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We consider the problem of network completion, which is to make the minimum amount of modifications to a given network
so that the resulting network is most consistent with the observed data. We employ here a certain type of differential equations
as gene regulation rules in a genetic network, gene expression time series data as observed data, and deletions and additions of
edges as basic modification operations. In addition, we assume that the numbers of deleted and added edges are specified. For this
problem, we present a novel method using dynamic programming and least-squares fitting and show that it outputs a network
with the minimum sum squared error in polynomial time if the maximum indegree of the network is bounded by a constant. We
also perform computational experiments using both artificially generated and real gene expression time series data.

1. Introduction

Analysis of biological networks is one of the central research
topics in computational systems biology. In particular,
extensive studies have been done on inference of genetic
networks using gene expression time series data, and a
number of computational methods have been proposed,
which include methods based on Boolean networks [1, 2],
Bayesian networks [3, 4], time-delayed Bayesian networks
[5], graphical Gaussian models [6–8], differential equations
[9, 10], mutual information [11, 12], and linear classification
[13]. However, there is not yet an established or standard
method for inference of genetic networks, and thus it still
remains a challenging problem.

One of the possible reasons for the difficulty of inference
is that the amount of available high-quality gene expression
time series data is still not enough, and thus it is intrinsically
difficult to infer the correct or nearly correct network from
such a small amount of data. Therefore, it is reasonable
to try to develop another approach. For that purpose, we

proposed an approach called network completion [14] by
following Occam’s razor, which is a well-known principle in
scientific discovery. Network completion is, given an initial
network and an observed dataset, to modify the network
by the minimum amount of modifications so that the
resulting network is (most) consistent with the observed
data. Since we were interested in inference of signaling
networks in our previous study [14], we assumed that
activity levels or quantities of one or a few kinds of proteins
can only be observed. Furthermore, since measurement
errors were considered to be large and we were interested
in theoretical analysis of computational complexity and
sample complexity, we adopted the Boolean network [15]
as a model of signaling networks. We proved that network
completion is computationally intractable (NP-hard) even
for tree-structured networks. In order to cope with this
computational difficulty, we developed an integer linear
programming-based method for completion of signaling
pathways [16]. However, this method could not handle
addition of edges because of its high computational cost.
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In this paper, we propose a novel method, DPLSQ,
for completing genetic networks using gene expression
time series data. Different from our previous studies [14,
16], we employ a model based on differential equations
and assume that expression values of all nodes can be
observed. DPLSQ is a combination of least-squares fitting
and dynamic programming, where least-squares fitting is
used for estimating parameters in differential equations and
dynamic programming is used for minimizing the sum of
least-squares errors by integrating partial fitting results on
individual genes under the constraint that the numbers of
added and deleted edges must be equal to the specified
ones. One of the important features of DPLSQ is that it
can output an optimal solution (i.e., minimum squared
sum) in polynomial time if the maximum indegree (i.e., the
maximum number of input genes to a gene) is bounded by
a constant. Although DPLSQ does not automatically find
the minimum modification, it can be found by examining
varying numbers of added/deleted edges, where the total
number of such combinations is polynomially bounded. If
a null network (i.e., a network having no edges) is given as
an initial network, DPLSQ can work as an inference method
for genetic networks.

In order to examine the effectiveness of DPLSQ, we per-
form computational experiments using artificially generated
data. We also make computational comparison of DPLSQ
as an inference method with other existing tools using
artificial data. Furthermore, we perform computational
experiments on DPLSQ using real cell cycle expression data
of Saccharomyces cerevisiae.

2. Method

The purpose of network completion is to modify a given
network with the minimum number of modifications so that
the resulting network is most consistent with the observed
data. In this paper, we consider additions and deletions of
edges as modification operations (see Figure 1). If we begin
with a network with an empty set of edges, it corresponds to
network inference. Therefore, network completion includes
network inference although it may not necessarily work
better than the existing methods if applied to network
inference.

In the following, G(V ,E) denotes a given network where
V and E are the sets of nodes and directed edges respectively,
where each node corresponds to a gene and each edge
represents some direct regulation between two genes. Self
loops are not allowed in E although it is possible to modify
the method so that self-loops are allowed. In this paper, n
denotes the number of genes (i.e., the number of nodes) and
we letV = {v1, . . . , vn}. For each node vi, e−(vi) and deg−(vi),
respectively, denote the set of incoming edges to vi and the
number of incoming edges to vi as defined follows:

e−(vi) =
{
vj |

(
vj , vi

)
∈ E

}
,

deg−(vi) =
∣∣e−(vi)

∣∣.
(1)

Observed data

Initial network Completed network...

Figure 1: Network completion by addition and deletion of edges.
Dashed edges and dotted edges denote deleted edges and added
edges, respectively.
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Figure 2: Dynamics model for a node.

DPLSQ consists of two parts: (i) parameter estimation
and (ii) network structure inference. We employ least-
squares fitting for the former part and dynamic program-
ming for the latter part. Furthermore, there are three variants
on the latter parts: (a) completion by addition of edges,
(b) completion by deletion of edges, and (c) completion
by addition and deletion of edges. Although the last case
includes the first and second cases, we explain all of these for
the sake of simplicity of explanation.

2.1. Model of Differential Equation and Estimation of Parame-
ters. We assume that dynamics of each node vi is determined
by a differential equation:

dxi
dt

= ai0 +
h∑

j=1

aijxij +
∑

j<k

aij,kxij xik + biω, (2)

where vi1 , . . . , vih are incoming nodes to vi, xi corresponds
to the expression value of the ith gene, and ω denotes a
random noise. The second and third terms of the right-hand
side of the equation represent linear and nonlinear effects
to node vi, respectively (see Figure 2), where positive aij or

aij,k corresponds to an activation effect and negative aij or aij,k
corresponds to an inhibition effect.

In practice, we replace derivative by difference and ignore
the noise term as follows:

xi(t + 1) = xi(t) + Δt

⎛
⎝ai0 +

h∑

j=1

aijxij (t) +
∑

j<k

aij,kxij (t)xik (t)

⎞
⎠,

(3)

where Δt denotes the time step.
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We assume that time series data yi(t)s, which correspond
to xi(t)s, are given for t = 0, 1, . . . ,m. Then, we can use
the standard least-squares fitting method to estimate the
parameters aijs and aij,ks.

In applying the least-squares fitting method, we mini-
mize the following objective function:

Sii1,i2,...,ih

=
m∑

t=1

∣∣∣∣∣∣yi(t + 1)

−
⎡
⎣yi(t) + Δt

⎛
⎝ai0 +

h∑

j=1

aij yij (t)+
∑

j<k

aij,k yij (t)yik (t)

⎞
⎠
⎤
⎦
∣∣∣∣∣∣

2

.

(4)

2.2. Completion by Addition of Edges. In this subsection, we
consider the problem of adding k edges in total so that the
sum of least-squares errors is minimized.

Let σ+
kj , j denote the minimum least-squares error when

adding kj edges to the jth node, which is formally defined by

σ+
kj , j = min

j1, j2,..., jk j
S
j
j1, j2,..., jk j

, (5)

where each vjl must be selected from V − vj − e−(vj). In
order to avoid combinatorial explosion, we constrain the
maximum k to be a small constant K and let σ+

kj , j = +∞ for
kj > K or kj + deg−(vj) ≥ n. Then, the problem is stated as

min
k1+k2+···+kn=k

n∑

j=1

σ+
kj , j . (6)

Here, we define D+[k, i] by

D+[k, i] = min
k1+k2+···+ki=k

i∑

j=1

σ+
kj , j . (7)

Then, D+[k,n] is the objective value (i.e., the minimum of
the sum of least-squares errors when adding k edges).

The entries of D+[k, j] can be computed by the following
dynamic programming algorithm:

D+[k, 1] = σ+
k,1,

D+[k, j + 1
] = min

k′+k′′=k

{
D+[k′, j] + σ+

k′′, j+1

}
.

(8)

It is to be noted that D+[k,n] is determined uniquely
regardless of the ordering of nodes in the network. The
correctness of this dynamic programming algorithm can be
seen by

min
k1+k2+···+kn=k

n∑

j=1

σ+
kj , j= min

k′+k′′=k

⎧⎨
⎩ min
k1+k2+···+kn−1=k′

n−1∑

j=1

σ+
kj , j + σ+

k′′,n

⎫⎬
⎭

= min
k′+k′′=k

D+[k′,n− 1] + σ+
k′′,n.

(9)

2.3. Completion by Deletion of Edges. In the above, we
considered network completion by addition of edges. Here,
we consider the problem of deleting h edges in total so that
the sum of least-squares errors is minimized.

Let σ−hj , j denote the minimum least-squares error when
deleting hj edges from the set e−(v) of incoming edges to vj .
As in Section 2.2, we constrain the maximum hj to be a small
constant H and let σ−hj , j = +∞ if hj > H or deg−(vj)−hj < 0.
Then, the problem is stated as

min
h1+h2+···+hn=h

n∑

j=1

σ−kj , j . (10)

Here, we define D−[k, i] by

D−[k, i] = min
k1+k2+···+ki=k

i∑

j=1

σ−kj , j . (11)

Then, we can solve network completion by deletion of edges
using the following dynamic programming algorithm:

D−[k, 1] = σ−k,1,

D−
[
k, j + 1

] = min
k′+k′′=k

{
D−
[
k′, j

]
+ σ−k′′, j+1

}
.

(12)

2.4. Completion by Addition and Deletion of Edges. We can
combine the above two methods into network completion
by addition and deletion of edges.

Let σhj ,kj , j denote the minimum least-squares error when
deleting hj edges from e−(vj) and adding kj edges to
e−(vj) where deleted and added edges must be disjoint. We
constrain the maximum hj and kj to be small constants H
and K . We let σhj ,kj , j = +∞ if hj > H , kj > K , kj − hj +
deg−(vj) ≥ n, or kj − hj + deg−(vj) < 0 holds. Then, the
problem is stated as

min
h1+h2+···+hn=h
k1+k2+···+kn=k

n∑

j=1

σhj ,kj , j . (13)

Here, we define D[h, k, i] by

D[h, k, i] min
h1+h2+···+hi=h
k1+k2+···+ki=k

i∑

j=1

σhj ,kj , j . (14)

Then, we can solve network completion by addition and
deletion of edges using the following dynamic programming
algorithm:

D[h, k, 1] = σh,k,1,

D
[
h, k, j + 1

] = min
h′+h′′=h
k′+k′′=k

{
D
[
h′, k′, j

]
+ σh′′,k′′, j+1

}
.

(15)

2.5. Time Complexity Analysis. In this subsection, we analyze
the time complexity of DPLSQ. Since completion by addition
of edges and completion by deletion of edges are special cases
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of completion by addition and deletion of edges, we focus on
completion by addition and deletion of edges.

First, we analyze the time complexity required per least-
squares fitting. It is known that least-squares fitting for linear
systems can be done in O(mp2 + p3) time where m is the
number of data points and p is the number of parameters.
Since our model has O(n2) parameters, the time complexity
is O(mn4+n6). However, if we can assume that the maximum
indegree in a given network is bounded by a constant, the
number of parameters is bounded by a constant, where we
have already assumed that H and K are constants. In this
case, the time complexity for least-squares fitting can be
estimated as O(m).

Next, we analyze the time complexity required for
computing σhj ,kj , j . In this computation, we need to examine
combinations of deletions of hj edges and additions of
kj edges. Since hj and kj are, respectively, bounded by
constants H and K , the number of combinations is O(nH+K ).
Therefore, the computation time required per σhj ,kj , j is
O(nH+K (mn4 + n6)) including the time for least-squares
fitting. Since we need to compute σhj ,kj , j for H × K × n
combinations, the total time required for computation of
σhj ,kj , js is O(nH+K+1(mn4 + n6)).

Finally, we analyze the time complexity required for
computing D[h, k, i]s. We note that the size of table D[h, k, i]
is O(n3), where we are assuming that h and k are O(n).
In order to compute the minimum value for each entry in
the dynamic programming procedure, we need to examine
(H + 1)(K + 1) combinations, which is O(1). Therefore,
the computation time required for computing D[h, k, i]s is
O(n3). Since this value is clearly smaller than the one for
σhj ,kj , js, the total time complexity is

O
(
nH+K+1 · (mn4 + n6)). (16)

Although this value is too high, it can be significantly
reduced if we can assume that the maximum degree of an
input network is bounded by a constant. In this case, the
least-squares fitting can be done in O(m) time per execution.
Furthermore, the number of combinations of deleting at
most hj edges is bounded by a constant. Therefore, the
time complexity required for computing σhj ,kj , js is reduced
to O(mnK+1). Since the time complexity for computing
D[h, k, i]s remains O(n3), the total time complexity is

O
(
mnK+1 + n3

)
. (17)

This number is allowable in practice if K ≤ 2 and n is not too
large (e.g., n ≤ 100).

3. Results

We performed computational experiments using both arti-
ficial data and real data. All experiments on DPLSQ were
performed on a PC with Intel Core i7-2630QM CPU
(2.00 GHz) with 8 GB RAM running under the Cygwin
on Windows 7. We employed the liblsq library (http://
www2.nict.go.jp/aeri/sts/stmg/K5/VSSP/install lsq.html) for
a least-squares fitting method.

WNT5A

Pirin

MART-1

RET-1
MMP-3

HADHB

PHO-C

STC2

Synuclein

S100P

Figure 3: Structure of WNT5A network [17].

3.1. Completion Using Artificial Data. In order to evaluate
the potential effectiveness of DPLSQ, we began with network
completion using artificial data. To our knowledge, there
is no available tool that performs the same task. Although
some of the existing inference methods employ incremental
modifications of networks, the number of added/deleted
edges cannot be specified. Therefore, we did not compare
DPLSQ for network completion with other methods (but we
compared it with the existing tools for network inference).

We employed the structure of the real biological network
named WNT5A (see Figure 3) [17]. For each node vi with h
input nodes, we considered the following model:

xi(t + 1)=xi(t) + Δt

⎛
⎝ai0 +

h∑

j=1

aijxij +
∑

j<k

aij,kxij (t)xik (t)+biω

⎞
⎠,

(18)

where aijs and aij,ks are constants selected uniformly at
random from [−1, 1] and [−0.5, 0.5], respectively. The
reason why the domain of aij,ks is smaller than that for aijs
is that non-linear terms are not considered as strong as linear
terms. It should also be noted that biω is a stochastic term,
where bi is a constant (we used bi = 0.2 in all computational
experiments) and ω is a random noise taken uniformly at
random from [−1, 1].

For artificial generation of observed data yi(t), we used

yi(t) = xi(t) + oiε, (19)

where oi is a constant denoting the level of observation errors
and ε is a random noise taken uniformly at random from
[1,−1]. Since the use of time series data beginning from
only one set of initial values easily resulted in overfitting, we
generated time series data beginning from 20 sets of initial
values taken uniformly at random from [1,−1], where the
number of time points for each set was set to 10 and Δt = 0.2
was used as the period between the consecutive two time
points. Therefore, 20 sets of time series data, each of which
consisted of 10 time points, were used per trial (200 time
points were used in total per trial). It is to be noted that in
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our preliminary experiments, the use of too small Δt resulted
in too small changes of expression values whereas the use of
large Δt resulted in divergence of time series data. Therefore,
after some trials, Δt = 0.2 was selected and used throughout
the paper.

Under the above model, we examined several ois as
shown in Table 1. In order to examine network completion,
WNT5A was modified by randomly adding h edges and
deleting k edges and the resulting network was given as an
initial network.

We evaluated the performance of the method in terms of
the accuracy of the modified edges and the success rate. The
accuracy is defined here by

h + k +
∣∣∣Eorig

∣∣∣−
∣∣∣Eorig ∩ Ecmpl

∣∣∣
h + k

, (20)

where Eorig and Ecmpl are the sets of edges in the original
network and the completed network, respectively. This value
takes 1 if all deleted and added edges are correct and 0 if
none of the deleted and added edges is correct. For each
(h, k), we took the average accuracy over a combination of
10 parameters (aijs and aij,ks) and 10 random modifications
(i.e., addition of h edges and deletion of k edges to construct
an initial network). The success rate is the frequency of the
trials (among 10 × 10 trials) in which the original network
was correctly obtained by network completion. The result is
shown in Table 1. It is seen from this table that DPLSQ works
well if the observation error level is small. It is also seen that
the accuracies are high in the case of h = 0. However, no clear
trend can be observed on a relationship between h, k values
and the accuracies. It is reasonable because we evaluated
the result in terms of the accuracy per deleted/added edge.
On the other hand, it is seen that the success rate decreases
considerably as h and k increase or the observation error level
increases. This dependence on h and k is reasonable because
the probability of having at least one wrong edge increases as
the number of edges to be deleted and added increases. As
for the computation time, the CPU time for each trial was
within a few seconds, where we used the default values of
H = K = 3. Although these default values were larger than
h, k here, it did not cause any effects on the accuracy or the
success rate. How to choose H and K is not a trivial problem.
As discussed in Section 2.5, we cannot choose large H or K
because of the time complexity issue. Therefore, it might be
better in practice to examine several combinations of small
values H and K and select the best result although how to
determine the best result is left as another issue.

3.2. Inference Using Artificial Data. We also examined
DPLSQ for network inference, using artificially generated
time series data. In this case, we used the same network
and dynamics model as previously mentioned but we let
E = ∅ in the initial network. Since the method was applied
to inference, we let H = 0, K = 3, and k = 30. It is to be
noted that deg−(vi) = 3 holds for all nodes vi in the WNT5A
network. Furthermore, in order to examine how CPU time
changes as the size of the network grows, we made networks

with 30 genes and 50 genes (with k = 90 and k = 150) by
making 3 and 5 copies of the original networks, respectively.

Since the number of added edges was always equal to
the number of edges in the original network, we evaluated
the results by the average accuracy, which was defined as the
ratio of the number of correctly inferred edges to the number
of edges in the correct network (i.e., the number of added
edges). We examined observation error levels of 0.1, 0.3,
0.5, and 0.7, for each of which we took the average over 10
trials using randomly generated different parameter values
(i.e., aijs and aij,ks), where time series data were generated
as in Section 3.1. The result is shown in Table 2, where the
accuracy and the average CPU time (user time + sys time)
per trial are shown for each case. It is seen from the table that
the accuracy is high even for large networks if the error level
is not high. It is also seen that although the CPU time grows
rapidly as the size of a network increases, it is still allowable
for networks with 50 genes.

We also compared DPLSQ with two well-known existing
tools for inference of genetic networks, ARACNE [11, 12]
and GeneNet [7, 8]. The former is based on mutual
information and the latter is based on graphical Gaussian
models and partial correlations. Computational experiments
on ARACNE were performed under the same environment as
that for DPLSQ, whereas those on GeneNet were performed
on a PC with Intel Core i7-2600 CPU (3.40 GHz) with 16 GB
RAM running under the Cygwin on Windows 7 because of
the availability of the R platform on which GeneNet works.
We employed datasets that were generated in the same way as
for DPLSQ and default parameter settings for both tools.

Since both tools output undirected edges along with their
significance values (or their probabilities), we selected the top
M edges in the output where M was the number of edges in
the original network and regarded {vi, vj} as a correct edge
if either (vi, vj) or (vj , vi) was included in the edge set of
the original network. As in Table 2, we evaluated the results
by the average accuracy, that is, the ratio of the number of
correctly inferred edges to the number of edges in the original
network.

The result is shown in Table 3. Interestingly, both tools
have similar performances. It is also interesting that the
performance does not change much in each method even
if the level of observation error changes. Readers may
think that the accuracies shown in Table 3 are close to
those by random prediction. However, these accuracies were
much higher than those obtained by assigning random
probabilities to edges, and thus we can mention that these
tools outputted meaningful results.

It is seen from Tables 2 and 3 that the accuracies
by DPLSQ are much higher than those by ARACNE and
GeneNet even though both directions of edges are taken
into account for ARACNE and GeneNet. However, it should
be noted that time series data were generated according
to the differential equation model on which DPLSQ relies.
Therefore, we can only mention that DPLSQ works well
if time series data are generated according to appropriate
differential equation models. It is to be noted that we can use
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Table 1: Result on completion of WNT5A network, where the average accuracy is shown for each case.

No. deleted edges No. added edges
Observation error level

0.1 0.3 0.5 0.7

h = 0 k = 1
Accuracy 0.990 0.910 0.730 0.410

Success rate 0.99 0.91 0.73 0.41

h = 0 k = 2
Accuracy 1.000 0.955 0.670 0.395

Success rate 1.00 0.91 0.42 0.17

h = 1 k = 0
Accuracy 0.990 0.850 0.470 0.240

Success rate 0.99 0.85 0.47 0.24

h = 1 k = 1
Accuracy 0.995 0.845 0.405 0.210

Success rate 0.99 0.71 0.11 0.02

h = 1 k = 2
Accuracy 0.983 0.843 0.470 0.190

Success rate 0.95 0.58 0.11 0.00

h = 2 k = 0
Accuracy 1.000 0.795 0.440 0.215

Success rate 1.00 0.67 0.18 0.01

h = 2 k = 1
Accuracy 0.996 0.833 0.453 0.223

Success rate 0.99 0.53 0.05 0.01

h = 2 k = 2
Accuracy 1.000 0.862 0.517 0.285

Success rate 1.00 0.56 0.03 0.01

Table 2: Result on inference of WNT5A network by DPLSQ.

Observation error level

0.1 0.3 0.5 0.7

n = 10
Accuracy 1.000 0.966 0.803 0.620

CPU time (sec.) 0.685 0.682 0.682 0.685

n = 30
Accuracy 0.995 0.914 0.663 0.443

CPU time (sec.) 66.2 66.2 66.1 65.9

n = 50
Accuracy 0.999 0.913 0.613 0.392

CPU time (sec.) 534.0 534.2 533.6 533.5

other differential equation models as long as parameters can
be estimated by least-squares fitting.

As for computation time, both methods were much
faster than DPLSQ. Even for the case of N = 50, each of
ARACNE and GeneNet worked in less than a few seconds
per trial. Therefore, DPLSQ does not have merits on practical
computation time.

3.3. Inference Using Real Data. We also examined DPLSQ for
inference of genetic networks using real gene expression data.
Since there is no gold standard on genetic networks and thus
we cannot know the correct answers, we did not compare it
with the existing methods.

We employed a part of the cell cycle network of
Saccharomyces cerevisiae extracted from the KEGG database
[18], which is shown in Figure 4. Although the detailed
mechanism of the cell cycle network is still unclear, we used
this network as the correct answer, which may not be true.
Although each of (MCM1, YOX1, YHP1), (SWI4, SWI6),
(CLN3, CDC28), (MBP1, SWI6) constitutes a protein com-
plex, we treated them separately and ignored the interactions

Table 3: Result on inference of WNT5A network using ARACNE
and GeneNet, where the accuracy is shown for each case.

Method
Observation error level

0.1 0.3 0.5 0.7

n = 10
ARACNE 0.523 0.523 0.523 0.526

GeneNet 0.526 0.526 0.533 0.533

n = 30
ARACNE 0.332 0.328 0.326 0.326

GeneNet 0.368 0.380 0.383 0.384

n = 50
ARACNE 0.308 0.312 0.310 0.391

GeneNet 0.313 0.316 0.314 0.316

inside a complex because making a protein complex does
not necessarily mean a regulation relationship between the
corresponding genes.

As for time series data of gene expression, we employed
four sets of times series data (alpha, cdc15, cdc28, elu) in
[19] that were obtained by four different experiments. Since
there were several missing values in the time series data,
these values were filled by linear interpolation and data
on some endpoint time points were discarded because of
too many missing values. As a result, alpha, cdc15, cdc28,
and elu datasets consist of gene expression data of 18, 24,
11, and 14 time points, respectively. In order to examine
a relationship between the number of time points, and
accuracy, we examined four combinations of datasets as
shown in Table 4. We evaluated the performance of DPLSQ
by means of the accuracy (i.e., the ratio of the number
of correctly inferred edges to the number of added edges),
where K = 3 and k = 25 were used. The result is shown in
Table 4.

Since the total number of edges in both the original
network and the inferred networks is 25 and there exist
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Figure 4: Structure of part of yeast cell cycle network.

9×10 = 90 possible edges (excluding self loops), the expected
number of corrected edges is roughly estimated as

25
90
× 25 = 6.944 . . . , (21)

if 25 edges are randomly selected and added. Therefore, the
result shown in Table 4 suggests that DPLSQ can do much
better than random inference when appropriate datasets are
provided (e.g., cdc15 only or cdc15+cdc28+alpha+elu). It is a
bit strange that the accuracies for the first and last datasets are
better than those for the second and third datasets because
it is usually expected that adding more evidences results in
more accurate networks. The reason may be that time series
of cdc28 and alpha may contain larger measurement errors
than those of cdc15 and elu, or some regulation rules that are
hidden in Figure 4 may be activated under the conditions of
cdc28 and/or alpha.

4. Conclusion

In this paper, we have proposed a network completion
method, DPLSQ, using dynamic programming and least-
squares fitting based on our previously proposed methodol-
ogy of network completion [14]. As mentioned in Section 1,
network completion is to make the minimum amount of
modifications to a given network so that the resulting
network is (most) consistent with the observed data. In our
previous model [14], we employed the Boolean network as
a model of networks and assumed that only expression or
other values of one or a few nodes are observed. However,
in this paper, we assumed that expression values of all nodes
are observed, which correspond to gene microarray data, and
regulation rules are given in the form of differential equa-
tions. The most important theoretical difference between this
model and our previous model is that network completion
can be done in polynomial time if the maximum indegree
is bounded by a constant in this model whereas it is NP-
hard in our previous model even if the maximum indegree
is bounded by a constant. This difference arises not from the
introduction of a least-squares fitting method but from the
assumption that expression values of all nodes are observed.

It should also be noted that the optimality of the solution
is not guaranteed in most of the existing methods for

Table 4: Result on inference of a yeast cell cycle network.

Experimental conditions Accuracy

cdc15 11/25

cdc15 + cdc28 8/25

cdc15 + cdc28 + alpha 8/25

cdc15 + cdc28 + alpha + elu 11/25

inference of genetic networks, whereas it is guaranteed in
DPLSQ if it is applied to inference of a genetic network
with a bounded maximum indegree. Of course, the objective
function (i.e., minimizing the sum of squared errors) is
different from existing ones, and thus this property does
not necessarily mean that DPLSQ is superior to existing
methods in real applications. Indeed, the result using real
gene expression data in Section 3.3 does not seem to be
very good. However, DPLSQ has much room for extensions.
For example, least-squares fitting can be replaced by another
fitting/regression method (with some regularization term)
and the objective function can be replaced by another
function as long as it can be computed by sum or product of
some error terms. Studies on such extensions might lead to
development of better network completion and/or inference
methods.
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