal transpiration flows in a circular tube. Let us denote
by D a radius of the pipe cross-section and by ρ0(πD2)(2RT0)

1/2M[φ] the net mass
flow through the pipe cross-section, where φ is written as φ = βP [x2 +φP (x1, x3, ζ )]+
βT [(|ζ |2 − (5/2))x2 + φT (x1, x3, ζ )]. Then, we can show that M[φJ ] is given by

M[φP ] = −4

3

1√
π

+ O(k−1 ln k), M[φT ] =
2

3
√

π
+ O(k−1 ln k), (6.3)

for k � 1, irrespective of the molecular model as long as it belongs to Grad’s hard
potential. It should be noted that (6.3) agrees with the classical results for the BGK
model, including the order of the error terms (Cercignani & Sernagiotto 1966; Niimi
1968; see also Kennard 1938).

6.2. Similarity between u[φT ] and Q[φP ]

It is known that the dimensionless net mass flow of the thermal transpiration is
identical to the dimensionless net heat flow of the Poiseuille flow for arbitrary
Knudsen numbers (Loyalka 1971; see also Takata 2009):∫ 1/2

−1/2

u[φT ] dx1 =

∫ 1/2

−1/2

Q[φP ] dx1. (6.4)
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Figure 8. Profiles of u[φT ] and Q[φP ] in the half-range of the channel (0 � x1 � 1/2).
(a) Large k and (b) small and intermediate k. The solid lines indicate u[φT ], while the closed
symbols indicate Q[φP ]. The data shown were obtained by Kosuge et al. (2005).

It is, however, seen from (3.1b) that u[φ(0)
T ] and Q[φ(0)

P ] are identical even at the level
of spatial profile:

u
[
φ

(0)
T

]
= Q
[
φ

(0)
P

]
. (6.5)

That is, the profile of dimensionless flow velocity of thermal transpiration agrees with
that of dimensionless heat flow of Poiseuille flow within the error O(k−1(ln k)2) for
large k:

u[φT ] = Q[φP ] + O(k−1(ln k)2) (k � 1). (6.6)

Figure 8(a) shows the profiles of u[φT ] and Q[φP ] for k = 10, 15 and 20 obtained by
Kosuge et al. (2005). In the figure, u[φT ] is indicated by the solid lines, while Q[φP ] is
indicated by the closed symbols. They agree well with each other, which is explained
by relation (6.6). As shown in figure 8(b), the profiles do not agree for small and
intermediate Knudsen numbers.

7. Conclusion
In the present paper, we have investigated the Poiseuille and thermal transpiration

flows of a highly rarefied gas, with a special interest in the over-concentration of
molecules on velocities parallel to the walls. Making use of the mathematical estimate
given in Chen et al. (2007) and Grad (1963), we have constructed an iterative
approximation scheme with an explicit convergence estimate for the highly rarefied
regime and have clarified the structure of the over-concentration in the velocity
distribution function. We have also constructed a database for both problems that
promptly gives the accurate data of the net mass flow for an arbitrary value of k � 10
for an HS molecular gas. In addition, we have presented an explicit simple asymptotic
formula for the net mass flows for large Knudsen numbers, which is valid up to O(1)
and is applicable to any molecular model belonging to Grad’s hard potential. Finally,
we have pointed out that the profiles of the heat flow of Poiseuille flow and of the
flow velocity of thermal transpiration agree with each other in the highly rarefied
regime and have clarified the reason.

Appendix A. Sketch of proofs of the statements in §§ 3 and 4.1
The difference between the Poiseuille flow and thermal transpiration problems lies

only in the form of IJ . This difference requires a few minor changes in the course of
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the proof in Chen et al. (2007) to reach statements (i), (ii) and (iii)′ of § 3. Thus, we
shall provide below only the sketch of proof of the statements in § 4.1.

Part (b). By using lemma 4.2 of Chen et al. (2007), we first easily obtain that there
is a positive constant C0 such that

|ψ (0)
J E1/2| � C0

(
1

k
+ |ζ1|
)−1

,
∥∥ψ (0)

J

∥∥∞ � C0k, (A 1)

where ‖·‖∞ = supζ | · E1/2|. Then, by following the proof of lemma 4.3 of Chen et al.
(2007), we have from the above estimate that there is a positive constant C such that

|K(ψ (0)
J )E1/2| � CC0(ln k + 1). (A 2)

Using this estimate in (4.2), we obtain

|ψ (1)
J E1/2| � C2

0Ck−1(ln k + 1)

(
1

k
+ |ζ1|
)−1

,
∥∥ψ (1)

J

∥∥∞ � C2
0C(ln k + 1). (A 3)

Note that ψ
(1)
J follows the same estimate as ψ

(0)
J as a function of ζ and x1. Thus, by

repeating the above process, we have∣∣K(ψ (1)
J

)
E1/2
∣∣ � (CC0)

2k−1(ln k + 1)2 (A 4)

and further conclude (4.3) in § 4.1. (The max(C0, CC0) and CC0 here are the C0 and
C1 in (4.3).) Since the above constants C and C0 are independent of k, ‖ψ

(n)
J ‖∞ → 0

as n → ∞.
Part (a). By the use of estimate (4.3a), we see that ‖φ

(n)
J ‖∞ � C0k/[1−CC0k

−1(ln k+
1)] < ∞ and that ∀n > m,

∣∣(φ(n)
J − φ

(m)
J

)
E1/2
∣∣ � C0

(
1

k
+ |ζ1|
)−1

[CC0k
−1(ln k + 1)]m+1

1 − CC0k−1(ln k + 1)
. (A 5)

For sufficiently large k, the right-hand side tends to zero as m → ∞, so that
‖φ

(n)
J − φ

(m)
J ‖∞ → 0. Thus {φ(n)

J } is a Cauchy sequence in L∞. Now denote limn→∞ φ
(n)
J

by ΦJ and define a function RJ by

RJ ≡ ΦJ − φ
(0)
J −
∫ x1

∓1/2

1

kζ1

exp

(
−ν

k

|s − x1|
|ζ1|

)
K(ΦJ ) ds, ζ1 � 0. (A 6)

Since this equation can be rewritten as

RJ = ΦJ − φ
(n)
J −
∫ x1

∓1/2

1

kζ1

exp

(
−ν

k

|s − x1|
|ζ1|

)
K
(
ΦJ − φ

(n−1)
J

)
ds, ζ1 � 0, (A 7)

we obtain ‖RJ ‖∞ � ‖ΦJ − φ
(n)
J ‖∞ + C0‖K(ΦJ − φ

(n−1)
J )‖∞ → 0 as n → ∞, where

lemma 4.1 of Chen et al. (2007) has been used. Thus ΦJ is a solution of (3.1) in L∞.
Part (c). First, u[ψ (n)

J ] is expressed as

u[ψ (n)
J ] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

∫ x1

−1/2

ζ2

ζ1

exp

(
− ν

k|ζ1| |s − x1|
)

1

k
K
(
ψ

(n−1)
J

)
E ds dζ1 dζ2 dζ3

+

∫ ∞

−∞

∫ ∞

−∞

∫ 0

−∞

∫ x1

1/2

ζ2

ζ1

exp

(
− ν

k|ζ1| |s − x1|
)

1

k
K
(
ψ

(n−1)
J

)
E ds dζ1 dζ2 dζ3. (A 8)
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j a
(j )
P a

(j )
T j a

(j )
P a

(j )
T

0 −1.84790018(+0)a 8.54825701(−1) 9 1.49228707(−7) −1.25559087(−7)
1 −8.83316631(−1) 4.49679688(−1) 10 2.60089118(−7) −8.99270022(−8)
2 −3.92650101(−2) 1.52324109(−2) 11 −1.14839592(−7) 3.11987783(−8)
3 1.05217018(−2) −3.54414570(−3) 12 −2.17698962(−8) 8.08859477(−9)
4 −1.57787850(−3) 3.01542071(−4) 13 9.70450516(−8) −3.18197288(−8)
5 2.70953882(−5) 8.62335466(−5) 14 −2.15201321(−7) 6.99137082(−8)
6 3.90220820(−5) −3.32236013(−5) 15 2.68421948(−7) −1.00798691(−7)
7 −5.19294709(−6) 3.56117808(−6) 16 −1.68935567(−7) 5.64147556(−8)
8 −1.00587844(−6) 5.59709749(−7)

aRead as −1.84790018 × 10+0.

Table 3. Coefficients a
(j )
P and a

(j )
T in (B 1) for 10 � k < 104.

j a
(j )
P a

(j )
T j a

(j )
P a

(j )
T

0 −3.73438354(+0)a 1.80303014(+0) 5 1.25230608(−5) −5.76967764(−6)
1 −9.73557111(−1) 4.86790137(−1) 6 −2.45021285(−6) 1.09473993(−6)
2 −4.16662892(−4) 2.00691591(−4) 7 3.79936917(−7) −1.61013000(−7)
3 1.66673351(−4) −7.94789372(−5) 8 −4.39077230(−8) 1.66539324(−8)
4 −5.13184520(−5) 2.41268625(−5)

aRead as −3.73438354 × 10+0.

Table 4. Coefficients a
(j )
P and a

(j )
T in (B 1) for 104 � k < 107.

Then, in the same way as the estimate of A1 in Chen et al. (2007), we have, by using
(4.3c), ∣∣u[ψ (n)

J

]∣∣ � C ′[C1k
−1(ln k + 1)]n

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

∫ 1/2

−1/2

|ζ2|
ζ1

× exp
(

− ν
k|ζ1| |s − x1|

)
E1/2 ds dζ1 dζ2 dζ3

� C ′′[C1k
−1(ln k + 1)]n(ln k + 1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 9)

where C ′ and C ′′ are some positive constants. The estimate for M[ψ (n)
J ] can be

obtained in the same way.

Appendix B. Database of the net mass flows for the HS model
The database of the net mass flows for k � 10 that has been constructed in the

present work makes use of the Chebyshev polynomial interpolation (see Boyd 2001)
for 10 � k < 107:

M[φJ ] =

N∑
j=0

a
(j )
J P (j )

(
ln(k2/(kmaxkmin))

ln(kmax/kmin)

)
, (B 1)

where P (j ) is the following polynomial of degree j of its argument:

P (0)(x) = 1, P (1)(x) = x, P (n)(x) = 2xP (n−1)(x) − P (n−2)(x), (B 2)

for n � 2 and −1 � x � 1, (N, kmin, kmax) = (16, 10, 104) for 10 � k < 104 and
(N, kmin, kmax) = (8, 104, 107) for 104 � k < 107. The coefficients a

(j )
J have been
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determined by the numerical data of M[φJ ] computed for N + 1 different values
of k, say k(l), such that ln(k(l)2/(kmaxkmin))/ln(kmax/kmin) = −cos((2l + 1)π/(2N + 2))
(l = 0, . . . , N). They are shown in tables 3 and 4. For economy of computation, the
values of a

(j )
T in the tables have been determined from the heat flow of the Poiseuille

flow by using relation (6.4). (Note that the data of M[φ(i)
T ] and M[φ(i)

P ] (i = 0, 1, n) in
table 1 have been computed independently of each other.)

For k � 107, the database makes use of the first three terms of (6.1a):

M[φJ ] = CJ0 ln k + CJ1 + CJ [ν], (B 3)

where CJ0 and CJ1 are those in (6.1b) and CJ [ν] that for the HS model in table 2.

Appendix C. Grad’s hard potential
In general, the collision frequency ν is written as

ν(|ζ |) = 2π

∫ ∫ π/2

0

B(θ, |ζ ∗ − ζ |)E(|ζ ∗|) dθ dζ ∗. (C 1)

The hard potential introduced by Grad (1963) (Grad’s hard potential) is defined as
the potential satisfying the condition that

B(θ, V )

|cos θ sin θ| < C(V + V −1+ε), B0(V ) � C
V

1 + V
, (C 2)

where C and ε < 1 are positive constants and

B0(V ) =

∫ π/2

0

B(θ, V ) dθ. (C 3)

For Grad’s hard potential, Grad (1963) showed that there are positive constants ν0

and ν1 such that ν1(1+ |ζ |2)1/2 � ν(|ζ |) � ν0 > 0, that ν(|ζ |) is a monotonic increasing

function of |ζ | and that K̂ defined by K̂(φ̂) = K(φ)E1/2 with φ̂ = φE1/2 is a compact
operator on L2.
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