<table>
<thead>
<tr>
<th>Title</th>
<th>31 Evolving life history traits: the influence of environment and nutrition on three populations of Japanese macaque (Macaca fuscata) (X. 共同利用研究 研究成果)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>CHALMERS, Alisa</td>
</tr>
<tr>
<td>Citation</td>
<td>猿類研究所年報 (2009), 39: 122-122</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-09-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/166648</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
31 Evolving life history traits: the influence of environment and nutrition on three populations of Japanese macaque (*Macaca fuscata*)

Alisa CHALMERS (京都大・院・理学)

対応者: M.A. Huffman

This study investigates whether environment and nutrition have an effect on the life history traits and steroid hormones of Japanese macaques in wild (n<=34), provisioned (n<=201), and captive (n<=69) conditions in Japan for 30 years. The results show that all life history traits (except for age at first birth) differed significantly (P<0.01) between the wild and provisioned/captive conditions, indicating a strong nutritional influence.

DHEAS was over two times higher on average (p<0.001) in the captive group compared to the wild/provisioned group. This correlates with increased historical longevity in the captive group but not the provisioned group.

32 野生禽長類の卵の微小咬耗分析

五十嵐健行（京都大・院・理）

対応者：園松隆

大臼歯の咬合面には摂取した食物によって異なるパターンの微小咬耗が形成される場合があり、これまでさまざまな時代や地域の化石禽長類の食性推定に利用されてきた。本研究ではこうした食性推定の基盤データとして、現生禽長類の広範な種を対象に野生由来の標本から大臼歯のレプリカを作製し、走査型電子顕微鏡で微小咬耗を撮影した。

禽長類研究所収蔵のキングコロブス、オリーブコロブス、アカコロブス、ニホンザル、サバンナモンキー、メンタウェーコバランゲザル、ケニア国立博物館収蔵のサイクスモンキー、アカオルフ、ブルーオルフ、アビシニアコロブスからレプリカを得ることができた。オリーブコロブス、アカコロブス、ニホンザルにおいては、葉や軟らかい果実を中心とした食性を示唆する微小咬耗が観察された。現在、他のレプリカについても類微鏡写真の撮影と微小咬耗の測定を進行中である。

33 エリマキキツネザルにおけるマイクロサテライト DNAの多型調査

宗近功（田辺法人 進化生物学研究所）

対応者：田中洋之

エリマキキツネザル (*Varecia*) のマイクロサテライト DNA 多型調査を行った。シクロエリマキキツネザル (*V. variegata*) 2 種、アカエリマキキツネザル (*V. rubra*) 4 種（両親とその子孫 2 種）、および *Varecia spp* 3 種の合計 9 種を対象として、Louis Jr. E. E. et al. (2005) が記載したマイクロサテライト 6 遺伝子（51HDZ247, 485, 598, 646, 833, 988）をリバースプライマーに tail 配列 GTTCTT を付けて PCR 増幅を試みた。その結果、51HDZ247, 598, 646, 833, 988 の 5 遺伝子(except for age at first birth) が遺伝子型をセル分割可能であると示した。*Eulemur* 属を含む開発された 2 遺伝子領域（Em9 および Efr9）ともエリマキキツネザルで多型的であることが明らかになった。クロキツネザルとエリマキキツネザルのマイクロサテライト遺伝子産状に Multiple 法を検討したところ、試みたすべての組み合わせで遺伝子型判定が可能であり、信頼度のサンプルを解析する際、大変有効であると考えられた。