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Abstract: A macro-mechanical cantilever array is proposed for experimental investigation of
intrinsic localized modes (ILMs). The array is designed to have tunable on-site potentials that
can be adjusted individually. Thus, it is easy to realize an array, in which an ILM can be
excited. In addition, impurities can be induced in and removed from the array. Several ILMs
were successfully generated by an external sinusoidal excitation, and the generated ILMs were
manipulated by adding an impurity to the cantilever array. The manipulation mechanism is
discussed numerically on the basis of the structure of phase space. Coexisting ILMs, unstable
manifolds, and the domains of attraction of a stable ILM are shown for an ILM manipulated
by adding an impurity.
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1. Introduction
Energy localized vibration in a nonlinear lattice was first discovered by Sievers and Takeno in 1988 [17].
Such localized vibration in discrete media is now called an intrinsic localized mode (ILM) or discrete
breather (DB). In this decade, ILMs have been identified in many types of physical systems, for
instance, Josephson-junction arrays [1, 19, 20], optical wave guides [4, 11], photonic crystals [7], a
micro-mechanical cantilever array [14], mixed-valence transition metal complexes [9, 18], antiferro-
magnets [15], and electronic circuits [5, 16]. Experiments with micro-cantilever arrays can facilitate
the application of ILMs to micro- or nano-engineering because cantilever structures are widely used
in micro and nano devices [21]. Thus, ILMs in a micro-cantilever array have the potential to be used
for sensors and actuators requiring high sensitivity and accuracy.

Control of an ILM involves manipulating its appearance, disappearance, and spatial position along
a particular direction and applying these properties in sensor and actuator modes. Sato et al. [13]
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reported experimental manipulation of micro-cantilever arrays. ILMs were generated, destroyed,
repelled, and attracted by adding a localized impurity; thus, demonstrating the possibility of indirectly
controlling ILMs by positioning a local impurity in the array.

The mechanism by which ILMs are manipulated is generally governed by the structure of the
phase space under control. Experimental investigations could illuminate the conjectured mechanism
phenomenologically. Macrosystems offer advantages for grasping their dynamics and achieving a
method of controlling ILMs, if analogous features in macrosystems are qualitatively retained in ILMs.
Here we introduce a macro-cantilever array system that exhibits ILMs similar to those of micro or
nanosystems.

One of the authors proposed a magneto-elastic beam model for describing nonlinearly coupled
Duffing-type pendulums [8]. The model was used to investigate waves and vibrations in nonlinearly
coupled pendulums. The experimental model has a similar equation of motion to the micro-cantilever
array in which ILMs were observed. In the model, permanent magnets are placed so as to adjust the on-
site nonlinearity. If the magnetic field is adjustable at each site, an impurity can be added or released.
This concept inspired us to develop a magneto-elastic beam system with tunable electromagnets.
In this paper, we first introduce the macro-mechanical cantilever array and model it as nonlinear
coupled ordinary differential equations. In Sec. 3, we present experimental observations of ILMs.
The experimental results are confirmed by a numerical simulation. In addition, the coexistence and
stability of ILMs are investigated. Experimental manipulations of ILMs are demonstrated in Sec. 4;
a standing ILM is attracted to a manually created impurity. The mechanism for the manipulation is
discussed numerically in terms of the phase structure.

2. Cantilever array

2.1 Cantilever with cylindrical magnet
In this section, the equation of motion of a cantilever is derived. Figure 1 shows a schematic con-
figuration of the cantilever. A cylindrical mass is attached at the free end of the cantilever. The
cantilever’s vibration is described by the Euler-Bernoulli beam theory as

ρwh
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∂4y
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, (1)

where y represents the displacement of the cantilever at a position x away from the equilibrium
position. The moment of inertia is represented by I = wh3/12. The solution of Eq. (1) is assumed to
be y(x, t) = Y (x) sin(ω0t). Next, the ordinary differential equation
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which can be easily solved, is obtained. The general solution with four arbitrary constants is
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where λ is a nondimensional parameter defined as λ2 = �2ω0
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where m and J denote the mass and moment of the cylindrical magnet, respectively. The boundary
conditions yield C1 = −C3, C2 = −C4 and the condition
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Fig. 1. Configuration of cantilever with permanent magnet.

which determines the frequency of the vibrating cantilever. The lowest value of λ satisfying Eq. (5)
is numerically obtained as about 1.64(= λ1)1. The shape function Y (x) shows that the end of the
cantilever oscillates with the largest amplitude. This oscillation is called the first mode oscillation of
the cantilever. This paper focuses on the first mode so that the partial differential equation is reduced
to an ordinary differential equation.

When the cantilever oscillates at the first mode frequency ω0, the displacement of its end is a
simple harmonic oscillation y(�, t) = Y (�) sin(ω0t). On the basis of the harmonic oscillation of a linear
spring?mass system without damping, the motion of the end of the cantilever is described by

ü = −ω2
0u, (6)

where u denotes the displacement of the tip of the cantilever. Equation (6) represents the linear
oscillation of the tip of cantilever for a small amplitude.

2.2 Magnetic interaction
A cylindrical permanent magnet (PM) is attached to the free end of the cantilever. The restoring
force between the PM and an electromagnet (EM) placed below produces nonlinear interaction. The
configuration is shown in Fig. 2. For simplicity, we assume that the magnetic force between the PM and
the EM can be approximately described by Coulomb’s law for magnetic charges. The configuration
of the magnetic charges is shown in Fig. 2(b). If the cantilever’s displacement is sufficiently small
relative to its length, Coulomb’s law for magnetic charges gives

F (u) =
mpme

4πμ0

u

(u2
0 + d2

0)
3
2
,

=χ(IEM)
u

(u2
0 + d2

0)
3
2
,

(7)

where mp and me correspond to the magnetic charges of the PM and EM, respectively. The distance
between the magnets is denoted by d0 in the equilibrium state. The magnetic permeability is repre-
sented by μ0. Because the magnitude of me depends on the current flowing in the EM, the coefficient
of the interaction can be represented as a function of the current χ(IEM). In this paper, we assumed
the linear relationship χ(IEM) = χ0 + χ1IEM. An attractive force between the magnets appears even
if the current is zero because the EM has a ferromagnetic core. Thus, χ0 is always negative. On
the other hand, the current direction changes the sign of χ1IEM. The current direction is defined as
positive when it enhances the attractive force. Therefore, χ1 is also negative.

A voice coil motor is attached to excite the cantilever, as shown in Fig. 2. When the voice coil
motor is driven by a sinusoidal signal, the motion of the cantilever is given by

ü = − ω2
0u − γu̇ + F (u) + A cos(ωt), (8)

where A and ω denote the magnitude and angular frequency, respectively, of the external force excited
by the voice coil motor. The damping coefficient γ is required because of air resistance.

2.3 Frequency response of cantilever
The restoring force on each cantilever varies nonlinearly because of the magnetic interaction force
between the PM and the EM. Figure 3(a) shows the relationship between the amplitude and the

1The corresponding frequency is about 37.5 Hz.
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Fig. 2. (a) Side view of cantilever. A permanent magnet is attached at its
free end. An electromagnet is placed beneath the permanent magnet. (b)
Magnetic charge configuration.

(a) Skeleton curves (b) Frequency response

Fig. 3. (a) Skeleton curves. Each curve was obtained numerically. (b) Fre-
quency response for IEM = 24 mA.: up scan(top) and down scan(bottom). Scan
rate was 0.05 Hz/s. Estimated damping and external force were γ = 1.5 s−1

and A = 3.0 m/s2, respectively.

frequency when both γ and A are 0. The shapes of the skeleton curves demonstrate the soft-spring
characteristics of the cantilever. The curves in Fig. 3(a) asymptotically approach the line representing
the natural frequency of the cantilever as the amplitude increases because the contribution of the
magnetic interaction becomes small when the amplitude is larger than the diameter of the EM. On
the other hand, the frequency at small amplitudes depends strongly on the current flowing in the EM.
The linearization of Eq. (10) gives a resonant frequency of

ω′
0 =

√
ω2

0 − (χ0 + χ1IEM)/d3
0, (9)

where χ0 and χ1 are assumed to be negative. The resonant frequency shifts to the high frequency
side with increasing current.

The experimental frequency responses clearly show a hysteretic response with respect to the external
force at frequencies below the resonant frequency, as shown in Fig. 3(b). The cantilever’s amplitude
increased rapidly at 38.3 Hz during the up scan of the frequency. However, during the down scan,
the amplitude jump occurred at 35.9 Hz. In terms of its phenomenological behavior, the cantilever
has two stable states when the frequency of the external excitor is between 35.9 Hz and 38.3 Hz. To
excite a localized oscillation, the external excitor should vibrate the array with a frequency at which
hysteresis occurs [12]. We adopted a frequency of 36.1 Hz for the external excitor in order to excite
ILMs.

236



2.4 Mechanically coupled cantilevers
Adjacent cantilevers are coupled by attaching an elastic rod called the coupling rod. Figure 4 shows
a schematic of the macro-mechanical cantilever array’s configuration; Table I lists its specifications.
Eight cantilevers were placed at equal intervals along one dimension. The cantilevers were derived
using Eq. (8), and each was mechanically coupled by the coupling rod. The coupling rod produces a
force that depends on the differences in the displacements of adjacent cantilevers. The force changes
linearly with respect to the displacement difference if the deformation of the rod is sufficiently small.
As shown in Fig. 4, the rod is attached near the support. The displacement of the cantilever at the
rod is quite small relative to that at the tip, so we assume that the coupling force is linear. Therefore,
the equation of motion of the coupled cantilever array is⎧⎪⎨

⎪⎩
u̇n =vn,

v̇n = − ω2
0un − γun + F (un) + A cos (ωt)

− C (un − un+1) − C (un − un−1) ,

(10)

where n = 1, 2, . . . , 8 and C denotes a constant coupling coefficient. As shown in Fig. 4, a short, wide
cantilever is attached at either end of the array to form fixed boundaries. Therefore, the boundary
conditions of Eq. (10) are {

u0 = 0, v0 = 0,

u9 = 0, v9 = 0.
(11)

The natural frequency of the cantilever without the electromagnet is experimentally determined
to 35.1 Hz by taking the frequency response at small amplitude excitation. The peak frequency
corresponds to ω0. The damping coefficient was estimated at 1.5 s−1 by measuring the decay rate of

Fig. 4. Overview of the cantilever array. Eight cantilevers are mechanically
coupled by the coupling rod. Short cantilever is attached at the end of the
array to realize a fixed boundary condition. Voice coil motor excites the entire
array except for the electromagnets.

Table I. Specifications of cantilever array.

Each cantilever

Length(�) 70.0 mm Width(w) 5.0 mm
Thickness(h) 0.3 mm Pitch(p) 15.0 mm
Density(ρ) 8.0 × 103 kg/m3 Young’s modulus(E) 197 GPa

Cylindrical magnet

Radius (r) 1.5 mm Height(l) 3.0 mm
Mass (m) 96.6 mg

237



Table II. List of symbols in Eq. (10).

Symbol Value Symbol Value
ω0 2π×35.1 rad/s γ 1.5 s−1

C 284 s−2 χ0 −4.71 × 10−5 m3/s2

d0 3.0 mm χ1 −9.14 × 10−3 m3/s2A
A 3.0 m/s2 ω 2π×36.1 rad/s

Fig. 5. Experimental setup.

amplitude when the driving force turned off. For the nonlinear term, the shift of resonant frequency
was measured to determine χ0 and χ1. As shown in Eq. (9), ω′2

0 increases linearly as the current
increases if χ0 and χ1 are negative. We obtained χ0 = −4.71 × 10−5 m3/s2 and χ1 = −9.14 ×
10−3 m3/s2A by applying the lease square method to measured values. The coupling coefficient C

was determined by vibrating the array with small amplitude, where electromagnets were removed
because they affect the restoring force of cantilevers even though no current flows. The frequency
difference between the lowest mode and the highest mode was measured by slowly sweeping the driving
frequency. All adjacent cantilevers oscillate in-phase at the lowest mode and anti-phase at the highest
mode. The frequency of the lowest mode approximately corresponds to ω0 while the coupling is weak.
For the same reason, the highest mode frequency can be assumed to be

√
ω2

0 + 4C. Therefore, the

coupling coefficient can be estimated by C =
1
4
(Δ2

ω + 2ω0Δω), where Δω represent the frequency

different and was measured as 2π × 2.50 rad/s. As a result, the coupling coefficient is obtained as
C = 284 s−2, which is relatively small compared with ω2

0 . The array is thus in the weak coupling
regime. The experimentally estimated parameters are listed in Table II.

2.5 Experimental setup
The experimental setup is shown in Fig. 5. The displacement of each cantilever un is measured
using a strain gauge. The resistance of the strain gauge changes slightly with the displacement of
the cantilever. To detect the small change in resistance, a bridge circuit with a differential amplifier
was used. The amplified voltage signal was stored in a computer via a multi-channel A/D converter.
The current flowing in each EM was adjusted individually by the computer. The computer generates
a voltage signal via a multi-channel D/A converter. A V/I converter including a current amplifier
supplied current to the EM.

To excite the cantilever array, the voice coil motor was attached to the support as shown in Fig. 5.
The motor was driven by a sinusoidal voltage signal generated by a function generator.

3. Intrinsic localized mode
3.1 Observation of localized oscillations
The frequency of the external excitor should be set to that at which hysteresis of the frequency re-
sponse occurs [12]. Thus, we chose a frequency of 36.1 Hz on the basis of the experimental results
shown in Fig. 3(b). Since each cantilever has two stable solutions, large- and small-amplitude oscil-
lations, no ILM was observed when the excitor was first turned on. The corresponding wave form is
shown in Fig. 6(a). All the cantilevers oscillated in phase with small amplitude. We manually per-
cussed a cantilever in order to excite an ILM and successfully observed several localized oscillations.
Figures 6(b), (c), and (d) show the wave forms of the observed ILMs. One of the cantilevers has quite
large amplitude, whereas the others have relatively small amplitudes. The amplitude distribution
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(a) No ILM (b) ILM at n = 5 (c) ILM at n = 6 (d) ILM at n = 7

Fig. 6. Experimentally excited ILMs: (a) no ILM; ILMs excited at (b) n = 5,
(c) n = 6, and (d) n = 7. Cantilever array was subjected to external vibration
at 36.1Hz.

(a) No ILM (b) ILM at n = 5 (c) ILM at n = 6 (d) ILM at n = 7

Fig. 7. ILMs obtained by numerically using Eq. (10). Parameters are listed
in Table II.

is obviously localized. The results of numerical calculation are shown in Fig. 7. The forth-order
Runge-Kutta method was applied to integrate Eq. (10). The state with no ILM is shown in Fig. 7(a).
Numerically calculated ILMs corresponding to those observed are shown in Figs. 7(b), (c), and (d).
The wave forms and spatial distributions agree with the experimental results in Fig. 6. This implies
that Eq. (10) has sufficient validity for discussing ILMs in the cantilever array.

In the experiment, other ILMs centered at n = 2 and n = 4 were observed. However, an ILM
could not be excited at n = 3. The reason seems to be a disorder of the cantilever array, which is
mainly caused by the variability of the length of cantilevers, the mass of permanent magnets, and
the magnitude of magnetic charges. The parameters in Eq. (10) are slightly different from each other
due to the disorder. The existence of disorder is implied by the spatial symmetry of the amplitude
distribution. As shown in both Fig. 6(b) and Fig. 7(b), the amplitude of the sixth cantilever is larger
than that of the fourth. The difference in the amplitude of the central cantilever between Figs. 6(b)
and (c) also indicates the array’s disorder. The disorder may change the resonant frequency of the
cantilevers. As shown in Fig. 3, if the frequency of the excitor is fixed, the amplitude somewhat varies
with the change in the resonant frequency. Therefore, the braking symmetry seems to be due to the
disorder.

Although the numerical simulation indicate that ILMs exist at nearby the boundaries of the array,
standing ILMs at n = 1 and n = 8 were not observed experimentally. It seems that the boundaries
of the experimental array are not completely fixed, whereas we assumed those to be fixed. From the
point of view of producing a new experimental system for investigation of the qualitative dynamics of
ILM, the cantilevers attached to the ends of array should be replaced by stiffer ones to improve the
fixedness of the boundaries.

3.2 Coexisting ILMs and their stability
In the experimentally observed ILMs, only one cantilever exhibited large-amplitude oscillations. These
ILMs are stable because they did not decay for a long period and survived against disturbance caused
by air flow around the cantilever array. On the other hand, other types of localized oscillations,
which may be unstable, also exist in the cantilever array under the conditions listed in Table II. The
anticontinuous limit [10] was used for obtaining ILMs. The coupling coefficient is, at first, set at C = 0.
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If the driving frequency is chosen in the frequency region where two stable and one unstable periodic
solutions coexist, a trivial localized solution can be obtained for the no-coupling regime. That is, one
cantilever is set to stable or unstable resonance while the others are set to the small amplitude stable
solution. Next, the coupling coefficient is slightly increased. The localized solution in the no-coupling
regime is used as an initial condition of the shooting method which is the Newton-Raphson method
for periodic solution. If the calculation successfully converges, the coupling coefficient is increased
again. By iterating these procedure, several types of ILM were obtained, shown in Fig. 8(a). This
figure corresponds to the experimentally observed ILM shown in Fig. 6(b). The label ST5s indicates
the Sievers-Takeno mode obtained under the anticontinuous limit when the fifth cantilever is set to
the stable resonance. P4s-5s is the Page mode standing between n = 4 and n = 5. As shown in
Fig. 8(b), in the P mode, two cantilevers resonate. In the anticontinuous limit, the fourth and fifth
cantilevers are set to the stable resonance to obtain P4s-5s. That is, the label includes two numbers
with a superscript “s.” Figures 8(c) and 8(d) were obtained by starting with unstable resonance in
the anticontinuous limit. They are labeled ST5u and P4u-5u, respectively. The phase of the excited
oscillator for STu differs from that for STs.

The Floquet multipliers for coexisting ILMs are estimated in Fig. 9. Only ST5s is stable because
all the Floquet multipliers are within a unit circle on the complex plane. This corresponds to the
experimental results. On the other hand, ST5u is unstable even though its amplitude distribution
is similar to that of ST5s. The instability of ST5u seems to originate from the unstable resonant
solution in the initial condition of the anticontinuous limit. Although P4s-5s is obtained from two

(a) ST5s (b) P4s-5s (c) ST5u (d) P4u-5u

Fig. 8. ST and P modes obtained using the anticontinuous limit.

(a) ST5s (b) P4s-5s

(c) ST5u (d) P4u-5u

Fig. 9. Floquet multipliers of ILMs shown in Fig. 8. Left panel in each case
shows enlarged area around +1 on unit circle.
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Fig. 10. Floquet multipliers of P4s-5s when the driving frequency is set at
ω = 2π × 36.2 rad/s.

stable resonant solutions, it has a Floquet multiplier outside the unit circle. Since P4s-5s is unstable
at γ = 0 and A = 0, that is, in a conservative system, P modes are unstable because of their spatially
symmetric amplitude distribution. In general, the ST mode is stable and the P mode is unstable
in nonlinear Klein-Gordon lattices [3]. The cantilever array proposed in this paper is classified as
a nonlinear Klein-Gordon lattice because cantilevers having a nonlinear restoring force are linearly
coupled with each other. Therefore, the P modes are unstable and could not be excited experimentally.
P4u-5u is obtained by two unstable resonant solutions. The spatial symmetry and the initial condition
affect the stability of P4u-5u. Thus, two of its Floquet multipliers are outside the unit circle.

As shown in Fig. 9(b), P4s-5s is unstable. However, the absolute value of the Floquet multiplier
that is outside the unit circle is very close to +1. If the driving frequency is slightly larger, the
multiplier enters the unit circle, as shown in Fig. 10. Thus, P4s-5s gains stability. This implies that
it is possible to excite the P modes experimentally.

The anticontinuous limit allows us to predict the existence of P4u-5s or P4s-5u. In fact, they also
coexist with other ST and P modes under a very weak coupling regime. However, such solutions
disappear before the coupling coefficient reaches C = 284 s−2.

4. ILM manipulation

4.1 ILM excitation
ILMs are usually excited by modulational instability [6, 14]. However, the position and number
of ILMs cannot be predicted because modulational instability causes random behavior in traveling
ILMs [2]. On the other hand, adding an impurity to the array enables the excitation of an ILM
anywhere [13]. Here we consider ILM excitation using an impurity in the cantilever array. We first
assume that the frequency of the external excitor is sufficiently lower than the linear resonant frequency
of each cantilever. If a cantilever’s resonant frequency is decreased only by adding an impurity, it will
resonate. As a result, a spatially localized oscillation appears. The impurity should be removed while
maintaining the localized oscillation. If the localized oscillation remains after the impurity is removed,
it becomes an ILM. The experimental result of ILM excitation is shown in Fig. 11(a). The current
flowing in the EM at n = 4 was decreased from 24.0 mA to 11.5 mA at t = 0.88 s. The amplitude of
the fourth cantilever then began to increase. The current was increased to the original value when
the amplitude became large. As a result, an ILM was excited at n = 4. The excitation process is
called seeding [16].

4.2 Attractive manipulation of ILMs
The impurities that can excite an ILM also attract an ILM excited by other means. Figure 11(b)
demonstrates attractive manipulation using an impurity. ST5s was initially excited by the manipu-
lation. After the impurity was added, the amplitude of the fourth cantilever began to increase while
that of the fifth decreased. The impurity was removed when the amplitudes of the fourth and fifth
cantilevers were almost the same. The oscillation of the fifth cantilever decreased with the spread of
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(a) Excitation (b) Manipulation

Fig. 11. (a) ILM generation by adding an impurity. Impurity was added at
n = 4 by changing the current IEM4 from 24.0mA to 11.5 mA. (b) Manipula-
tion of an ILM by adding the same impurity as in (a). Impurity was added at
t = 0.81 s and removed at t = 1.55 s for both cases.

(a) Attractive manipulation (b) Manipulation failed

Fig. 12. Numerical simulation of the attractive manipulation. (a): The cur-
rent flowing in EM at n = 4 is decreased to 4 mA when the impurity is added.
The impurity is added at t = 1 s and removed at t = 4.5 s. The amplitude
and the frequency of external excitor are set at A = 3 m/s2 and ω = 2π × 35.7
rad/s. (b): The frequency of external excitor is set at ω = 2π × 36.2 rad/s.
The current flowing in EM at n = 4 is decreased to 8 mA from 24 mA when the
impurity is added in this case. The impurity is added at t = 1 s and removed
at t = 4.5 s. The other parameters are same as in Table II.

small traveling waves. However, the amplitude of the fourth cantilever grew large. As a result, the
locus of the ILM was drawn from n = 5 to n = 4.

Attractive manipulation can also be demonstrated numerically. Figure 12(a) shows a simulation,
in which the current flowing in the EM at n = 4 was reduced from 24 mA to 4 mA at t = 1 s. The
amplitude of the fourth cantilever began to increase. The impurity caused by the reduced current was
removed at t = 4.5 s. The amplitude of the fourth cantilever became almost the same as that of the
fifth cantilever and then became large as the oscillation of the fifth cantilever decreased. Consequently,
ST5s was attracted by the impurity, as in the experimental result.

However, attractive manipulation is not always possible. An example of failed manipulation is
shown in Fig. 12(b). The frequency of the external excitor and the lower value of the current were set
at ω = 2π × 36.2 rad/s and 8 mA, respectively. The other parameters are the same as in Fig. 12(a).
Until the impurity was removed, the behaviors of each cantilever were similar to those in Fig. 12(a).
However, the amplitude of the fifth cantilever did not decay after the impurity was removed. Finally,
P4s-5s remained. That is, ST5s became P4s-5s instead of ST4s. This suggests that P4s-5s became
stable at ω = 2π × 36.2 rad/s. In fact, all the Floquet multipliers of P4s-5s are inside the unit
circle. This implies that the unstable P4s-5s mode and the phase structure around it are particularly
important for ILM manipulation.
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Fig. 13. Phase structure around ST5s with an impurity, which is obtained
by taking the stroboscopic mapping at ωt mod 2π = 0. Solid squares and
circles indicate coexisting ILMs. Red solid curves represent unstable manifolds
of P4s-5s which is labeled as W u

P4s-5s . Blue and red regions correspond to
domains of ST4s and ST5s attraction, respectively. The black open circle
represents ST5s

no−impurity and black solid circles show the trajectory.

4.3 Unstable manifolds and domains of attraction
Attractive manipulation is due to the change in the phase structure caused by adding an impurity.
Figure 13 shows the phase structure when an impurity exists at n = 4. The impurity was induced by
decreasing the current IEM4 to 5 mA. ST4u, ST5u, and P4s-5s survived at IEM4 = 4 mA and vanished
when the impurity was added. ST5s in the no-impurity regime (ST5s

no−impurity) is indicated by the
open circle. The domains of attraction were calculated for phase points on the plane that includes
P4s-5s, ST5s, and ST5s

no−impurity. The blue and red regions correspond to the domains of attraction of
ST4s and ST5s, respectively. The boundary between them seems to be formed by the stable manifold
of P4s-5s. As a result of the added impurity, the open circle moved into the blue region (Fig. 13,
inset). The trajectory shown with solid circles in Fig. 13 approaches P4s-5s. Since P4s-5s is unstable,
the trajectory departs from it and converges to ST4s. Phenomenologically, the ILM was attractively
manipulated from n = 5 to n = 4.

The blue region in Fig. 13 tends to increase as the current IEM4 decreases. This implies that the
impurity changes the phase structure around ST5s. Therefore, we conclude that attractive manipu-
lation is a result of the change in the phase structure. In addition, the trajectory clearly shows that
the behavior of the manipulated ILM was significantly affected by the phase structure around P4s-5s.
Thus, we conjecture that the phase structure around the unstable P mode governs the behavior of
the manipulated ILM. That is, the phase structure is the key to manipulating ILMs.

5. Conclusion
In this paper, a macro-mechanical cantilever array was proposed and modeled. The array consists of
cantilevers, a coupling rod, an external excitor, and EMs. The EMs are placed beneath the cantilevers,
producing a soft-spring nonlinearity. It was experimentally confirmed that the nonlinearity could be
adjusted by changing the current flowing in the EMs. In addition, several ILMs were observed
experimentally and numerically. The results suggest that the model describing the oscillation of
individual cantilevers is valid. Therefore, a comparison of the numerical and experimental results
suggests that the proposed cantilever array is a suitable system for the fundamental study of ILMs.

ILM excitation and attractive manipulation were demonstrated experimentally. ILMs were manip-
ulated by reducing the current flowing in the EM, which induced an impurity. The impurity locally
changed the resonant frequency of cantilevers. Thus, the amplitude of one cantilever increased after
the addition of the impurity. If the amplitude became large enough, an ST mode remained after the
impurity was removed. On the other hand, attractive manipulation was also observed by using an
impurity. An ST mode was experimentally moved to the site where the impurity was added. That
is, the ILM was attracted by the impurity. Attractive manipulation was confirmed by numerical
simulations. However, a numerical simulation also showed that a stable P mode appeared after the
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impurity was removed. A stability analysis suggests that attractive manipulation of the ST mode is
observed when the P modes are unstable. Thus, it is conjectured that the structure of the unstable
manifold of unstable P modes determines the behavior of the manipulated ILM.

The macro-mechanical cantilever array makes it easy to investigate the control of ILMs in micro-
scopic engineering if the scaling law is considered. The manipulation of ILM reported by M. Sato et
al. have shown that the dynamics of ILM in micro-cantilever arrays can be described by a coupled
ordinary differential equation, which is obtained by using the similar method to this paper [12]. This
suggests that the qualitative investigation using our model equation can be applied to at least ILM
in microscale mechanical structures. We will investigate the possibility of applying analyses using the
macro-mechanical cantilever array to micro-engineering.
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