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PAPER

Integer Programming-Based Approach to Attractor Detection and
Control of Boolean Networks

Tatsuya AKUTSU†a), Member, Yang ZHAO†, Nonmember, Morihiro HAYASHIDA†,
and Takeyuki TAMURA†, Members

SUMMARY The Boolean network (BN) can be used to create discrete
mathematical models of gene regulatory networks. In this paper, we con-
sider three problems on BNs that are known to be NP-hard: detection of
a singleton attractor, finding a control strategy that shifts a BN from a given
initial state to the desired state, and control of attractors. We propose in-
teger programming-based methods which solve these problems in a uni-
fied manner. Then, we present results of computational experiments which
suggest that the proposed methods are useful for solving moderate size
instances of these problems. We also show that control of attractors is Σp

2 -
hard, which suggests that control of attractors is harder than the other two
problems.
key words: Boolean networks, genetic networks, attractors, integer pro-
gramming, nonlinear discrete systems

1. Introduction

Many kinds of genes, proteins and molecules interact with
each other in living cells. Among the various kinds of in-
teractions, those between genes play an important role in
living cells. Sets of these interactions are often modeled as
gene regulatory networks (genetic networks, in short), and
an understanding of genetic networks has become one of the
key topics in systems biology. Furthermore, development of
methods for control of genetic networks is becoming impor-
tant because of its potential applications to drug discovery
and treatment of intractable diseases [21].

In order to develop control methods for genetic net-
works, we need a mathematical model of genetic networks.
Furthermore, since genetic networks contain highly non-
linear components, we need a non-linear model. The
Boolean network (BN, in short) is one of the well studied
non-linear models of genetic networks [19]. BN is a very
simple model: each node (e.g., gene) takes either 0 (inac-
tive) or 1 (active) and the states of nodes change according
to regulation rules given as Boolean functions. Two types
of BNs have been mainly studied: synchronous BNs and
asynchronous BNs, depending on whether or not the states
of nodes are updated synchronously. Though asynchronous
BNs might be more appropriate as a model of genetic net-
works, we focus on synchronous BNs in this paper because
previous control studies on BNs focused on synchronous
BNs and detection of a singleton attractor is equivalent in

Manuscript received October 13, 2011.
Manuscript revised May 1, 2012.
†The authors are with Bioinformatics Center, Institute for

Chemical Research, Kyoto University, Uji-shi, 611–0011 Japan.
a) E-mail: takutsu@kuicr.kyoto-u.ac.jp

DOI: 10.1587/transinf.E95.D.2960

both models. Though synchronous BNs might be too sim-
ple as a model of genetic networks, they are useful for mod-
eling and analyzing certain properties of real genetic net-
works. For example, these were applied to analysis of D.
melanogaster embryo development [24], and analysis of ro-
bustness of genetic (sub)networks of S. cerevisiae, E. coli,
B. subtilis, D. melanogaster and A. thaliana [5].

Extensive studies have been done on the distribution
of attractors in randomly generated BNs [19], [28] mainly
because it is considered that different attractors correspond
to different cell types [19]. Recently, several methods have
been developed for efficiently finding and/or enumerating
attractors in BNs [10]–[12], [14], [17], [32], whereas it is
known that finding a singleton attractor (i.e., a steady state)
is NP-hard [1]. Devloo et al. developed a method using
transformation to a constraint satisfaction problem [11].
Garg et al. developed a method based on Binary Deci-
sion Diagrams (BDDs) [14]. Irons developed a method
that makes use of small subnetworks [17]. Dubrova and
Tesienko developed a method to enumerate all attractors
using a solver for the Boolean satisfiability (SAT) prob-
lem [12]. De Jong and Page also developed a SAT-based
method for finding steady states in piecewise-linear differen-
tial equation models for genetic networks [10], which may
also be applied to attractor detection for BNs. Inoue ana-
lyzed theoretical relationships between BNs and logic pro-
grams and suggested the use of SAT solvers for detecting
attractors [16]. However, theoretical analysis of the average
case or worst case complexity was not performed in these
studies. Zhang et al. developed algorithms for enumerat-
ing singleton attractors and small attractors and analyzed
the average case time complexities of these algorithms [32].
Akutsu et al., Melkman et al., and Tamura et al. developed
algorithms with guaranteed worst case time complexities
for detection of singleton attractors for BNs with restricted
Boolean functions [4], [27], [31].

For control of BNs, not many studies have been done.
In order to avoid BNs from falling into chaotic states, Luque
and Solé studied effects of periodic controls [26]. However,
their methods cannot be applied to detailed control of BNs.
Inspired from works on control of the probabilistic Boolean
network [9], Akutsu et al. studied control of BNs [2]. They
formalized control of a BN as a problem of finding 0-1 se-
quences to external nodes which lead a BN from a given
initial state to the desired state [2]. They showed that this
control problem is NP-hard in general but can be solved

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



AKUTSU et al.: INTEGER PROGRAMMING FOR BOOLEAN NETWORKS
2961

in polynomial time if BNs have tree-structures. Langmead
and Jha developed a method based on model checking and
successfully applied the method to find control policies for
an existing model of fruit fly embryo development [24].
Though their method might be useful, it seems not easy
to incorporate scores into their model. Cheng and his col-
leagues have recently been extensively studying control and
related problems by utilizing the concept of semi-tensor
product [7], [8]. Though their theory is deep and might be
useful, it is difficult to apply their current methods to large-
scale BNs.

On the other hand, it is not easy to perform detailed
controls, or to give the target state (i.e., desired state) pre-
cisely and/or uniquely. Therefore, Hayashida et al. intro-
duced the problem of control of attractors in BNs [15]. In
this problem, some of genes are selected and controlled
(maybe by gene disruption and/or overexpression) so that
the minimum score of the attractor states is maximized,
where a score function, which measures the quality of global
states, is given in advance. Though we developed several
recursive algorithms for the problem based on the method-
ology in [32], it is still difficult to solve the problem for non-
small BNs [15].

In this paper, we propose integer programming-based
methods which solve the above three problems on BNs in
a unified manner. In each case, an instance of the origi-
nal problem is transformed into integer linear program(s)
(ILP(s)) and then an existing solver is applied. One of the
advantages of the proposed approach is its simplicity and
flexibility because ILP allows us to add various constraints.
To be shown in the following sections, these problems are
transformed into ILPs in similar and systematic ways. In or-
der to study the efficiency of the proposed methods, we per-
formed computational experiments by mainly using artifi-
cially generated BNs. The results suggest that the proposed
methods can be applied to medium-size BNs. Though ILP
is applied to all three methods, it is not directly applicable to
control of attractors. In order to reveal the reason, we show
that control of attractors is Σp

2 -hard, which may suggest that
control of attractors is computationally harder than the other
two problems and ILP.

It is to be noted that Chen et al., and Kobayashi and
Hiraishi recently proposed ILP-based methods for control
of probabilistic Boolean networks (PBNs) [6], [22], [23],
where PBN is a probabilistic extension of BN. There are
some similarities between our proposed method and their
methods. However, a preliminary conference version of this
paper [3] appeared earlier than their papers [6], [22], [23],
and they did not treat attractor detection or control of attrac-
tors. It should also be noted that this version was consider-
ably enhanced from [3]: additional heuristic is introduced to
improve the efficiency for the case of K = 3, more detailed
computational experiments are performed, and a proof of
Theorem 1 is given.

2. Problems

In this section, we briefly review BN [19] and then de-
fine three problems: ATTRACTOR DETECTION [32], BN
CONTROL [2], and ATTRACTOR CONTROL [15].

2.1 Boolean Network

A Boolean network G(V, F) consists of a set V = {v1, . . . , vn}
of nodes and a list F = ( f1, . . . , fn) of Boolean functions,
where a Boolean function fi(vi1 , . . . , vik ) with inputs from
specified nodes vi1 , . . . , vik is assigned to each node vi. We
use x ∧ y, x ∨ y, x ⊕ y, x to denote logical AND of x and y,
logical OR of x and y, exclusive OR of x and y, and logical
NOT of x, respectively. We use IN(vi) to denote the set of
input nodes vi1 , . . . , vik to vi. Each node takes either 0 or 1
at each discrete time t, and the state of node vi at time t is
denoted by vi(t). Then, the state of node vi at time t + 1
is determined by vi(t + 1) = fi(vi1 (t), . . . , viki

(t)). Here we
let v(t) = [v1(t), . . . , vn(t)], which is called a Gene Activity
Profile (GAP) at time t. We also write vi(t + 1) = fi(v(t))
to denote the regulation rule for vi and v(t + 1) = f(v(t)) to
denote the regulation rule for the whole BN.

We define the set of edges E by E = {(vi j , vi) | vi j ∈
IN(vi)}. Then, G(V, E) is a directed graph representing the
network topology of a BN. It is worthy to mention that an
edge from vi j to vi means that vi j directly affects expression
of vi. The number of input nodes to vi is called the indegree
of vi. We use K to denote the maximum indegree of a BN,
which greatly affects the computation time.

An example of a BN is given in Fig. 1. Dynamics of
a BN is well-described by a state transition table and a state
transition diagram shown in Fig. 1. For example, the fourth
row of the table means that if the state of BN is [0, 1, 1] at
time t then the state will be [0, 1, 0] at time t + 1, and the arc
from 011 to 010 in the diagram means that if the state of BN

Fig. 1 Example of a Boolean network. Dynamics of BN (A) is well-
described by a state transition table (B) and by a state transition dia-
gram (C).
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is [0, 1, 1] at time t the state will be [0, 1, 0] at time t + 1. It
is easily seen that for a BN with n nodes, the state transition
table consists of 2n rows and the state transition diagram has
2n vertices.

2.2 Detection of an Attractor

Since v(t+ 1) is determined from v(t) in a BN, starting from
an initial GAP v(0), a BN will eventually reach a set of
global states (i.e., a directed cycle in the state transition dia-
gram). This set is called an attractor. An attractor consisting
of only one global state (i.e., v = f(v)) is called a singleton
attractor, which corresponds to a fixed point. Otherwise,
it is called a cyclic attractor with period p if it consists
of p global states (i.e., v1 = f(vp) = f(f(vp−1)) = · · · =
f(f(· · · f(v1) · · ·))). For example, in Fig. 1, 100 is a singleton
attractor, and {110, 001} is a cyclic attractor of period 2.

In this paper, the attractor detection problem is defined
as a problem of finding an attractors for a given BN. How-
ever, it is very difficult to find attractors with long peri-
ods. Thus, we consider detection of attractors with period
at most some given threshold pmax. This problem is defined
as below, where we focus on the case of pmax = 1 (i.e., the
singleton attractor detection problem) in this paper.

Definition 1: [ATTRACTOR DETECTION]
Instance: a BN and the maximum period pmax,
Problem: find an attractor with period at most pmax. If
there does not exist such an attractor, “None” should be the
output.

2.3 Control of Boolean Networks

Akutsu et al. introduced a control problem for BNs (BN
CONTROL) [2], inspired from the control problem for prob-
abilistic Boolean networks [9]. In BN CONTROL, it is as-
sumed that there exist two types of nodes: internal nodes
and external nodes, where internal nodes correspond to
usual nodes (i.e., genes) in a BN and external nodes corre-
spond to control nodes. Let V = {v1, . . . , vn, vn+1, . . . , vn+m}
be a set of nodes, where v1, . . . , vn are internal nodes and
vn+1, . . . , vn+m are external nodes. For convenience, we
use ui to denote an external node vn+i. Then, states of
internal nodes (vi(t + 1) for i = 1, . . . , n) are determined
by vi(t + 1) = fi(vi1 (t), . . . , viki

(t)), where each vik is ei-
ther an internal node or an external node. Here, we let
v(t) = [v1(t), . . . , vn(t)] and u(t) = [u1(t), . . . , um(t)]. We
can describe the state transition rule of a BN by v(t + 1) =
f(v(t),u(t)), where u(t)s are determined externally. Then,
BN CONTROL is defined as follows (see also Fig. 2).

Definition 2: [BN CONTROL]
Instance: a BN, an initial state of the network for internal
nodes v0, and the desired state of the network for internal
nodes vM at the M-th time step,
Problem: find a sequence of 0-1 vectors 〈u(0), . . . ,u(M)〉
such that v(0) = v0 and v(M) = vM . If there does not exist

Fig. 2 Example of Control of BN. In this problem, given initial and
desired states of internal nodes (v1, v2, v3), it is required to compute a se-
quence of states of external nodes (u1, u2) leading to the desired state.

such a sequence, “None” should be the output.

2.4 Control of Attractors

Hayashida et al. [15] proposed a control problem on attrac-
tors in BN. In their definition, external nodes and inter-
nal nodes are assumed to be given in advance. However,
it might be better to assume that it is not determined in
advance which nodes are external nodes. The reason is
that recent developments of iPS cells (induced pluripotent
stem cells) were achieved by enforcing activation of some
genes [30]. Based on this idea, we will define an attractor
control problem.

Since m control nodes are selected among the origi-
nal n nodes, we need to modify the definition of single-
ton attractors. Suppose that vi1 , . . . , vim are selected as con-
trol nodes and Boolean values of bi1 , . . . , bim are assigned
to these nodes. Then, v is called a singleton attractor (in
ATTRACTOR CONTROL) if the following conditions (de-
noted by COND1) are satisfied:

• vi = bi if i ∈ {i1, . . . , im},
• vi = fi(v) otherwise.

In addition, we need a score function g from {0, 1}n to the set
of real numbers for evaluating how appropriate each attrac-
tor state is. Though there is no established score function,
we assume for simplicity that g is given as a linear combi-
nation of 0-1 values of internal nodes:

g(v) =
∑

i=1,...,n

αi · (1 − wi) · vi,

where αi are real constants. Giving a large value to αi means
that the gene corresponding to vi should be expressed in
a desired state. If node vi is selected as a control node,
wi is 1. Otherwise, wi is 0. This means that the scores of
selected control nodes are not taken into account for g(v).
Since singleton attractors need not be uniquely determined,
we need to maximize the minimum score of singleton at-
tractors, considering the worst case. However, as mentioned
later, it is not easy to maximize the minimum score. Thus,
by introducing a threshold Θ of the minimum score, we
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define the problem of control of attractors (ATTRACTOR
CONTROL) as follows.

Definition 3: [ATTRACTOR CONTROL]
Instance: a BN, a score function g, the number of control
nodes m, and a threshold Θ,
Problem: find m nodes and a 0-1 assignment to these control
nodes for which the minimum score of singleton attractors
is no less than Θ. If there do not exist such nodes, “None”
should be the output.

Assume that a BN in Fig. 1 is given as an instance of
ATTRACTOR CONTROL along with α1 = 2, α2 = 1, α3 =

1, and m = 1. If we assign 1 to v1, there exist two singleton
attractors 100 and 111. Since the scores of 100 and 111 are 0
and 2 respectively, the minimum score is 0. If we assign 1
to v3, there exists one singleton attractor 011 with score 1.
If we assign 0 to v2, there exists one singleton attractor 100
with score 2. With considering the other three cases, we
can see that the last case (i.e., assigning 0 to v2) gives the
solution for this instance.

3. Integer Programming-Based Methods

In this section, we present integer programming-based
methods for ATTRACTOR DETECTION, BN CONTROL,
and ATTRACTOR CONTROL. Integer programming, es-
pecially, integer linear programming (ILP) is to maximize
(or minimize) a linear objective function under linear con-
straints (i.e., linear equalities and linear inequalities) and the
condition that specified variables must take integer values.
Since ILP has been widely used for solving various types of
NP-hard problems [18] and all the problems in this paper are
NP-hard, it is reasonable to try to apply ILP to solving these
problems. In the following, each variable takes either 0 or 1
and we identify integer values with Boolean values. More-
over, we use xi or similar variables to denote a 0-1 variable
corresponding to vi.

3.1 ILP for ATTRACTOR DETECTION

In order to give ILP formalization for ATTRACTOR DE-
TECTION, we need several definitions, many of which are
also used in BN CONTROL and ATTRACTOR CONTROL.

We define σb(x) by σb(x) =

{
x, if b = 1,
x, otherwise.

We note

that any Boolean function with k inputs can be represented
as

fi(xi1 , . . . , xik ) =
∨

bi1 ...bik∈{0,1}k
fi(bi1 , . . . , bik )

∧σb1 (xi1 ) ∧ · · · ∧ σbk (xik ).

We define τb(x) by τb(x) =

{
x, if b = 1,
1 − x, otherwise.

If

fi(bi1 , . . . , bik ) = 1, we add constraints

xi,bi1 ...bik
≥
⎛⎜⎜⎜⎜⎜⎝
∑

j=1,...,k

τbi j
(xi j )

⎞⎟⎟⎟⎟⎟⎠ − (k − 1),

xi,bi1 ...bik
≤ 1

k

∑
j=1,...,k

τbi j
(xi j ),

where the first constraint forces xi,bi1 ...bik
to be 1 if σb1 (xi1 )∧

· · · ∧ σbk (xik ) is satisfied, and the latter forces xi,bi1 ...bik
to

be 0 if it is not satisfied. If fi(bi1 , . . . , bik ) = 0, we simply
add a constraint xi,bi1 ...bik

= 0. These constraints ensure that
xi,bi1 ...bik

= 1 if and only if fi(bi1 , . . . , bik ) ∧ σb1 (xi1 ) ∧ · · · ∧
σbk (xik ) = 1. Finally, for each xi, we add constraints

xi ≤
∑

bi1 ...bik∈{0,1}k
xi,bi1 ...bik

,

xi ≥ 1
2k

∑
bi1 ...bik∈{0,1}k

xi,bi1 ...bik
.

These constraints ensure that xi = fi(xi1 , . . . , xik ) holds for
every xi, which means that any obtained feasible solution
corresponds to a singleton attractor.

Here, we show a simple example. Suppose that x3 is
determined by x3 = f3(x1, x2) = x1 ⊕ x2. Then, f3(x1, x2)
can be represented as

f3(x1, x2) = ( f3(0, 0)∧ x1 ∧ x2 )∨ ( f3(0, 1)∧ x1 ∧ x2)

∨( f3(1, 0)∧ x1 ∧ x2 )∨ ( f3(1, 1)∧ x1 ∧ x2)

= ( x1 ∧ x2)∨ (x1 ∧ x2 ).

Then, this Boolean formula is transformed into the follow-
ing inequalities

x3,00 = 0,

x3,01 ≥ (1 − x1) + x2 − 1 = x2 − x1,

x3,01 ≤ 1
2

(1 − x1 + x2),

x3,10 ≥ x1 + (1 − x2) − 1 = x1 − x2,

x3,10 ≤ 1
2

(x1 + 1 − x2),

x3,11 = 0,

x3 ≤ x3,00 + x3,01 + x3,10 + x3,11,

x3 ≥ 1
4

(x3,00 + x3,01 + x3,10 + x3,11).

The correctness of the transformation is easily seen from
this example.

By putting together all the constraints, the singleton at-
tractor detection problem can be transformed into the fol-
lowing ILP.

Maximize x1,
Subject to

xi,bi1 ...bik
≥
(∑

j=1,...,k τbi j
(xi j )
)
− (k − 1),

xi,bi1 ...bik
≤ 1

k

∑
j=1,...,k τbi j

(xi j ),
for all i ∈ [1 . . . n] and bi1 . . . bik ∈ {0, 1}k
such that fi(bi1 , . . . , bik ) = 1,

xi,bi1 ...bik
= 0,

for all i ∈ [1 . . . n] and bi1 . . . bik ∈ {0, 1}k
such that fi(bi1 , . . . , bik ) = 0,

xi ≤ ∑bi1 ...bik∈{0,1}k xi,bi1 ...bik
,
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xi ≥ 1
2k

∑
bi1 ...bik∈{0,1}k xi,bi1 ...bik

,
xi ∈ {0, 1}, for all i ∈ [1 . . . n],
xi,bi1 ...bik

∈ {0, 1},
for all i ∈ [1 . . . n] and bi1 . . . bik ∈ {0, 1}k.

It is to be noted that we do not need an objective function
since ATTRACTOR DETECTION is not an optimization
problem but a decision problem. Since some objective func-
tion is required in order to use ILP, we simply used ‘maxi-
mize x1’.

It is possible to extend the above mentioned method
for detection of a cyclic attractor with period at most pmax.
However, for that purpose, we need to introduce much more
variables xi,t, xi,t,bi1 ...bik

for t = 0, . . . , pmax − 1, as in ILP for
BN CONTROL.

3.2 ILP for BN CONTROL

In order to solve BN CONTROL using ILP, we need to in-
troduce the notion of time. For that purpose, we introduce
integer variables xi,t to represent Boolean values vi(t). More-
over, we use xi,t,b1...bk which corresponds to xi,b1...bk in AT-
TRACTOR DETECTION. Then, based on ILP-formulation
for ATTRACTOR DETECTION, we have the following
ILP-formulation for BN CONTROL.

Maximize
∑

i=1,...,n xi,M ,
Subject to

xi,t+1,bi1 ...bik
≥
(∑

j=1,...,k τbi j
(xi j,t)

)
− (k − 1),

xi,t+1,bi1 ...bik
≤ 1

k

∑
j=1,...,k τbi j

(xi j,t),
for all i ∈ [1 . . . n], t ∈ [0 . . . M − 1]
and bi1 . . . bik ∈ {0, 1}k
such that fi(bi1 , . . . , bik ) = 1,

xi,t+1,bi1 ...bik
= 0,

for all i ∈ [1 . . . n], t ∈ [0 . . . M − 1]
and bi1 . . . bik ∈ {0, 1}k
such that fi(bi1 , . . . , bik ) = 0,

xi,t ≤ ∑bi1 ...bik∈{0,1}k xi,t,bi1 ...bik
,

xi,t ≥ 1
2k

∑
bi1 ...bik∈{0,1}k xi,t,bi1 ...bik

,
for all i ∈ [1 . . . n] and t ∈ [1 . . . M],

xi,0 = v0
i , xi,M = vM

i , for all i ∈ [1 . . . n],
xi,t ∈ {0, 1},

for all i ∈ [1 . . . n + m] and t ∈ [0 . . . M],
xi,t,bi1 ...bik

∈ {0, 1},
for all i ∈ [1 . . . n], t ∈ [1 . . . M]
and bi1 . . . bik ∈ {0, 1}k.

It is to be noted that as in ATTRACTOR DETECTION, we
do not need an objective function and thus ‘maximize . . . ’
is used as a dummy function. However, it might be more
useful in some cases if we define BN CONTROL as an op-
timization problem by introducing some score for GAP at
the target time step. In such a case, we simply remove con-
straints of xi,M = vM

i and instead use an appropriate ob-
jective function though it must be a linear combination of
variables.

3.3 ILP for ATTRACTOR CONTROL

In ATTRACTOR CONTROL, differently from the above
formulations, we need to consider the following two pos-
sibilities for each variable vi:

• vi is selected as a control node (i.e., vi corresponds to
an external node),
• vi is not selected as a control node (i.e., vi becomes an

internal node).

In order to choose one from these two possibilities, we in-
troduce additional variables and constraints. Let xi be given

by xi =

{
yi if wi = 0,
zi if wi = 1.

This function can be represented

by

yi − wi ≤ xi ≤ yi + wi,

zi − (1 − wi) ≤ xi ≤ zi + (1 − wi).

In this representation, wi = 1 corresponds to the case that
xi is selected as a control node, to which zi gives 0-1
assignment.

In ATTRACTOR CONTROL, we need to maximize
the score for non-control nodes. That is, we need to maxi-
mize

∑
i

αi · (1 − wi) · xi, where we assume without loss of

generality that αi ≥ 0 (otherwise, we can use 1 − xi instead
of xi). For that purpose, we introduce additional 0-1 vari-
ables ui (this ui is different from that in BN CONTROL) and
put constraints ui ≤ xi and ui ≤ 1 − wi, and let the objective
function be

∑
i αi · ui.

In the original definition of ATTRACTOR CONTROL,
the objective is to maximize the minimum score of singleton
attractors. However, since it is quite difficult to directly give
an ILP formation for the problem, we begin with an ILP for-
mation for finding a singleton attractor with the maximum
score by selecting and controlling m nodes.

By combining the above mentioned inequalities with
the ILP formalization for ATTRACTOR DETECTION, we
have the following ILP formalization for finding a singleton
attractor with the maximum score.

Maximize
∑

i αiui,
Subject to

xi,bi1 ...bik
≥
(∑

j=1,...,k τbi j
(xi j )
)
− (k − 1),

xi,bi1 ...bik
≤ 1

k

∑
j=1,...,k τbi j

(xi j ),
for all i ∈ [1 . . . n] and bi1 . . . bik ∈ {0, 1}k
such that fi(bi1 , . . . , bik ) = 1,

xi,bi1 ...bik
= 0,

for all i ∈ [1 . . . n] and bi1 . . . bik ∈ {0, 1}k
such that fi(bi1 , . . . , bik ) = 0,

yi ≤ ∑bi1 ...bik∈{0,1}k xi,bi1 ...bik
,

for all i ∈ [1 . . . n],
yi ≥ 1

2k

∑
bi1 ...bik∈{0,1}k xi,bi1 ...bik

,
yi − wi ≤ xi ≤ yi + wi,
zi + wi − 1 ≤ xi ≤ zi − wi + 1,
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ui ≤ xi, ui ≤ 1 − wi,
for all i ∈ [1 . . . n],

xi, yi, zi,wi, ui ∈ {0, 1}, for all i ∈ [1 . . . n],
xi,bi1 ...bik

∈ {0, 1},
for all i ∈ [1 . . . n] and bi1 . . . bik ∈ {0, 1}k,∑

i=1,...,n wi = m.

In order to solve the original version of ATTRACTOR
CONTROL, we repeatedly use this ILP formulation (de-
noted by ILP-A). Suppose that V ′ = (vi1 , . . . , vim ) are se-
lected as control nodes with 0-1 values B′ = (bi1 , . . . , bim ).
Then, we find the attractor of the minimum score under
these control nodes (i.e., under COND1). This can also be
formalized as ILP by modifying the above mentioned ILP
formalization as follows. Let I = {i1, . . . , im}. We replace
the objective function by “Minimize

∑
i�I αi xi” and the con-

straints using ui by

xi = zi, wi = 1 for all i ∈ I,
wi = 0, for all i � I.

We denote the resulting ILP by ILP-B.
In order to avoid examining the previously examined

(V ′, B′), we need to modify ILP-A. This can also be accom-
plished by introducing some linear inequalities stating that
the solution must be different from the previously obtained
solutions (given as sets of explicit node-value pairs). Let
x j = (x( j)

1 , x( j)
2 , . . . , x( j)

n ) be the jth control previously found,

where we let x( j)
i = zi if wi = 1, otherwise x( j)

i = −1. Then,
for each j, we add the following linear constraint:∑

x( j)
i �−1

(
δ(x( j)

i , 1)(−zi − wi) + δ(x( j)
i , 0)(zi − wi)

)

≥ 1 −
∑

x( j)
i �−1

(1 + x( j)
i ),

where δ(x, y) is the delta function (i.e., δ(x, y) = 1 if and
only if x = y). This inequality means that the following
must hold for at least one i:

• if x( j)
i = 1, either zi = 0 or wi = 0 holds,

• otherwise, either zi = 1 or wi = 0 holds.

In the following, ILP-A’ denotes this modified version.
Using the following procedure, we can solve ATTRACTOR
CONTROL.

1. Repeat steps 2-3.
2. Find (V ′, B′) which maximizes the score of a single-

ton attractor using ILP-A’ under the condition that
(V ′, B′) is different from any of previously examined
nodes/values pairs. If the maximum score is less than
Θ, output “None” and halt.

3. Compute the minimum score of singleton attractors for
(V ′, B′) using ILP-B. If the minimum score is no less
than Θ, output (V ′, B′) and halt.

Though this procedure may repeat exponentially many times
in the worst case, it is expected that this procedure does not

repeat so many times because the expected number of sin-
gleton attractors (per (V ′, B′)) is small regardless of n and
thus it is expected in many cases that the maximum score
matches with the minimum score [15].

4. Computational Experiments

In order to evaluate the efficiency of the proposed integer
programming-based methods, we performed computational
experiments by mainly using randomly generated BNs. In
order to generate random BNs, for each node, we randomly
selected a specified number of input nodes and randomly
assigned Boolean functions. All of computational exper-
iments were done on a PC with a Xeon 5470 3.33 GHz
CPU and 10 GB RAM running under the LINUX (version
2.6.16) operating system. We used ILOG CPLEX (version
11.2, http://www.ilog.com/products/cplex/) for solving inte-
ger linear programs. For each problem, we examined the
cases of maximum indegree 2 and 3 (i.e., K = 2 and K = 3).

4.1 Improvement Using More Direct Encoding

Though we presented a general encoding scheme for ILP in
Sect. 3, we can use a more direct encoding scheme for the
case of maximum indegree 2, which is useful for reducing
CPU time. In the following, we present this scheme for AT-
TRACTOR DETECTION, where we present rules for posi-
tive literals only for AND, OR and XOR because modifica-
tions for other cases are straight-forward.

vi = b : xi = b,

vi = v j : xi − x j = 0,

vi = v j : xi + x j = 1,

v j ∧ vk : x j + xk − 1 ≤ xi ≤ 1
2 x j +

1
2 xk,

v j ∨ vk : 1
2 x j +

1
2 xk ≤ xi ≤ x j + xk,

v j ⊕ vk : xi − x j + xk ≥ 0, xi + x j − xk ≥ 0,

xi − x j − xk ≤ 0, xi + x j + xk ≤ 2.

Though it might be possible to use this kind of encoding
scheme for K ≥ 3, it would be quite complicated. Instead,
we can add the following rules for K = 3 if fi(v j, vk, vh)
has a special form (modification for cases of fi(v j, b, vh) and
fi(v j, vk, b) are straight-forward), where this technique can
be extended for K > 3.

fi(0, vk, vh) = 0 : xi − x j ≤ 0,

fi(0, vk, vh) = 1 : xi + x j ≥ 1,

fi(1, vk, vh) = 0 : xi + x j ≤ 1,

fi(1, vk, vh) = 1 : xi − x j ≥ 0.

In addition to the above modifications, there is some
minor implementation issue. For the case of K = 3, we
cannot represent 1/K exactly. Thus, we replaced

xi,bi1 ...bi3
≤ 1

3

∑
j=1,...,3

τbi j
(xi j )
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Table 1 CPU time (sec.) on ATTRACTOR DETECTION for BNs of
K = 2.

n 2000 4000 6000 8000 10000
time (sec) 0.016 0.026 0.037 0.055 0.071

Table 2 CPU time (sec.) on ATTRACTOR DETECTION (original ver-
sion) for BNs of K = 3 with varying the ratio of indegree 3 nodes.

n
ratio 30 60 90 120 150
20% 0.005 0.003 0.006 0.007 0.010
40% 0.006 0.010 0.050 0.024 0.201
60% 0.010 0.112 0.794 1.193 3.207
80% 0.034 0.502 3.214 9.248 39.249
100% 0.055 1.942 20.014 113.409 262.473

Table 3 CPU time (sec.) on ATTRACTOR DETECTION (improved
version) for BNs of K = 3 with varying the ratio of indegree 3 nodes.

n
ratio 30 60 90 120 150 180
20% 0.004 0.005 0.005 0.007 0.008 0.008
40% 0.006 0.008 0.012 0.012 0.020 0.016
60% 0.007 0.011 0.020 0.168 0.310 0.384
80% 0.008 0.071 0.259 1.198 9.343 20.342
100% 0.017 0.637 2.886 14.536 47.223 310.985

by

xi,bi1 ...bi3
≤ 0.333

∑
j=1,...,3

τbi j
(xi j ) + 0.1.

4.2 Results on ATTRACTOR DETECTION

We applied the proposed method for ATTRACTOR DE-
TECTION to randomly generated BNs. In Table 1, the aver-
age CPU time (per BN) is shown against 20 randomly gen-
erated BNs with K = 2 and K = 3, respectively. For the case
of K = 2, we examined the improved method (described in
Sect. 4.1). For the case of K = 3, we examined the original
method (described in Sect. 3.1) and the improved method.

For BNs with K = 2, we examined cases of n = 2000,
4000, 6000, 8000 and 10000. The result is shown in Table 1.

For the original method for BNs with K = 3, we ex-
amined cases of n = 30, 60, 90, 120 and 150 with varying
the ratio of indegree 3 nodes (note that K is the maximum
indegree). For the improved method for BNs with K = 3,
we examined cases of n = 30, 60, 90, 120, 150 and 180 also
with varying the ratio of indegree 3 nodes. The results are
shown in Table 2 and Table 3.

From Table 1, it is seen that ATTRACTOR DETEC-
TION is solved very quickly for the case of K = 2. It also
seems that CPU time increases near linearly with the size of
BNs. This result is a bit surprising because ATTRACTOR
DETECTION is known to be NP-hard even for the case of
K = 2 [31]. One of the reasons might be that 6 among 16
possible Boolean functions of K = 2 are constant or unary
functions and thus the values of many nodes are determined
quickly. Another possible reason is that randomly generated
BNs for K = 2 may not have large connected components

Table 4 CPU time (sec.) on BN CONTROL for BNs of K = 2.

n/m = M 100/10 500/50 1000/100 1500/150
time 0.003 0.916 33.770 328.568

or may have small connectivities and thus detection of a sin-
gleton attractor may be easy.

It is seen from Tables 2 and 3 that the ratio of inde-
gree 3 nodes significantly affects the computation time. For
the cases of low ratios of indegree 3 nodes, it is difficult
to see the tendency of increase of CPU time with the num-
ber of nodes. However, we can observe from the case of
100% ratio of indegree 3 nodes that CPU time increases
exponentially with the number of nodes. We can also see
that our proposed method works very well for BNs with
K = 3 if the ratio of indegree 3 nodes is not high. It is
also seen from Tables 2 and 3 that the improved method is
much faster than the original method. For example, in the
case of (100%, n = 150), the improved method took only
47.223 sec. whereas the original method took 262.473 sec.

The tendency that attractor detection for K = 2 is much
easier than that for K = 3 is also observed by Devloo
et al. [11] and by de Jong and Page [10] though there are
some differences between our model and their models. It
is also to be noted that our method is much faster than
their methods in the case of K = 2 and is comparable to the
method by Devloo et al. in the case of K = 3, but is slower
than the method by Jong and Page in the case of K = 3.

4.3 Results on BN CONTROL

For BN CONTROL, we randomly generated BNs with ex-
ternal control nodes, initial global states, and control se-
quences, from which we computed the target desired states.
Then, we generated ILP instances from these BNs and these
initial and desired states (without giving control sequences).
As a result, we could obtain the desired control sequences
for all cases. For BNs of K = 2, we examined the cases
of (n,m,M) = (100, 10, 10), (500, 50, 50), (1000, 100, 100),
and (1500, 150, 150), where n, m, M are the numbers of
internal nodes, external nodes, and the target time step,
respectively. For BNs of K = 3, we examined the cases
of (n,m,M) = (30, 3, 3), (60, 6, 6), (90, 9, 9), (120, 12, 12),
(150, 15, 15) and (180, 18, 18), with varying the ratio of in-
degree 3 nodes. For both of K = 2 and K = 3, we employed
the improved encoding schemes, and we only examined the
cases of m = M.

For each case, the average CPU time (per BN) over 20
trials is shown in Tables 4 and 5, respectively. It is seen from
Table 4 that the proposed method is fast for BNs of K = 2. It
is also seen from Table 5 that the proposed method is fast if
the ratio of indegree 3 nodes is not large. The reason of this
big difference might be the same as that for ATTRACTOR
DETECTION.

4.4 Results on ATTRACTOR CONTROL

For ATTRACTOR CONTROL, we also examined the cases
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Table 5 CPU time (sec.) on BN CONTROL for BNs of K = 3 with
varying the ratio of indegree 3 nodes, where ‘-’ means that an experiment
was not finished within 5 days.

n/m = M
ratio 30/3 60/6 90/9 120/12 150/15 180/18
20% 0.006 0.013 0.026 0.056 0.237 0.017
40% 0.006 0.017 0.048 0.388 4.157 16.798
60% 0.008 0.023 0.102 8.615 - -
80% 0.009 0.006 0.010 4914.6 - -
100% 0.012 0.041 97.74 - - -

Table 6 Results on ATTRACTOR CONTROL.

K n/m 800/80 1200/120 1600/160 2000/200

= time (sec) 14.194 19.057 42.537 61.124
2 #pos/#rep 7/3.86 7/2.29 7/3.15 7/2.58

#neg/#rep 4/1.00 1/1.00 1/1.00 1/1.00

K n/m 100/10 120/12 140/14 160/16
= time (sec) 75.386 27.761 81.246 309.263
3 #pos/#rep 4/3.0 9/1.56 7/2.58 5/1.80

#neg/#rep 4/1.0 1/1.00 3/1.00 2/1.00

of K = 2 and K = 3. In Table 6, the following information
is shown against 10 randomly generated BNs with K = 2
and K = 3:

• time: average CPU time (seconds) per BN,
• #pos/#rep: the number of trials (i.e., BNs) for which

the desired attractors were found, and the average num-
ber of repetitions per each of such trials (recall that we
need to solve ILP instances repeatedly for ATTRAC-
TOR CONTROL),
• #neg/#rep: the number of trials (i.e., BNs) for which it

was found that there did not exist the desired attractors,
and the average number of repetitions per each of such
trials,

where we set αi = 1 for all i ∈ {1, . . . , n} and Θ = 0.65n,
and we set the maximum number of repetitions to be 20.
It is to be noted that in some cases (i.e., 10 − #pos − #neg
cases), the procedure could not decide within 20 repetitions
whether or not there existed the desired attractors. The rea-
son why Θ = 0.65n was selected is that there almost always
existed the desired attractors if Θ � 0.65n and there seldom
existed the desired attractors if Θ 
 0.65n in our prelimi-
nary computational experiments.

It is seen from Table 6 that the proposed method is at
least useful for BNs of K = 2 with up to 2000 nodes and
for BNs of K = 3 with up to 140 nodes. It is also seen
that the numbers of repetitions required to decide the exis-
tence of the desired attractors are usually small though these
numbers are large (more than 20) in some cases. The reason
why CPU time for (120, 12) is smaller than that for (100, 10)
in K = 3 is that the former case required less number of
repetitions.

In addition to artificially generated BNs, we applied
the proposed method for ATTRACTOR CONTROL to
a 10-gene WNT5A network (see Fig. 3) [20], which is
closely related to metastatic melanoma. Since only topol-
ogy of the network is given in [20], we assigned a random

Fig. 3 Structure of 10 gene WNT5A network [20].

Boolean function to each node, where each node has 3 in-
puts and each Boolean function has exactly 3 relevant in-
puts. We generated 10 BNs in this way and took the aver-
age CPU time, #pos/#rep, #neg/#rep, where we let αi = 1
for all i, n = 10, m = 2 and Θ = 0.6. The result was:
0.080 (sec), #pos/#rep = 8/2.13, #neg/#rep = 2/3.5. This
result suggests that the proposed method might work in rea-
sonable CPU time for real (but not large) networks though
further studies (in particular, assignment of biologically ade-
quate Boolean functions) should be done in order to evaluate
the usefulness of the method from a biological viewpoint.

5. Complexity of ATTRACTOR CONTROL

In the above, we did not give a direct transformation from
ATTRACTOR CONTROL to ILP. Here, we show that it is
not plausible to give such a direct transformation.

Theorem 1: ATTRACTOR CONTROL is Σp
2 -hard.

(Proof) Let ψ(x, y) be a 3-DNF (disjunction of conjunc-
tions each of which consisting of 3 literals) over vari-
ables x = (x1, . . . , xn1 ) and y = (y1, . . . , yn2 ). Then, it is
known that deciding whether or not (∃x)(∀y)ψ(x, y) is true
is Σp

2 -complete [29]. We show a polynomial time reduction
from this problem to ATTRACTOR CONTROL.

From a given ψ(x, y), we construct a BN as follows (see
also Fig. 4). Let m1 be the number of terms in ψ(x, y). Then,
we let V = {v1, v2, . . . , vn1+n2+m1+1}. For i = 1, . . . , n1, vi cor-
responds to xi. For i = 1, . . . , n2, vn1+i corresponds to yi. For
i = 1, . . . ,m1, vn1+n2+i corresponds to the ith term of ψ(x, y),
where the ith term is represented as li1 ∧ li2 ∧ li3 .

Then, we assign the following functions to V:

vi(t + 1) = vi(t), for i = 1, . . . , n1,

vn1+i(t + 1) = vn1+i(t), for i = 1, . . . , n2,

vn1+n2+i(t + 1) = li1 (t) ∧ li2 (t) ∧ li3 (t),

for i = 1, . . . ,m1,

vn1+n2+m1+1(t + 1) =
∨

i∈{1,...,m1}
vn1+n2+i(t).

Finally, we let m = n1, αn1+n2+m1+1 = 1, αi = 0 for i <
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Fig. 4 Reduction from (∃x)(∀y)((x1∧y1∧y2)∨(x2∧y1∧y2)∨(x1∧x2∧y2))
to ATTRACTOR CONTROL. In this figure, x1, x2, y1 and y2 are identi-
fied with v1, v2, v3 and v4, respectively. Usual and T-shape arrows denote
positive and negative controls, respectively. In this case, ATTRACTOR
CONTROL has a solution by selecting x1 and x2 as control nodes with
assigning (x1, x2) = (1, 0).

n1 + n2 + m1 + 1, and Θ = 1.
Then, we can see that ATTRACTOR CONTROL has

a solution iff (∃x)(∀y)ψ(x, y) is true. First, suppose that
(∃x)(∀y)ψ(x, y) is true for an assignment of x= (b1, . . . , bn1 ).
Then, it is straight-forward to see that ATTRACTOR CON-
TROL has a solution by an assignment of (v1, . . . , vn1 ) =
(b1, . . . , bn1 ).

Next, suppose that ATTRACTOR CONTROL has a so-
lution. Then, we can see that v1, . . . , vn1 must be selected as
control nodes since vi(t + 1) = vi(t) are assigned to these
nodes. Furthermore, for any assignment on vn1+1, . . . , vn2 ,
the states of vn1+n2+1, . . . , vn1+n2+m1+1 satisfying the condi-
tion of a singleton attractor are uniquely determined. Since
g(v) is determined only by the value of vn1+n2+m1+1 and
g(v) ≥ 1 must hold, vn1+n2+m1+1 takes 1 (in a singleton at-
tractor) for each assignment on vn1+1, . . . , vn2 . Therefore,
(∃x)(∀y)ψ(x, y) is true.

Since the reduction can obviously be done in polyno-
mial time, we have the theorem. �

It is to be noted that the theorem holds for BNs with
bounded indegree 3 by encoding the large OR node (i.e.,
vn1+n2+m+1) using a binary tree.

Since ILP belongs to NP and it is widely believed that
Σ

p
2 is not equal to NP [13], it is not plausible that there ex-

ists a polynomial time reduction from ATTRACTOR CON-
TROL to ILP. It is worthy to note that both detection of
a singleton attractor and control of BN are trivially in NP
(assuming that M is polynomial of n and m). Therefore, this
result also suggests that control of attractors is computation-
ally harder than the other two problems.

The technique introduced here was applied later to
show Σp

2 -hardness of control of PBNs [6].

6. Discussions and Conclusions

In this paper, we have presented integer programming-based
methods that solve attractor detection, control, and attrac-
tor control problems for BNs in a unified manner. Since
these problems are NP-hard, it is reasonable to use integer
programming. The results of computational experiments

suggest that the proposed methods are useful for solving
moderate size instances of these problems. Though the pro-
posed methods might not be the fastest, they are simple and
easy to implement and have room for various kinds of ex-
tensions and modifications. For example, one might want
to limit the number of nodes whose values are 1 to be less
than some constant. Such a constraint can be easily posed
by adding a linear constraint, whereas it seems very difficult
to give such a constraint using SAT formula.

The proposed methods are not fast for BNs of K = 3.
Furthermore, the number of variables increases exponen-
tially against K. Therefore, our method cannot be applied
to BNs with large indegree. However, the results on attrac-
tor detection suggest that the methods might still be useful
if the ratio of nodes of indegree more than 2 is not large.
It is also suggested that CPU time for the case of K ≥ 3
might be significantly improved if we employ other encod-
ing schemes. Furthermore, it might be possible to develop
much more efficient encoding schemes if we can restrict the
types of Boolean functions used. Therefore, development of
such encoding schemes is left as future work.

For attractor control, we could not transform an origi-
nal instance to a single ILP instance, and instead employed
a procedure which iteratively generates and solves ILP in-
stances. The reason why we could not find a transforma-
tion method is that the attractor control problem is Σp

2 -hard,
whereas it is known that decision problem versions of ILP,
attractor detection, and control of BN are in NP. It is to be
noted that Σp

2 -hardness of the attractor control problem sug-
gests that this problem is not in NP (under the assumption
of P � NP). This result also suggests that attractor control is
computationally harder than attractor detection and control
of BN.

In attractor detection and control of BN problems, the
proposed ILP-based methods output just one solution. How-
ever, it is possible to modify the methods for enumerating
all solutions by iteratively executing ILP with putting a con-
straint that a new solution must be different from previous
solutions.

Such an approach may provide another way to cope
with Σp

2 -hardness of the attractor control problem. As dis-
cussed in Sect. 3.3, attractor control can be directly trans-
formed into ILP if we only need to maximize the score of
one singleton attractor, and the number of singleton attrac-
tors may be small in many real networks. By combining
these facts, we modify the objective of attractor control from
optimization of the minimum score to maximization of the
k-th largest score of singleton attractors. Then, it seems
possible to obtain direct transformation to ILP by making
h copies of ILP formulation in Sect. 3.3 (with keeping the
same control nodes to these h copies), putting constraints
that the resulting h singleton attractors must be different and
the scores s1, . . . , sh must satisfy s1 ≥ s2 ≥ · · · ≥ sh, and let-
ting the objective to maximize sh. If the number of singleton
attractors is at least h when appropriately selecting m nodes
as control nodes, the resulting ILP outputs an optimal solu-
tion under this modified definition. Otherwise, ILP fails to
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output a solution, and then we should examine lower values
of h. Although this method might not work efficiently in
practice because of the size of the resulting ILP, it might be
worthy to explore this approach.

Recently, Liu et al. studied the controllability of com-
plex networks [25], in terms of structural controllability,
which is based on linear control theory but can be deter-
mined only from network structure. By making use of a re-
lationship between structural controllability and maximum
matching, they analytically showed that dense and homoge-
neous networks can be controlled using a few control nodes
whereas sparse inhomogeneous networks, which appear in
many real networks, require many control nodes. Since
maximum matching can be computed in polynomial time,
they could also analyze the structural controllability of many
real networks. Although the purpose of our study is similar
to theirs, the models are very different. BN is a non-linear
discrete model whereas they considered linear systems. Fur-
thermore, it seems very difficult for BNs to obtain a good
characterization of the structural controllability because it
is known that control problem is NP-hard [2], which moti-
vated us to develop the proposed ILP-based method. How-
ever, there is a possibility that real networks have some use-
ful structural properties that make control easy. Therefore,
studies to discover such properties should be done.

We have employed BNs as a model of genetic net-
works. Though BNs are useful to model certain types of
real genetic networks [5], [24], they might be too simple to
model other types of genetic networks. On the other hand,
real values or non 0-1 integer values can be handled in ILP.
Therefore, it might be possible to extend BNs so that certain
kinds of real values and/or non 0-1 integer values can be
handled. In particular, by introducing real valued variables,
it might be possible to cope with some uncertainty as sug-
gested in [6], [22], [23], where uncertainty or stochasticity
plays an important role in some biological systems. Such
extensions of BNs along with efficient ILP formalizations
might be useful and should be studied further.

References

[1] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, “A system
for identifying genetic networks from gene expression patterns pro-
duced by gene disruptions and overexpressions,” Genome Informat-
ics, no.9, pp.151–160, 1998.

[2] T. Akutsu, M. Hayashida, W.-K. Ching, W.-K., and M.K. Ng, “Con-
trol of Boolean networks: hardness results and algorithms for tree-
structured networks,” J. Theoretical Biology, vol.244, pp.670–679,
2007.

[3] T. Akutsu, M. Hayashida, and T. Tamura, “Integer programming-
based methods for attractor detection and control of Boolean net-
works,” Proc. The combined 48th IEEE Conference on Decision and
Control and 28th Chinese Control Conference, pp.5610–5617, 2009.

[4] T. Akutsu, A.A. Melkman, T. Tamura, and M. Yamamoto, “Deter-
mining a singleton attractor of a Boolean network with nested cana-
lyzing functions,” J. Computational Biology, vol.18, pp.1275–1290,
2011.

[5] E. Balleza, E.R. Alvarez-Buylla, A. Chaos, S. Kauffman, I.
Shmulevich, and M. Aldana. “Critical dynamics in genetic regula-
tory networks: examples from four kingdoms,” PLoS One, vol.3,

e2456, 2008.
[6] X. Chen, T. Akutsu, T. Tamura, and W.-K. Ching, “Finding opti-

mal control policy in probabilistic Boolean networks with hard con-
straints by using integer programming and dynamic programming,”
International Journal of Data Mining and Bioinformatics, to appear.

[7] D. Cheng and H. Qi, “Controllability and observability of Boolean
control networks,” Automatica, vol.45, pp.1659–1667, 2009.

[8] D. Cheng, “Input-state approach to Boolean networks,” IEEE Trans.
Neural Netw., vol.20, pp.512–521, 2009.

[9] A. Datta, A. Choudhary, M.L. Bittner, and E.R. Dougherty, “Ex-
ternal control in Markovian genetic regulatory networks,” Mach.
Learn., vol.52, pp.169–191, 2003.

[10] H. de Jong and M. Page, “Search for steady states of piecewise-
linear differential equation models of genetic regulatory networks,”
IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, vol.5, no.2, pp.208–222, 2008.

[11] V. Devloo, P. Hansen, and M. Labbé, “Identification of all steady
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[26] B. Luque and R.V. Solé, “Controlling chaos in random Boolean net-
works,” Europhysics Letters, vol.37, pp.597–602, 1997.

[27] A.A. Melkman, T. Tamura, and T. Akutsu, “Determining a singleton
attractor of an AND/OR Boolean network in O(1.587n) time,” Inf.
Process. Lett., vol.110, pp.565–569, 2010.

[28] B. Samuelsson and C. Troein, “Superpolynomial growth in the num-
ber of attractors in Kauffman networks,” Phys. Rev. Lett., vol.90,
098701, 2003.

[29] L.J. Stockmeyer, “The polynomial-time hierarchy,” Theor. Comput.



2970
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Sci., vol.3, pp.1–22, 1976.
[30] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K.

Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from
adult human fibroblasts by defined factors,” Cell, vol.131, pp.1–12,
2007.

[31] T. Tamura and T. Akutsu, “Detecting a singleton attractor in a
Boolean network utilizing SAT algorithms,” IEICE Trans. Funda-
mentals, vol.E92-A, no.2, pp.493–501, Feb. 2009.

[32] S.-Q. Zhang, M. Hayashida, T. Akutsu, W.-K. Ching, and M.K.
Ng, “Algorithms for finding small attractors in Boolean net-
works,” EURASIP Journal on Bioinformatics and Systems Biology,
vol.2007, 20180, 2007.

Tatsuya Akutsu received his M.Eng degree
in Aeronautics in 1986 and a Dr. Eng. degree in
Information Engineering in 1989 both from Uni-
versity of Tokyo, Japan. From 1989 to 1994, he
was with Mechanical Engineering Laboratory,
Japan. He was an associate professor in Gunma
University from 1994 to 1996 and in Human
Genome Center, University of Tokyo from 1996
to 2001 respectively. He joined Bioinformatics
Center, Institute for Chemical Research, Kyoto
University, Japan as a professor in Oct. 2001.

His research interests include bioinformatics and discrete algorithms.

Yang Zhao received her M.Inf. degree from
Graduate School of Informatics, Kyoto Univer-
sity, in 2011. She has been a Ph.D course stu-
dent in Graduate School of Informatics, Kyoto
University since 2011. Her research interests
include development of computational methods
for analyzing chemical molecules and bioimfor-
matics analysis of genomic data.

Morihiro Hayashida received his M.Sc. de-
gree in Information Science from University of
Tokyo, Japan, and his Ph.D. degree in Informat-
ics from Kyoto University, Japan, in 2005. He
is currently an assistant professor in Laboratory
of Biological Information Networks, Bioinfor-
matics Center, Institute for Chemical Research,
Kyoto University. His research interests include
functional analysis of proteins and development
of computational methods for bioinformatics.

Takeyuki Tamura received B.E., M.E. and
Ph.D. degrees in informatics from Kyoto Uni-
versity, Japan, in 2001, 2003, and 2006, respec-
tively. He joined Bioinformatics Center, Insti-
tute for Chemical Research, Kyoto University as
a postdoctoral fellow in April, 2006. He works
as an assistant professor from December, 2007.
His research interests are bioinformatics and the
theory of combinatorial optimization.


