
NOLTA, IEICE

Paper

Typical patterns of oscillations
in three-phase circuit

Takashi Hisakado 1a) and Shota Ukai 1

1 Department of Electrical Engineering, Kyoto University

Nishikyo, Kyoto 615-8510, Japan

a) hisakado@kuee.kyoto-u.ac.jp

Abstract: Symmetrical three-phase circuits are fundamental models of power systems. Al-
though the circuits have structural symmetry, asymmetric patterns of oscillations have been
observed in real power systems. This paper describes an approach to understanding typical
patterns of oscillations in the three-phase circuits using symmetry. In order to figure out os-
cillation patterns, we introduce a three LC ladder circuit which has a higher symmetry than
the three-phase circuit. Using only the symmetries of the three LC ladder circuit, we classify
periodic oscillations and construct a lattice of those modes. Further, extending the method to
almost periodic oscillations, we decompose and characterize typical almost periodic oscillations
by their symmetry. Finally, by observing a global phase space in the three LC ladder circuit,
we confirm typical oscillations in the three-phase circuit.

Key Words: three-phase circuit, power system, symmetry, ferroresonance, nonlinear normal
mode, intrinsic localized modes

1. Introduction
The wide variety of power systems, such as dispersed power sources and power electronic systems, leads
to interest in crucial disturbances in electric power systems. Especially, it is important to understand
nonlinear phenomena in power systems, e.g., voltage collapse, ferroresonance, and dynamical behaviors
of nonlinear components such as power converters and flexible ac transmission systems (FACTS)
devices.

Ferroresonance is a nonlinear oscillatory phenomenon leading to dangerous overvoltages in power
equipment and is caused by a nonlinearity of transformers [1–4]. The oscillation was first reported in [5]
and has been extensively studied over the past 100 years [1]. The first analytical work of fundamental
harmonic, subharmonic and higher harmonic oscillations was done by R. Rudenberg [6] and more
exact and detailed work which contains almost periodic oscillations was done by C. Hayashi [7]. Y.
Ueda observed chaos in the research of a ferroresonance system in 1961 [8]. Subsequent research from
the bifurcation theoretic framework was reported in [3, 9–13]. Another approach to ferroresonance
in power systems is oscillation patterns in the structure of three-phase circuits [14–18]. The word
“pattern” means types of oscillations based on the structural symmetry of the three-phase circuit [19,
20]. The detailed analyses of each oscillation type are reported for subharmonic oscillations [12, 21, 22],
asymmetric oscillations [12, 21, 23, 24], cnoidal waves [25] and intrinsic localized modes (ILMs) [26].
Although the bifurcations of each oscillation are analyzed in detail, systematic approaches to finding
out those patterns have not been reported. This paper focuses on figuring out the typical patterns of
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Fig. 1. Three-phase circuit and nonlinear characteristics of fluxes in real
experiment.

oscillations in a three-phase circuit only by its symmetry.
In linear systems, the patterns of the oscillations are easily figured out by the concept of normal

mode. The extension of the linear normal mode to nonlinear systems is first reported in [27] and
subsequent research is reviewed by [28]. Discussions from the symmetry of systems are reported in
the researches of FPU lattice [29–31]. Another approach to listing the typical oscillation patterns
is reported in [19, 20]. The method works out a catalog of typical forms of behavior using only the
symmetries of a system. In this paper, we introduce a three LC ladder circuit which has higher
symmetry than the three-phase circuit, and applying the method in [19, 20], we make a list of the
oscillation patterns and figure out typical oscillations in three-phase circuits.

In section 2, we review the typical oscillations in a three-phase circuit by experimental results.
In section 3, we derive the three LC ladder circuit and show the symmetries of the three LC ladder
circuit. In section 4, we classify the periodic oscillations with respect to the symmetries and we extend
the method to almost periodic oscillations in section 5.

2. Typical oscillations in three-phase circuit
We review typical oscillations in a fundamental three-phase circuit shown in Fig. 1. The circuit consists
of Δ-connected inductors and resistors, and Y -connected capacitors and resistors, and three-phase
voltage sources. The three inductors have nonlinear characteristics of fluxes. The characteristics of
the nonlinear inductors used in our experiment are also shown in Fig. 1.

The patterns of oscillations generated in three-phase circuits are classified into the following three
types [15, 17, 18, 21, 22] based on the number of related inductors:

Type 1: Oscillations mainly excited by any one of the three inductors. The current flows dominantly
through only one inductor and the three-phase circuit operates as if it were a single-phase circuit.

Type 2: Oscillations mainly excited by any two of the three inductors. The currents flow dominantly
through only two inductors and the three-phase circuit operates as if it were a two-phase circuit.

Type 3: Oscillations excited by all the three inductors. Normal oscillations in three-phase power
systems belongs to this type.

Figure 2 shows typical fundamental harmonic oscillations observed by the experiment. The Ea and
Ia, Ib, Ic denote the voltage waveform of Ea and the current waveforms of inductors a, b and c,
respectively. The left figure shows a fundamental harmonic type 3 oscillation in which the phases of
the three inductor currents are three-phase and this oscillation is a normal oscillation forced by three-
phase voltage sources. The right figure shows a fundamental harmonic type 1 oscillation. A cnoidal
wave shown in Fig. 3 is a strange oscillation [14, 25], but it is a type 3 oscillation in this classification.
The waveform of the cnoidal wave shows that the current pulses of every inductor circulate in the Δ
connection and the direction of the circulation suddenly changes every about 125 ms.
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Fig. 2. Typical fundamental harmonic oscillations (real experiment with R =
2.5Ω, r = 3.1Ω and 1/ωC = 42.2Ω [24]). The Ea, Ia, Ib, Ic are the voltage
waveform of Ea and the current waveforms of inductors a, b and c, respectively.
The left figure is type 3 and the right figure is type 1.

Fig. 3. Cnoidal wave in fundamental harmonic oscillations (real experiment
with R = 2.5Ω, r = 3.1Ω and 1/ωC = 44.2Ω [25]). The current pulses of every
inductor circulate in the Δ connection and the direction of the circulation
suddenly changes every about 125 ms.

These patterns are observed also in subharmonic oscillations [12]. Figure 4 shows the two patterns
of 1/3-subharmonic oscillations. The left figure is a 1/3-subharmonic type 3 oscillation and the right
figure is a 1/3-subharmonic type 1 oscillation. In this case the type 3 oscillation is an almost periodic
oscillation. In 1/3-subharmonic oscillation, a type 2 oscillation shown in Fig. 5 is also reported in [23].
These oscillation patterns are observed also for other subharmonic oscillations [22]. The objective of
this paper is to give a reason for the generation of these typical oscillations using the symmetry of
the circuit.

3. Three LC ladder circuit and its symmetry

3.1 Circuit equation of the three-phase circuit
The normalized equation of the three-phase circuit shown in Fig. 1 is described by

d
dt

(
ψabc

uabc

)
=

(
−Aabcuabc +eabc −Rabciabc

AT
abciabc

)
. (1)

Aabc �

⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠ ,
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Fig. 4. Typical 1/3-subharmonic oscillations (real experiment with R =
12.3Ω, r = 3.1Ω and 1/ωC = 13.6Ω (left figure)/ 1/ωC = 27.2Ω (right fig-
ure) [12]).

Fig. 5. 1/3-subharmonic type 2 oscillation (real experiment with R = 12.3Ω,
r = 3.1Ω and 1/ωC = 14.7Ω [23]).

Fig. 6. Three LC ladder circuit.

ψabc � (ψa, ψb, ψc)T : fluxes of the inductors
uabc � (ua, ub, uc)T : voltages of the capacitors
Rabc � AT

abcAabcR+ Ir : matrix for resistors
iabc(ψabc) � (i(ψa), i(ψb), i(ψc))T : currents of the inductors
eabc(t) � Eabc(sin(ωet), sin(ωet− 2π

3 ), sin(ωet+ 2π
3 ))T : three-phase voltage source,
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where the I denotes unit matrix and (∗)T denotes transposition. The R, r, ωe represent normalized
circuit parameters which corresponds to Y-connected resistors, Δ-connected resistors, and angular
frequency of the voltage sources, respectively. We assume that the characteristics of the flux i(ψ) is
represented by a monotone increasing odd function.

3.2 Three LC ladder circuit
In order to find typical patterns in the three-phase circuit, we introduce a higher symmetric circuit.
First, the elimination of the three-phase voltage source from the three-phase circuit gives the reflection
symmetry. Second, the elimination of resistors gives periodic and almost periodic free oscillations in
the circuit. As a result, we obtain a three LC ladder circuit shown in Fig. 6. The equation of the
circuit is described by

d
dt

(
ψabc

uabc

)
=

(
−Aabcuabc

AT
abciabc

)
. (2)

For simplicity, we rewrite Eq. (2) by

dxabc

dt
= fabc(xabc), xabc = (ψT

abc, u
T
abc)

T. (3)

Although Eq. (2) is a conservative system and does not have attractors, its symmetry reveals the
typical patterns observed in real experiments. We will discuss the symmetry and oscillation patterns
using Eq. (3) in subsequent sections.

3.3 Symmetries of three LC ladder circuit
The Eq. (3) of the LC ladder circuit has the symmetry of the dihedral group D6 because LC ladder
circuit has symmetries of cyclic permutation, reflection and inversion based on the odd function. We
define generators ρ and σ of D6 by

ρ(ψa, ψb, ψc, ua, ub, uc)T = (ψb, ψa, ψc,−ub,−ua,−uc)T (4)

σ(ψa, ψb, ψc, ua, ub, uc)T = (−ψa,−ψc,−ψb, ua, uc, ub)T. (5)

If we let I denote the identity map, and define τ � σρ, then τ3 = −I and τ6 = I. If ρ, σ, · · · are
elements of D6, let 〈ρ, σ, · · · 〉 denote the subgroup of D6 generated by ρ, σ, · · · . Then, representative
subgroups of each conjugacy class of subgroups of D6 are

〈−I〉 = Z2 (6)

〈ρ〉 = Zρ
2(∼= Z2) (7)

〈σ〉 = Zσ
2 (∼= Z2) (8)

〈τ2〉 = Z3 (9)

〈ρ,−I〉 = Dρ
2(∼= D2) (10)

〈τ2, ρ〉 = Dρ
3(∼= D3) (11)

〈τ2, σ〉 = Dσ
3 (∼= D3) (12)

〈τ〉 = Z6 (13)

together with D6 and the trivial subgroup E = {I}, where Zn denotes the cyclic group of order n
and Dn denotes the dihedral group of order 2n [19, 20].

4. Classification of periodic oscillations

4.1 Spatio-temporal symmetry and spatial symmetry
In order to list typical patterns of periodic oscillations, we define the period T oscillation xabc(t) in
the three LC ladder circuit by
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Fig. 7. Lattice of symmetric periodic oscillations.

xabc(t) = xabc(t+ T ). (14)

We normalize the time t by the period T and consider period 2π oscillation x̂(θ) : T
1 �→ R

6, where θ
is a normalized phase and T

1 denotes 1-torus.
Although the system has many subgroups, the symmetries of the periodic oscillation are limited.

Let us consider a subgroup H ⊂D6. If a periodic oscillation x̂(θ) satisfies

H = {γ ∈D6 | γ{x̂(θ)} = {x̂(θ)}} (15)

for all the actions γ ∈ H, the periodic oscillation has spatio-temporal symmetry [20]. This relation
means that the H-action preserves the trajectory of x̂(θ) and an action γ ∈ H causes only a shift k:

∀θ ∈ T
1, γx̂(θ) = x̂(θ − k). (16)

We represent the correspondence between γ and k by a map k = Θ(γ). Then, the kernel of the map
Θ is defined by

K � {γ ∈ H | Θ(γ) = 0} . (17)

The kernel K derives a fixed-point subspace

Fix(K) � {x̂ ∈ R
6 | γx̂ = x̂, ∀γ ∈ K} ⊂ R

6. (18)

In this sense, the subgroup K represents spatial symmetry of the three LC ladder circuit. For the
existence of periodic oscillations, it is necessary that H/K is isomorphic to cyclic group Zm and that
the dimension of Fix(K) is not less than 2 [20].

Based on the above conditions, we classify the symmetric periodic oscillations with respect to the
subgroups H and K. The patterns of oscillations are listed in Table I, where η, ξ, ζ : T

1 �→ R
1 are

period 2π functions. Labels M1, M2 and M3 in the table denote typical highly symmetric type 1,
type 2 and type 3 periodic oscillations, respectively. Further, Fig. 7 shows the lattice of symmetric
periodic oscillations in the three LC ladder circuit with respect to the spatio-temporal symmetry H.
The M1 and M2 belong to a subgroup Dρ

2 and the M3 belongs to a subgroup Z6.

4.2 Examples of highly symmetric oscillations
Let us discuss the typical highly symmetric oscillations M1, M2, and M3 shown in Figs. 8, 9, and
10, respectively. The waveforms are calculated by a function i(ψ) = ψ + 3.8ψ7, which is given to
approximate the characteristics of fluxes shown in Fig. 1. The M1 and M2 are symmetric with respect
to the reflection and the inversion. The difference between the M1 and the M2 comes from the spatial
symmetry K. It is noted that the experimental results in Figs. 2, 4, and 5 show the currents and that
the example waveforms Figs. 8, 9, and 10 show the fluxes. From the viewpoint of ILM, the M1 and
M2 correspond to ST mode and Page mode, respectively [31]. The M3 is symmetric with respect to
Z6 and the shift k = +k3 and k = −k3 represent the propagating directions. Thus, the symmetries
of the three LC ladder circuit give the patterns of oscillations.
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Table I. Pattern of oscillations.

H K label ψabc comments

D6 D6 0 0 0 equilibrium
Z6 E M3 ξ(θ) ξ(θ−k) ξ(θ−2k) ξ(θ) = −ξ(θ + π), k ∈ {+k3,−k3}
Z3 Z3 ξ(θ) ξ(θ) ξ(θ)
Z3 E ξ(θ) ξ(θ−k) ξ(θ−2k) k ∈ {+k3,−k3}
Dρ

2 Zρ
2 M1 η(θ) ξ(θ) ξ(θ) ξ(θ) = −ξ(θ+π), η(θ) = −η(θ+π)

Dρ
2 Zσ

2 M2 0 ξ(θ) −ξ(θ) ξ(θ) = −ξ(θ + π)
Zρ

2 Zρ
2 η(θ) ξ(θ) ξ(θ)

Zρ
2 E η(θ) ξ(θ) ξ(θ + π) η(θ) = η(θ + π)

Zσ
2 Zσ

2 0 ξ(θ) −ξ(θ)
Zσ

2 E η(θ) ξ(θ) −ξ(θ+π) η(θ) = −η(θ + π)
Z2 E xabc(θ) = −xabc(θ+π)
E E ξ(θ) η(θ) ζ(θ) asymmetric oscillation

Fig. 8. Waveform of M1. M1 is type 1 and belongs to the subgroup Dρ
2.

Fig. 9. Waveform of M2. M2 is type 2 and belongs to the subgroup Dρ
2.

Fig. 10. Waveform of M3. M3 is type 3 and belongs to the subgroup Z6.

The symmetrical coordinates and the 0αβ coordinates used for power systems correspond to the
symmetries Z3 and Dρ

2, respectively. The M3 with +k3 and −k3 corresponds to positive-phase-
sequence and negative-phase-sequence component in the symmetrical coordinate, respectively. The
M1 and M2 correspond to α component and β component in the 0αβ coordinates, respectively. Thus,
these results supports the well known coordinates in power systems [32].

5. Almost periodic oscillation

5.1 Definition
We extend the method of the classification for almost periodic oscillations. We define the almost
periodic oscillation with normalized phase θ by x̂(θ) : T

2 �→ R
6. Then, a subgroup H is defined by
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Fig. 11. Lattice of almost periodic oscillations.

Fig. 12. Waveform of beat(Dρ
2).

Fig. 13. Waveform of beat(Z6).

H = {γ ∈D6 | γ{x̂(θ)} = {x̂(θ)}} (19)

for all the action γ ∈ H. The H-action preserves the trajectory of x̂(θ) and an action γ causes only
a shift k ∈ T

2:

∀θ ∈ T
2, γx̂(θ) = x̂(θ − k). (20)

This relation defines a map Θ(γ) : H �→ T
2 and the kernel of the map Θ(γ) is defined by

K � {γ ∈ H | Θ(γ) = o} . (21)

The subgroup K defines the fixed-point subspace Eq. (18). The condition that Θ is a group homo-
morphism is described by

H/K ∼= Zm1 ×Zm2 , (22)

where m1 ∈ Z is a divisor of m2 and Z denotes the set of integers. Additionally, Fix(K) is not less than
4. The conditions give the lattice of almost periodic oscillations with respect to the spatio-temporal
symmetry H shown in Fig. 11 which is the same as Fig. 7. In this case, all the spatial symmetries
K are E. Higher symmetric waveforms beat(Dρ

2) and beat(Z6) which belong to the subgroups Dρ
2

and Z6 respectively are shown in Figs. 12 and 13. The cyclic almost periodic oscillation beat(Z6)
in Fig. 13 corresponds to almost periodic type 3 oscillation shown in Fig. 4 and the almost periodic
oscillation beat(Dρ

2) in Fig. 12 is an almost periodic type 1 oscillation.
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Fig. 14. The beat(Z6) is decomposed into forward and backward compo-
nents. The forward and backward components give the exclusive decomposi-
tion of the frequency components.

Fig. 15. The beat(Dρ
2) is decomposed into α and β components. The α and

β components give the exclusive decomposition of the frequency components.

5.2 Decomposition of almost periodic oscillation by symmetries
In order to characterize the almost periodic oscillations, we decompose the almost periodic oscillations
based on the symmetries. First, we represent x̂(θ) by 2-dimensional Fourier series expansion:

x̂(θ) =
∑
j∈Z2

Xj exp(jjTθ) + c.c., Xj ∈ C
9, (23)

where c.c. represents complex conjugate. Then, the 2-dimensional Fourier series expansion of Eq. (20)
derives

γ ∈ H, γXj = exp(jjTk)Xj . (24)

This equation shows that the vector Xj is in the eigenspace of the action γ with respect to the

eigenvalue λ � exp(jjTk). Using the eigenspaces and eigenvalues, we decompose the almost periodic
oscillation x̂(θ).

For example, the flux ψ̂abc : T
2 �→ R

3 with respect to the symmetry Z6 can be decomposed as

ψ̂abc(θ) =
∑

j∈κ0∩κodd

Ψ0,j1,j2w
′
0 exp(i(j1θ1 + j2θ2) )

+
∑

j∈κ+∩κodd

Ψ+,j1,j2w
′
+ exp(i(j1θ1 + j2θ2) )

+
∑

j∈κ−∩κodd

Ψ−,j1,j2w
′
− exp(i(j1θ1 + j2θ2) ) + c.c., (25)

where

κ0 �
{
j ∈ Z

2 | j1 mod 3 = 0
}
,

κ+ �
{
j ∈ Z

2 | j1 mod 3 = 1
}
,

κ− �
{
j ∈ Z

2 | j1 mod 3 = −1
}
,

κodd �
{
j ∈ Z

2 | j1 + j2 mod 2 = 1
}
.

(26)

We call the components in w′
0,w

′
+,w

′
− common mode (zero-phase sequence), forward mode (positive-

phase sequence) and backward mode (negative-phase sequence), respectively. This decomposition
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Fig. 16. Poincare map of the three LC ladder circuit. Periodic oscillations
M1, M2, and M3 exist and the almost periodic oscillations beat(Dρ

2) and beat
(Z6) exist around the M1 and M3, respectively. Almost all the phase space is
covered by the regions of beat(Dρ

2) and beat(Z6).

(25) indicates that the spectra are also decomposed exclusively in the modes. Figure 14 shows
the decomposition of cyclic almost periodic oscillation beat(Z6). In this case, the components of
common mode equal 0 and the coordinates enable the exclusive decomposition of the frequency
components. Thus, we can understand that the almost periodic oscillation beat(Z6) shown in Fig. 13
is the superposition of the forward and backward components.

In the same way, the almost periodic oscillation beat(Dρ
2) also can be decomposed into α component

Ψα and β component Ψβ as shown in Fig. 15. We can understand that the almost periodic oscillation
beat(Dρ

2) shown in Fig. 12 is the superposition of the α and β components.

5.3 Structure of phase space
In order to clarify the structure of the phase space of Eq. (2), we calculate the Poincare map of a
cross section

Σ � {(ψα, uα, ψβ , uβ)|uα = 0, ψα > 0} , (27)

where the suffixes α and β represent α and β coordinates [32].
Although the original phase space is 6-dimension, assuming that 0-phase components ψ0 and u0

are equal to 0 and fixing the total energy H, the Poincare map of all the phase space is represented in
2-dimensional plane. The Poincare map on ψα-ψβ plane for the nonlinear function i(ψ) = ψ + 3.8ψ7

and the total energy H = 0.83 is illustrated in Fig. 16. We can confirm that periodic oscillations
M1, M2, and M3 exist and the almost periodic oscillations beat(Dρ

2) and beat(Z6) exist around the
M1 and M3, respectively. In this case, almost all the phase space is covered by the regions of almost
periodic oscillation beat(Dρ

2) and beat(Z6) although the increase of the energy gives more complex
oscillations [30]. Thus, we can confirm that the typical oscillations in the LC ladder circuit are M1,
M2, M3, beat(Dρ

2), and beat(Z6) and that these oscillations correspond to the typical oscillations
type 1, 2, and 3 in the three-phase circuit.

6. Conclusion
Typical oscillation patterns in three-phase circuits are reviewed and are classified into the type 1, type
2 and type 3 based on the number of the related inductors. In order to give a reason for the typical
patterns, we introduced the three LC ladder circuit which has a higher symmetry than the three-phase
circuit and classified the periodic and almost periodic oscillations based only on the symmetries of the
circuit. The lattice of the classified oscillations indicates that the M1, M2, and M3 are typical patterns
and the almost periodic oscillations are decomposed and characterized by each mode. Further, from
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the observation of the phase space, we confirmed that the typical patterns cover almost all the global
phase space when the total energy is low. The discussions in this paper gives a reason for the typical
patterns in the three-phase circuit by the symmetries.

Additionally, because the approach is based only on the symmetries of the circuit, there is a possibil-
ity that the classification can be applied to oscillations generated by other nonlinearities in symmetrical
three-phase circuits. Even if the purpose of this paper is listing typical oscillation patterns only in
a simple three-phase system and does not have the discussion about the stability of the patterns,
the listed patterns could be applied in the analysis of power systems which contain wide varieties of
nonlinear components. Further research of perturbed systems which give symmetry breaking also will
be an interesting subject.
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