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Functional roles of phase resetting in
the gait transition of a biped robot

from quadrupedal to bipedal locomotion
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Abstract—Although physiological studies have shown evidence
of phase resetting during fictive locomotion, the functional roles
of phase resetting in actual locomotion remain largely unclear.
In this paper, we constructed a control system for a biped robot
based on physiological findings and investigated the functional
roles of phase resetting in the gait transition from quadrupedal
to bipedal locomotion by numerical simulations and experiments.
So far, although many studies have investigated methods to
achieve stable locomotor behaviors for various gait patterns
of legged robots, their transitions have not been thoroughly
examined. Especially, the gait transition from quadrupedal to
bipedal requires drastic changes in the robot posture and the
reduction of the number of supporting limbs, and so the stability
greatly changes during the transition. Thus, this transition
poses a challenging task. We constructed a locomotion control
system using an oscillator network model based on a two-layer
hierarchical network model of a central pattern generator while
incorporating the phase resetting mechanism, and created robot
motions for the gait transition based on the physiological concept
of synergies. Our results, which demonstrate that phase resetting
increases the robustness in gait transition, will contribute to the
understanding of the phase resetting mechanism in biological
systems and lead to a guiding principle for designing control
systems for legged robots.

Index Terms—Biped robot, Gait transition, Quadrupedal and
bipedal, Central pattern generator, Phase resetting, Synergy.

I. INTRODUCTION

Humans and animals achieve adaptive walking in diverse
environments by cooperatively and skillfully manipulating
their complicated and redundant musculoskeletal systems.
They walk on level ground, up and down slopes, at fast and
slow speeds, and turn left and right. Some animals crawl,
walk quadrupedally or bipedally, run, hop, leap, and jump,
depending on the situation.

To clarify the neuro-control mechanisms producing such
adaptive locomotor behaviors, many studies have been con-
ducted. Physiological studies have greatly helped to eluci-
date locomotor mechanisms by examining the configurations
and activities of neural systems [35], [60], [68], [76], [81].
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However, it is difficult to fully clarify the mechanisms in
terms of the nervous system alone because locomotion is
a well-organized motion generated through dynamic interac-
tions of the body, its nervous system, and the environment.
To overcome such limitations, constructive approaches using
computer simulations and robots have recently attracted atten-
tion. Because researchers have learned to construct reasonably
realistic models of the musculoskeletal and nervous sys-
tems, simulations have been performed to investigate neuro-
mechanical interactions [4], [10], [40], [61], [78–80], [86],
[87]. In addition to computer simulations, robots have become
effective tools for testing hypotheses of locomotor mechanisms
and control systems by demonstrating real-world dynamic
characteristics [5], [6], [19], [23], [27], [29], [33], [39], [44],
[48], [56], [62], [67].

Physiological evidence suggests that central pattern genera-
tors (CPGs) in the spinal cord strongly contribute to rhythmic
limb movement, such as locomotion [35], [60], [76]. The
CPGs can produce oscillatory behaviors even without rhythmic
input and proprioceptive feedback. However, they must use
sensory feedback to produce effective locomotor behavior.
Physiological studies have shown that locomotor rhythm and
its phase are modulated by producing phase shift and rhythm
resetting based on sensory afferents and perturbations (phase
resetting) [17], [26], [36], [46], [74]. However, such rhythm
and phase modulations in phase resetting have for the most
part been investigated during fictive locomotion in cats, and
their functional roles during actual locomotion remain largely
unclear. To examine the functional roles of phase resetting
during human bipedal locomotion, simulation studies have
recently been conducted. These studies demonstrate that phase
resetting plays important roles in generating adaptive locomo-
tor behavior [4], [57], [87]. In addition, robotic studies using
biped robots have been performed to examine the functional
roles of phase resetting during bipedal locomotion by showing
real-world dynamic characteristics [5], [6], [55–57].

In this paper, we focus on the investigation of the functional
roles of phase resetting in the gait transition of a biped robot
from quadrupedal to bipedal locomotion during walking. To
establish the gait transition, we have to produce stable walking
for both quadrupedal and bipedal locomotion, and in addi-
tion, change the robot motions from quadrupedal to bipedal
locomotion without falling over. Although many studies have
investigated methods to achieve stable locomotor behaviors
for various gait patterns, the transitions have not really been
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Fig. 1. Biped robot. A and B show the robot postures for quadrupedal and
bipedal locomotion, respectively.

examined. Furthermore, the gait transition from quadrupedal
to bipedal requires drastic changes in the robot posture and
the reduction of the number of supporting limbs, and so the
stability greatly changes during the transition. Proper timing
for changing the gait pattern and adequate modulations of the
locomotor rhythm and its phase are crucial to achieve the gait
transition. These issues indicate that gait transition is a very
effective and useful task for investigating the functional roles
of phase resetting in locomotion control, as well as being a
challenging task in robotic studies. Clarifying these functional
roles will contribute to the understanding of the phase resetting
mechanism in biological systems. In addition, these issues can
lead to a guiding principle for designing control systems for
other legged robots, which will be an important contribution
to the generalized study of robotics.

This paper is organized as follows: Section 2 introduces
our developed biped robot, Sections 3 and 4 address the
locomotion control system and the gait transition strategy, re-
spectively, constructed from physiological findings. Section 5
shows the numerical simulation and experimental results, and
Section 6 presents the discussion and conclusion.

II. BIPED ROBOT

We designed a biped robot that consists of a trunk composed
of two parts (upper and lower trunk), a pair of arms composed
of two links, and a pair of legs composed of five links (Fig. 1).
Figure 2A shows the schematic model of the robot. Each link is
connected to the others through a rotational joint with a single
degree of freedom. To manipulate the legs, the robot has two
joints in the hips (roll and pitch), one joint in the knees (pitch),
and two joints in the ankles (roll and pitch). To control the
arms, it has one joint in the shoulders (pitch) and one joint in
the elbows (pitch). For the trunk, it has one joint in the waist
(pitch). Each joint has a motor and an encoder to manipulate
the angle. Four touch sensors are attached to the corners of
the sole of each foot and one touch sensor is attached to the
tip of the hand of each arm. Three gyro sensors are installed
on the lower trunk, which are used only for monitoring the
robot motion relative to the ground and are not used for the
controller.
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Fig. 2. Schematic models of biped robot. A shows front and side views of
the robot model. B and C display its posture during quadrupedal and bipedal
walking, respectively.

TABLE I
PHYSICAL PARAMETERS OF THE BIPED ROBOT

Link Mass [kg] Length [cm]
Trunk 1.42 27.2
Arm 0.53 22.2
Leg 1.40 24.3
Total 5.28 51.5

The left and right legs are numbered Legs 1 and 2, respec-
tively. The joints of the legs are also numbered: Joints 1 · · ·
5 from the side of the trunk, where Joints 1 and 2 are the
roll and pitch hip joints, respectively, Joint 3 is the pitch knee
joint, and Joints 4 and 5 are the pitch and roll ankle joints,
respectively. The arms are numbered in a similar manner: Joint
1 is the pitch shoulder joint and Joint 2 is the pitch elbow joint.
The trunk consists of the upper and lower parts connected
by the pitch waist joint, named Waist Joint. To describe the
configuration, we introduce angles θW, θi

Aj , and θi
Lk (i = 1, 2,

j = 1, 2, k = 1, . . . , 5), which are the rotation angles of Waist
Joint, Joint j of Arm i, and Joint k of Leg i. The robot walks
quadrupedally and bipedally, as shown in Figs. 2B and C.
Table I shows the physical parameters.

The robot walks on a flat floor with no elevation. The
electric power is externally supplied and the robot is controlled
by an external host computer (Intel Pentium 4 2.8 GHz, RT-
Linux), which calculates the desired joint motions and solves
the oscillator phase dynamics in the locomotion control system
(see Section III). It receives the command signals at intervals
of 1 ms. The robot is connected with the electric power unit
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and the host computer by cables that are held up during the
experiment to avoid influencing the walking behavior.

For the simulation study, we derived the equation of motion
using Lagrangian equations as in [10] and solved the equation
using the fourth-order Runge-Kutta method with a step size of
1 ms. We used a linear spring and damper system for modeling
the ground reaction force. The physical parameters were based
on those of our robot, as shown in Table I.

III. LOCOMOTION CONTROL SYSTEM

A. CPG-based hierarchical network model

Although physiological studies suggest that CPGs greatly
contribute to the generation of locomotion and various CPG
models have been proposed, the organization of CPGs remains
largely uncertain [37], [50]. However, recent physiological
findings suggest that CPGs consist of hierarchical networks
composed of rhythm generator (RG) and pattern formation
(PF) networks [14], [46], [70], [71]. The RG network generates
the basic rhythm and alters it by producing phase shifts and
rhythm resetting in response to sensory afferents and perturba-
tions (phase resetting). The PF network shapes the rhythm into
spatiotemporal patterns of motor commands. CPGs separately
control the locomotor rhythm and motor commands in the RG
and PF networks, respectively.

In this paper, we constructed the locomotion control system
based on a two-layer hierarchical network model composed of
the RG and PF models (Fig. 3A). With this system, we im-
proved our previous locomotion control system for quadruped
and biped robots [5], [6], [84]. The locomotion control system
receives commands related to the locomotion speed and gait
pattern and creates motor torques through the RG and PF
models to manipulate the robot. The RG model produces
the rhythm information for locomotor behavior using phase
oscillators and regulates the rhythm information by phase
resetting in response to touch sensor signals. The PF model
generates motor torques based on the rhythm information from
the RG model to produce the joint movements.

B. Rhythm generator (RG) model

The RG model produces rhythm information for the loco-
motor behavior through interactions of the robot mechanical
system, the oscillator network system, and the environment.
For the RG model, we used six simple phase oscillators (Leg
1, Leg 2, Arm 1, Arm 2, Trunk, and Inter oscillators), which
produce the basic rhythm for locomotion based on commands
related to the locomotion speed and also receive touch sensor
signals to modulate the rhythm by phase resetting (Fig. 3B).

Since the output from the α-motoneuron in the spinal cord
controls the corresponding muscles, each joint may be con-
trolled by separate neural oscillators. However, the oscillators
must be coupled to coordinate interlimb movements [49]. For
the locomotion control systems applying oscillators based on
the concept of the CPG, the oscillators are classified into
three main uses: 1. the use of an oscillator for the whole
body [7–9], [56], [57], [87]; 2. the use of an oscillator for
each limb [4–6], [10], [44]; and 3. the use of an oscillator
for each joint [55], [78–80]. When we use an oscillator
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Fig. 3. Locomotion control system. A shows the two-layer hierarchical
network model composed of the rhythm generator (RG) and pattern formation
(PF) models. B shows the phase oscillators for producing locomotor rhythm
and motor commands. The blue arrows indicate interactions among the
oscillators based on the interlimb coordination pattern. The oscillator phases
are modulated by phase resetting based on touch sensor signals (green arrows).
The oscillator phases determine the limb kinematics (black arrows).

for each limb, the oscillators can manipulate the interlimb
coordination pattern. When we use an oscillator for each
joint, the oscillators can control the intralimb (intersegmental)
coordination pattern, as well as the interlimb coordination
pattern. In this paper, we focus on the control of the interlimb
coordination pattern by the oscillators and use an oscillator
for each limb, as explained in Section III-D.

We define φi
L, φi

A, φT, and φI (i = 1, 2) as the phases of
Leg i, Arm i, Trunk, and Inter oscillators, respectively, and
employ the following phase dynamics:

φ̇I = ω + g1I

φ̇T = ω + g1T

φ̇i
A = ω + gi

1A + gi
2A i = 1, 2

φ̇i
L = ω + gi

1L + gi
2L i = 1, 2 (1)

where ω is the basic oscillator frequency that uses the same
value for all the oscillators; g1I, g1T, gi

1A, and gi
1L (i = 1, 2)

are functions related to the interlimb coordination (see Sec-
tion III-D); and gi

2A and gi
2L (i = 1, 2) are functions related

to the phase and rhythm modulation and are based on the
phase resetting in response to the touch sensor signals (see
Section III-E).
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C. Pattern formation (PF) model

Recent neurophysiological studies have revealed that
spinocerebellar neurons receive sensory signals from pro-
prioceptors and cutaneous receptors and encode the global
information of the limb kinematics, such as the length and
orientation of the limb axis [13], [63], [64]. In our control
system, we used the PF model to determine the desired limb
kinematics based on the oscillator phases and to produce motor
torques for establishing the desired kinematics.

Locomotion in humans and animals involves moving the
center of mass (COM) forward. To achieve this, they move
the swing limb forward. When the swing limb touches the
ground, it supports the body and generates a propulsive force
from the ground. For simplicity, we used limb kinematics
consisting of the swing and stance phases in the pitch plane
(Fig. 4). For the leg motion, Joint 4 (ankle pitch joint) follows
a simple closed curve relative to the trunk during the swing
phase, which includes an anterior extreme position (AEP) and
a posterior extreme position (PEP). Joint 4 starts from PEP
and continues until the foot touches the ground. During the
stance phase, Joint 4 traces out a straight line from the landing
position (LP) to PEP. During this phase, the foot moves in the
opposite direction to the trunk. The trunk travels in the walking
direction while the foot is in contact with the ground. In both
the swing and stance phases, the angular movement of Joint 4
is designed so that the foot is parallel to the line that connects
points AEP and PEP.

For the leg movement, we use D to denote the distance
between AEP and PEP. We define the swing and stance phase
durations as Tsw and Tst, respectively, for the case that the
foot touches the ground at AEP (LP = AEP). The duty factor
β (i.e., the ratio between the stance phase and the step cycle
duration), the basic frequency ω in (1), the stride length S,
and the locomotion speed v are then given by

β =
Tst

Tsw + Tst
, ω =

2π
Tsw + Tst

, S =
Tsw + Tst

Tst
D, v =

D

Tst

(2)

These values are satisfied regardless of the gait pattern.
The lower trunk is at an angle of ψH to the line perpendic-

ular to the line connecting points AEP and PEP. The height
and forward bias from the center of points AEP and PEP to
Joint 2 (hip pitch joint) are defined as parameters ΔL and
HL, respectively. These trajectories for the legs provide the
desired motion θ̂i

Lj (i = 1, 2, j = 2, 3, 4) of Joint j (hip, knee,
and ankle pitch joints) of Leg i by the function of phase φi

L
of Leg i oscillator, where we use φi

L = 0 at point PEP and
φi

L = φAEP(= 2π(1 − β)) at point AEP.
To increase the stability of bipedal locomotion in three-

dimensional space, we used roll joints in the legs. We designed
the desired motions θ̂i

L1 and θ̂i
L5 (i = 1, 2) of Joints 1 and 5

(hip and ankle roll joints) of Leg i by the functions of phase
φT of Trunk oscillator by

θ̂i
L1 = R cos(φT + δ)
θ̂i

L5 = −R cos(φT + δ) (3)

where R is the amplitude of the roll motion and δ determines

ψH
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Fig. 4. Desired limb kinematics composed of swing and stance phases. A
and B show the desired trajectories for the feet and the hands, respectively.
When the foot or the hand lands on the ground, the trajectory changes from
the swing to the stance phase. When the foot or the hand reaches point PEP,
the trajectory moves into the swing phase.

the phase relationship between the leg movements in the pitch
and roll planes.

For the arm motion, the tip of the hand follows a simple
closed curve during the swing phase and a straight line during
the stance phase, as is similar to the leg motion except for the
bend direction between Joint 2 of the arm (elbow pitch joint)
and Joint 3 of the leg (knee pitch joint) (Fig. 4B). The upper
trunk is at an angle of ψH + ψW to the line perpendicular to
the line that connects points AEP and PEP, where angle ψW

is the pitch angle of Waist joint. The height and forward bias
from the center of points AEP and PEP to Joint 1 (shoulder
pitch joint) of the arm are defined as parameters ΔA and HA,
respectively. For the distance D, the swing phase duration Tsw,
and the stance phase duration Tst, we used the same values as
those used for the legs. These trajectories for the arms give
the desired motion θ̂i

Aj (i, j = 1, 2) of Joint j (shoulder and
elbow pitch joints) of Arm i by the function of phase φi

A of
Arm i oscillator, where we used φi

A = 0 at point PEP and
φi

A = φAEP(= 2π(1 − β)) at point AEP.
We used these desired limb kinematics for both gait patterns

and changed parameters ΔL, ΔA, HL, HA, ψH, ψW, and R
depending on the gait pattern (see Section IV). To achieve the
desired joint motions, the PF model produces motor torques
based on PD feedback control using high-gain feedback gains.

D. Interlimb coordination

For the generation of locomotion, interlimb coordination
is essential [4], [10], [16], [75]. Quadrupeds change their
interlimb coordination pattern, such as walk, trot, and gallop
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patterns, depending on the situation [10]. However, for human
bipedal walking, both legs generally move out of phase to
prevent toppling over, both arms also move out of phase, and
one arm and the contralateral leg move in phase, except for
a walk in special situations, such as a curved walk [18] and
a splitbelt treadmill walk [53], [65]. We employ this inter-
limb coordination pattern for both quadrupedal and bipedal
locomotion. That is, we use the trot pattern for quadrupedal
locomotion.

Since the desired limb kinematics are designed by the
corresponding oscillator phases, the interlimb coordination
pattern of our robot is given by the phase relationship, that
is, the phase difference, between the oscillators. Therefore,
functions g1I, g1T, gi

1A, and gi
1L in (1) are given as follows by

using the phase differences between the oscillators based on
Inter oscillator,

g1I = −
2∑

i=1

KA sin(φI − φi
A − (−1)iπ/2)

−
2∑

i=1

KL sin(φI − φi
L + (−1)iπ/2)

g1T = −KT sin(φT − φI)
gi
1A = −KA sin(φi

A − φI + (−1)iπ/2) i = 1, 2
gi
1L = −KL sin(φi

L − φI − (−1)iπ/2) i = 1, 2 (4)

where the desired phase relations are given by the desired
interlimb coordination pattern: φ1

A − φ2
A = π, φ1

L − φ2
L = π,

and φ1
A−φ2

L = 0 (φ2
A−φ1

L = 0), and KL, KA, and KT are gain
constants. These interactions are shown by the blue arrows in
Fig. 3B.

E. Phase resetting

Locomotion is well-organized motion generated through the
dynamic interactions of the body, the nervous system, and
the environment. The adequate integration of sensory signals
in issuing motor commands is crucial for adaptive locomotor
behaviors. Phase resetting contributes to the resetting of the
locomotor rhythm induced by a shift in the phase based on
sensory information [4].

In this paper, we investigated the functional roles of such
rhythm and phase modulations by phase resetting based on the
touch sensor signals during the gait transition. We incorporated
the phase resetting mechanism by using functions gi

2A and gi
2L

in (1). Specifically, when the hand of Arm i (the foot of Leg
i) lands on the ground, phase φi

A of Arm i oscillator (phase
φi

L of Leg i oscillator) is reset to φAEP from φi
Aland (φi

Lland) at
the landing (i = 1, 2). Therefore, functions gi

2A and gi
2L are

expressed as

gi
2A = (φAEP − φi

Aland)δ(t− tiAland) i = 1, 2
gi
2L = (φAEP − φi

Lland)δ(t− tiLland) i = 1, 2 (5)

where tiAland (tiLland) is the time when the hand of Arm i (the
foot of Leg i) lands on the ground (i = 1, 2) and δ(·) denotes
Dirac’s delta function. Note that the touch sensor signals not
only modulate the locomotor rhythm and its phase but also

switch the arm and leg motions from the swing to the stance
phase, as described in Section III-C.

The phase resetting mechanism by (5) has been used for
various biped robots [5], [6], [55–57], where the usefulness
for increasing the robustness against perturbations and sudden
environmental changes has been demonstrated. In addition, we
have analytically shown the contribution of phase resetting to
the improvement of robustness based on a stability analysis
using simple physical models, such as a compass model and
a five-link planar model [7–9].

F. Parameter determination for locomotion control

This locomotion control system has the following param-
eters: D, Tsw, and Tst to determine the locomotion speed
(2); ΔL, ΔA, HL, HA, ψH, ψW, and R to determine limb
kinematics (Fig. 4); δ to determine the phase relationship
between the leg movements in the pitch and roll planes (3);
and KT, KA, and KL for the interactions among the oscillators
(4). We have to determine these parameters to establish stable
locomotion, especially for bipedal locomotion. In particular,
the synchronization of the roll and pitch motions during
locomotion is crucial. Therefore, when D, Tsw Tst, ΔL, ΔA,
HL, and, HA were chosen, we used R and δ for the roll motion
and ψW or ψH for the pitch motion as tuning parameters [5]. In
addition, we used large values for KT, KA, and KL so that the
movements of the right and left limbs remain out of phase to
prevent a decrease in stability [4]. Note that this paper does not
focus on the optimality of these parameters, but the emergence
of adaptive functions during locomotion through interactions
of the robot mechanical system, the oscillator network system,
and the environment.

IV. GAIT TRANSITION

A. Robot kinematics for each gait pattern

Based on the desired limb kinematics in Fig. 4, we illus-
trated the desired robot kinematics for quadrupedal and bipedal
locomotion in Fig. 5, where COM indicates the center of mass
of the upper trunk, lU (= 8.0 cm) and lL (= 7.0 cm) are the
lengths from COM to Joint 1 of the arm (shoulder pitch joint)
and Waist Joint in the pitch plane, respectively, lW (= 7.0 cm)
is the length from Waist Joint to Joint 1 of the leg (hip pitch
joint), LA and LL are the forward biases from COM to the
centers of the desired foot and hand trajectories, respectively,
and ()Q and ()B indicate the parameters for quadrupedal and
bipedal walking, respectively. Note that parameters LA and
LL are determined by parameters ΔA, ΔL, ψH, and ψW, as
follows:

LA = lU sin(ψH + ψW) + ΔA

LL = lL sin(ψH + ψW) + lW sinψH + ΔL (6)

Also, note that LB
A and LB

L are both set to 0, as shown in
Fig. 5B. Since the hands do not touch the ground during
bipedal walking, the tip of the hand follows the closed curve.

In our control system, the gait pattern is determined by
kinematic parameters ΔA, ΔL, HA, HL, ψH, and ψW for the
pitch motion and kinematic parameter R that constructs the
robot motions in the roll plane for bipedal locomotion.
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Fig. 5. Schematic diagrams and kinematic parameters for quadrupedal (A)
and bipedal (B) walking

B. Gait transition strategy based on the physiological concept
of synergy

To change the gait pattern, robot motions must connect one
pattern to another. However, thousands of methods can create
such robot motions, due to the redundancy of the degrees of
freedom of the robot. Since our control system designed robot
motions for quadrupedal and bipedal locomotion by using the
same kinematic parameters, robot motions during the transition
can be generated by changing these parameters from ΔQ

A, ΔQ
L ,

HQ
A , HQ

L , ψQ
T , and RQ to ΔB

A, ΔB
L, HB

A, HB
L , ψB

T , and RB.
However, we still have many parameters. We must determine
how to change them and solve this redundancy problem, which
is a crucial issue.

Physiological findings suggest the importance of muscle
synergies for controlling movements in humans and ani-
mals [20–22], [24], [25], [43], [82], [83]; these concepts
have been analyzed using principal component analysis and
factor analysis and are viewed as one solution to handle the
redundancy problem in biological systems. Muscle synergy
is related to the co-variation of muscle activities. Ivanenko
et al. [41], [42] reported that, although recorded electromyo-
graphic data during human bipedal locomotion are compli-
cated, the data can be accounted for by a combination of only
five basic patterns. Furthermore, similar movement patterns
such as obstacle avoidance and kick motion share the same
basic patterns and can be explained by adding another basic
pattern.

In addition to muscle synergies, kinematic synergies have
been investigated during human whole-body movements [1–3],
[28], [30]. Most studies have associated kinematic synergies
with simultaneous movements in several joints. Freitas et
al. [28] investigated joint angle co-variation patterns during a
rhythmic whole-body motion and suggested that two kinematic
synergies account for the joint co-variation and contribute to
the stabilization of two performance variables, the COM loca-
tion and the trunk orientation. This means that some degrees
of freedom are functionally connected by objects, depending
on the task, which reduces the number of degrees of freedom
and solves the problem of motor redundancy. Such angle co-
variation behavior is also observed during the locomotion of
humans and animals [12], [30], [45], [64]. When elevation
angles at the thigh, shank, and foot during locomotion are
plotted, one versus the others, the angles describe regular loops

constrained on a plane [12], [45], [64], and hint that such a
kinematically coordinative structure is embedded in the motion
generation mechanism.

In this paper, using these physiological findings, we pro-
duced robot motions during gait transition by construct-
ing coordinative structures. To change the gait pattern from
quadrupedal to bipedal locomotion, the robot raises its trunk
and its arms leave the ground. Since the number of limbs that
support the body is reduced, an adequate location between
the supporting limb locations and the COM location is crucial
when raising the trunk; otherwise, the robot easily falls over.
In addition, since raising the trunk induces a large change
in the robot posture and the COM location, the appropriate
change in trunk orientation is crucial. Therefore, to control
the COM location relative to the supporting positions of the
limbs and the trunk orientation, similarly to [28], we used
two performance variables and constructed a kinematically
coordinative structure, as shown in the next section.

C. Kinematic coordination during gait transition

To handle the redundancy problem in the motion planning
for gait transition, we employed two performance variables, ξ1
and ξ2, that control the horizontal positions of the arms and
feet relative to the COM and the trunk orientation, respectively,
and produce robot motions by constructing a kinematically
coordinative structure using these two performance variables.
In particular, we encoded seven kinematic parameters: ΔA,
ΔL, HA, HL, ψH, ψW, and R using performance variables ξ1
and ξ2 (Fig. 6) by

ΔA(ξ1, ξ2) = ΔQ
A−{lU sin(ψH(ξ1, ξ2)+ψW(ξ1, ξ2))+ΔQ

A}ξ1
ΔL(ξ1, ξ2) = ΔQ

L −{lL sin(ψH(ξ1, ξ2)+ψW(ξ1, ξ2))

+lW sinψH(ξ1, ξ2) + ΔQ
L}ξ1

HA(ξ1, ξ2) = HQ
A + (HB

A −HQ
A )ξ2

HL(ξ1, ξ2) = HQ
L + (HB

L −HQ
L )ξ2

ψH(ξ1, ξ2) = ψQ
H + (ψB

H − ψQ
H)ξ2

ψW(ξ1, ξ2) = ψQ
W + (ψB

W − ψQ
W)ξ2

R(ξ1, ξ2) = RQ + (RB −RQ)(1 − e−κξ2) (7)

These functions mean that performance variables ξ1 and ξ2
are used to horizontally move the foot and hand trajectories
closer to the COM and to raise the trunk, respectively. By using
this controller, gait transition is achieved by simply changing
the performance variables (ξ1, ξ2) from (0, 0) to (1, 1), as
shown in Fig. 7. Since the roll motion is crucial during bipedal
locomotion, we determined kinematic parameter R by using
an exponential function of performance variable ξ2, where κ
is a parameter.

To prepare adequate kinematic coordination during the
transition, we designed the change of performance variables
ξ1 and ξ2 by the following two steps (Fig. 8):
Step 1: When the control system receives a command to

change the gait pattern, it increases performance vari-
able ξ1 from 0 to ξ̄1 (0 ≤ ξ̄1 ≤ 1) during time interval
T1.

Step 2: After Step 1 and when phase φI of Inter oscillator is at
φraise, performance variables ξ1 and ξ2 are increased
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(2)Performance

Kinematic

(15)

(7)

Joint ∧ ∧ ∧ ∧ ∧ ∧ ∧∧∧

Fig. 6. Motion planning of joint kinematics using two performance variables
derived from the kinematic parameters

Quadrupedal
(0,0)

Bipedal
(1,1)ξ2

ξ1

Fig. 7. Trajectories in the ξ1-ξ2 plane for gait transition from quadrupedal
to bipedal. The roles of ξ1 and ξ2 enable hand and foot trajectories to be
closer to the COM and raise the trunk, respectively.

from ξ̄1 to 1 and from 0 to 1, respectively, during time
interval T2.

This strategy moves the foot and hand trajectories closer to
the COM during Step 1 while it walks quadrupedally. During
Step 2, the robot raises its trunk to start walking bipedally.

D. Parameter determination for gait transition

For gait transition control, we have to determine the fol-
lowing parameters: κ to determine how quickly to produce
the roll motion for bipedal locomotion; ξ̄1 to determine the
relationship between the foot and hand trajectories and the
COM; φraise to determine the timing to start Step 2; and
T1 and T2 to determine the durations for Steps 1 and 2.
In particular, we used a large value for κ because the roll
motion is important during bipedal locomotion. Since the
timing and speed to raise the trunk are crucial to establish the
gait transition, T2 and φraise are especially important among
these parameters in this parameter determination. Therefore,
we investigated the roles of these two parameters in gait
transition (see Section V-E).

V. RESULTS

A. Quadrupedal and bipedal locomotion

In this section, we verify that our control system establishes
stable quadrupedal and bipedal locomotion based on numerical
simulations and experiments, and that the numerical simula-
tions and experiments show similar dynamics by comparing
the results. We used the following parameters: D = 3.0 cm,
Tsw = 0.35 s, Tst = 0.35 s, δ = −150◦, KT = 10.0, KA = 2.0,
and KL = 2.0; the remaining parameters are shown in Table II.

Quadrupedal
(0,0)

Bipedal
(1,1)ξ2

ξ1(   ,0)ξ1
_

Step 1

Step 2

Fig. 8. Designed trajectory in the ξ1-ξ2 plane to change the gait pattern
from quadrupedal to bipedal

TABLE II
KINEMATIC PARAMETERS FOR QUADRUPEDAL AND BIPEDAL

LOCOMOTION

Parameter Quadrupedal Bipedal
ΔA [cm] 0 0.7
ΔL [cm] 0 -2.4
HA [cm] 19 18
HL [cm] 14 15
ψH [deg] 31.4 0
ψW [deg] 64.7 5.0
R [deg] 0 4.0

These parameter settings result in β = 0.5, S = 6.0 cm,
v = 0.86 cms−1 in (2).

Figures 9 and 10 compare the results between the numerical
simulations and the experiments for quadrupedal and bipedal
locomotion, respectively. A and B are snapshots for the
numerical simulations and the experiments, respectively (see
supplementary movies). C shows the angular rate profiles
for the roll and pitch motions of the trunk relative to the
ground. The experimental results are monitored by the gyro
sensors and are filtered with a low-pass cutoff of 20 Hz
to eliminate noise. D is the phase diagram for the roll and
pitch behaviors. Except for the roll motion during bipedal
locomotion, the desired joint motions are designed to avoid
influencing the trunk movements relative to the ground. The
resultant behaviors of the trunk show the dynamic influences
between the robot movements and the environment. Although
the movements in the experimental results are larger than
the simulation results due to various uncertainties such as
backlash, they differ in a consistent manner during each cycle
and the shapes of the profiles in the numerical simulations
and the experiments look similar. The roll and pitch motions
continue periodic movements, verifying that the robot achieves
stable quadrupedal and bipedal locomotion.

B. Gait transition

In this section, we demonstrate by numerical simulations
and experiments that our control system attains gait transition
from quadrupedal to bipedal locomotion. For the gait transi-
tion, we used the following parameters: κ = 6.0, ξ̄1 = 0.7,
φraise = 0.83π, T1 = 5.0 s, and T2 = 2.0 s.

Figure 11 compares the results between the numerical
simulations and the experiments for the gait transition from
quadrupedal to bipedal locomotion. A and B display snapshots
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Fig. 9. Quadrupedal locomotion. Snapshots for the numerical simulation (A) and the experiment (B) (see supplementary movies). Time stamps correspond
to both the numerical simulation and the experiment. Angular rate profiles (C) and phase diagrams (D) for the roll and pitch motions. The black dots indicate
initial states.
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Fig. 10. Bipedal locomotion. Snapshots for the numerical simulation (A) and the experiment (B) (see supplementary movies). Time stamps correspond to
both the numerical simulation and the experiment. Angular rate profiles (C) and phase diagrams (D) for the roll and pitch motions. The black dots indicate
initial states.

for the numerical simulations and the experiments, respectively
(see supplementary movies). C and D are the angular rate
profiles and the phase diagrams, respectively, for the roll and
pitch motions of the trunk. The roll and pitch motions show
that they move from the periodic movement of quadrupedal
locomotion to that of bipedal locomotion through Steps 1
and 2, therefore verifying that the robot establishes the gait
transition from quadrupedal to bipedal locomotion.

C. Distance between the COM position and the support poly-
gon

To show the dynamics of the established quadrupedal and
bipedal locomotion and the gait transition, we used the nu-

merical simulation to investigate the relationship between the
positions of the COM of the whole body and the support
polygon. We project the COM position to the ground and
calculate the distance between the projected COM position
and the closest line of the support polygon. When the COM
is located inside the polygon, the distance is a negative value.
When the COM is located outside the polygon, the distance
is a positive value. That is, a positive distance indicates that
the gait pattern is statically unstable and the robot achieves
dynamically stable locomotion. In this calculation, when at
least a part of the sole contacts the ground, we assumed that
all of the sole contacts the ground. Since the support polygon
is overestimated, even if the gait is estimated as statically
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Fig. 11. Gait transition from quadrupedal to bipedal locomotion. Snapshots for the numerical simulation (A) and the experiment (B) (see supplementary
movies). Time stamps correspond to both the numerical simulation and the experiment. Angular rate profiles (C) and phase diagrams (D) for the roll and
pitch motions. D shows the experimental result.
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Fig. 12. Distances between the COM position and the support polygon and between the ZMP position and the support polygon during the gait transition
from quadrupedal to bipedal locomotion. Negative values indicate the COM (ZMP) is inside the polygon. Positive values indicate the COM (ZMP) is outside
the polygon. During Step 2 and bipedal locomotion, the distance for the COM is outside the polygon in some phases.

stable, the actual gait may be statically unstable. However,
when the gait is estimated as statically unstable, the actual gait
is statically unstable. In addition to the COM position, we also
investigated the relationship between the positions of the zero
moment point (ZMP) [34], [85] and the support polygon to
show the dynamic properties. Here, a negative distance means
that the ZMP is located inside the polygon.

Figure 12 shows the distances between the COM position
and the support polygon and between the ZMP position and
the support polygon for the gait transition established in the
last section (Fig. 11). The ZMP position is inside the polygon
during this gait transition, although the safety margin largely
changes depending on the gait patterns and situations. The
COM is inside the polygon during quadrupedal locomotion
and Step 1 of the gait transition, which means these gait
patterns are statically stable. However, from Step 2, in some
phases the COM is outside the polygon despite the overestima-
tion of the support polygon; this indicates that, at least during

Step 2 and bipedal locomotion, the locomotor behaviors are
statically unstable and the robot achieves dynamically stable
locomotion.

D. Effects of phase and rhythm modulations by phase resetting

As shown in the previous section, at least from Step 2 in
the gait transition, locomotor behavior is statically unstable
and the robot establishes dynamically stable locomotion. In
this section, we investigate the effects of phase and rhythm
modulations by phase resetting for achieving such dynamically
stable locomotion during the gait transition.

We carried out the numerical simulations and the experi-
ments of gait transition without incorporating phase resetting,
without which the phase and rhythm are not modulated and the
swing and stance phases of the desired leg and arm trajectories
change at points AEP and PEP (Fig. 4) independently of
the touch sensor signals. We examined whether the robot
achieves the gait transition by applying the same parameters
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used in the previous sections. However, the robot could not
establish the gait transition and easily fell over. Then, we
performed numerical simulations using various values of the
gait cycle (Tsw +Tst) and duty factor β in (2) by manipulating
the swing phase duration Tsw and the stance phase duration,
Tst and investigated whether the robot establishes the gait
transition. Figure 13 compares the results with and without
phase resetting by examining whether the robot achieves the
gait transition, falls over after Step 2, or falls over during
Step 2. When we did not use phase resetting, the robot
achieved the gait transition only for short gait cycles. The
robot with phase resetting established the gait transition for
more various gait cycles and duty factors than the robot
without phase resetting. For the robot experiments, when we
used the shortest possible gait cycle, the robot without phase
resetting sometimes achieved the gait transition. However, the
results were not robust. These results suggest that phase and
rhythm modulations by phase resetting are a crucial factor
for establishing dynamically stable locomotion during the gait
transition.

To clarify the contribution of phase resetting for establishing
a stable gait, we investigated the modulation of the locomotion
phase and rhythm during the gait transition. Figure 14 shows
the phase reset values and gait cycles obtained by the exper-
iment in Fig. 11, where the gait cycle is calculated by Inter

oscillator. The oscillator phases are reset based on the touch
sensor signals and regulated depending on the situation, which
results in modulation of the gait cycle durations. The arm
oscillators are reset earlier than are the leg oscillators, and the
phase reset of the arm oscillators does not occur after Step 2,
because the robot starts bipedal locomotion. The reset values
of the leg oscillators are different between the gait patterns,
and significantly change during Step 2, because the locomotor
behavior is disturbed due to the start of bipedal locomotion.
These results suggest that phase resetting helps to increase the
robustness in the gait transition.

To further clarify the functional roles of phase resetting
in the gait transition, we performed numerical simulations to
examine the contribution of phase resetting to adaptations to
perturbations and various environments [4–6]. Regarding the
adaptation to perturbations, we used various magnitudes of
force perturbation in the walking direction or the opposite
direction for 100 ms at the middle of Step 2 and investi-
gated whether the robot establishes the gait transition. For
the adaptation to various environments, we employed various
slope angles and examined whether the robot achieves the
gait transition. To compare the results with and without phase
resetting, we used Tsw = 0.2 s and Tst = 0.2 s, since the
robot establishes the gait transition using these parameters,
as investigated by the computer simulation shown in Fig. 13.
Figure 15 shows the results, which illustrate that phase reset-
ting contributes to the adaptations to perturbations and various
environments in the gait transition.

E. Effects of the timing and the speed to change the gait
pattern

As shown in the previous section, phase and rhythm mod-
ulation plays an important role in establishing stable gaits
during the gait transition. Since drastic changes in the robot
posture and the reduction of the number of supporting limbs
during Step 2 in the gait transition greatly affect the stability,
as shown in Section V-C, the timing and the speed of raising
the trunk are also crucial factors. To investigate these effects,
we changed parameters φraise and T2 and examined whether the
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robot establishes the transition. Since the mechanical system of
the robot is almost symmetric between the right and left sides,
we employed 0 ≤ φraise < π. For the numerical simulations,
we examined whether the robot achieves the gait transition,
falls over after Step 2, or falls over during Step 2. For the
experiments, we carried out the gait transition experiment five
times for each parameter set and calculated the success rate.

Figure 16 shows the results. The numerical simulations and
the experiments obtain similar results. When the gait pattern
changes slowly with large T2, the robot easily establishes the
gait transition. However, when the gait transition is conducted
quickly with small T2, the dynamic effects of the quick change
of the gait pattern influence the success rate of the gait
transition. The timing to start raising the trunk also affects
the success rate. Figure 17 shows the footprint diagram for
phase φI of Inter oscillator before Step 2 in the experiment.
The comparison between Figs. 16 and 17 implies that for
successful gait transition, the timing to start raising the trunk
is when the robot is supported by one leg and one arm.
In contrast, supporting the robot by both arms often leads
to transition failure. These results suggest that these factors
influence the dynamics that govern the gait transition from
quadrupedal to bipedal locomotion.

VI. DISCUSSION

A. Challenge of the gait transition task

Although many studies have investigated methods to achieve
stable locomotor behaviors for various gait patterns of legged
robots, their transitions have not been thoroughly examined. To
establish the gait transition of a biped robot from quadrupedal
to bipedal locomotion, robot motions must be created to
produce stable quadrupedal and bipedal locomotion, and in
addition, to connect the quadrupedal locomotion to the bipedal
locomotion without the robot falling over due to the drastic
changes in the robot posture and the reduction of the number
of supporting limbs.

In this gait transition, the following two issues are crucial.
(1) Since a robot has many degrees of freedom, it is difficult to
determine how to produce robot motions to connect one gait
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oscillator before Step 2

pattern to another; in other words, how to construct adequate
constraint conditions in motion planning. (2) Even if the robot
establishes stable quadrupedal and bipedal locomotion, it may
fall over during the gait transition and it is difficult to establish
stable gait transition without falling over.

B. Handling of the redundancy problem

Regarding the first issue above, various approaches exist, for
example, constructing an evaluation index and producing robot
motions through optimization of the index or producing robot
motions while satisfying the stability criteria of the ZMP [85].
Asa et al. [11] conducted a two-dimensional simulation of
the gait transition of a biped robot between quadrupedal and
bipedal locomotion by constructing a potential function to
produce robot motions. In this paper, we applied the physio-
logical concept of synergies to create the robot motions during
the gait transition by constructing kinematically coordinative
structures for the transition task and focusing on the COM
location relative to the supporting positions of the limbs
and the trunk orientation. These coordinative structures create
adequate constraints for the degrees of freedom of the robot
and solve the redundancy problem.
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C. The roles of phase resetting

Regarding the second issue, we investigated the roles of
phase resetting and demonstrated that phase resetting con-
tributes to the generation of robust gait transition. The spa-
tiotemporal patterns of torque commands determine the loco-
motor behavior, and phase resetting results in temporal modu-
lation of this behavior based on the touch sensor signals. Even
if the timing of ground contact events is disturbed depending
on the gait pattern, perturbation, and environmental situation,
phase resetting allows the generation of command signals
based on such events. Early ground-contact events induce
a phase shift of periodic command signals to interrupt the
locomotor rhythm, as shown during Step 2 in the gait transition
(Fig. 14). Delayed ground-contact events result in a phase
shift of periodic command signals to prolong the locomotor
rhythm, as shown during bipedal locomotion (Fig. 14). Phase
resetting creates various phase profiles and locomotor rhythms
that depend on the situation, and thus improves the robustness
in the gait transition despite its simple mechanism, as shown
in Figs. 13 and 15. These results are consistent with our
simulation results of a biological system [4].

Locomotion of humans and animals is created based on
movement control and posture control. Movement control
produces periodic command signals to create periodic limb
movements for forward motion. In contrast, posture con-
trol produces command signals based on somatosensory and
vestibular information at the brainstem and cerebellar levels to
control and regulate the postural behavior that prevents falling
over. Phase resetting contributes to modulation of the timing
to produce the movement control signals [4]. The command
signals by the movement and posture controls are integrated
at the spinal cord level. The movement and posture controls
contribute to establishing dynamic locomotion. However, in
this paper, we did not incorporate the posture control model
in order to clearly investigate the roles of phase resetting in
the modulation of periodic limb movements during the gait
transition.

Although this paper focused on the gait transition from
quadrupedal to bipedal locomotion, the gait transition from
bipedal to quadrupedal locomotion should be also discussed.
Our results show that quadrupedal locomotion is statically
stable, although bipedal locomotion is statically unstable and
dynamically stable (Fig. 12) (we investigated the dynamic
stability using the COM and ZMP positions, but the relation-
ship of the COM position and its velocity with the support
polygon would also be useful [38]). This stability charac-
teristic suggests that we can also achieve the gait transition
from bipedal to quadrupedal by applying our gait transition
strategy. However, we should note the following difference.
As explained above, for the gait transition from quadrupedal
to bipedal, the stability during raising the trunk is crucial.
That is, the reduction of the number of supporting limbs and
the change of the COM position of the whole body influence
walking stability. In contrast, the gait transition from bipedal to
quadrupedal moves the COM position forward to bring down
the trunk during bipedal locomotion, which may induce the
robot to fall down forward. This causes a large impact on

the arms and destabilizes the walking. We confirmed that our
strategy is also applicable to this gait transition by performing
the robot experiment (see supplementary movie).

D. Timing and speed to change the gait pattern

Since the gait transition requires drastic changes in the robot
posture and the reduction of the number of supporting limbs,
the timing and speed of raising the trunk are also crucial
factors to establish stable transition. When the gait patterns
are statically stable, these factors have almost no influence.
However, when the gait patterns are statically unstable and
dynamically stable, as shown in Fig. 12, these factors greatly
influence the success rate of the gait transition (Fig. 16).
The phase-dependent stability characteristics are caused by a
statically unstable gait during Step 2 and bipedal locomotion.

To create bipedal locomotion of a robot from the
quadrupedal posture, we can create the robot motions to make
the robot first stand up (the robot motion stops), and then
to make it start bipedal locomotion, which is a different ap-
proach from that in this paper. However, humans and animals
change their gait patterns without stopping their movements
between walking and running, straight walking and turning,
and quadrupedal and bipedal locomotion. This means that their
periodic movements continuously change into another periodic
movements. Such gait pattern transition for the robot is more
difficult than the gait pattern transition in which the robot
once stops before the transition, and we focused on the gait
transition during walking without stopping the movements.
The effects of timing and speed on changing the gait pattern
(Fig. 16) clearly show this difficulty.

Humans and animals change their gait patterns smoothly
or abruptly depending on the species and the situation [32],
[47], [66], [69]. In this paper, we used various speeds to
change the gait pattern using T2 (Fig. 16). Since the Japanese
macaque (Macaca fuscata) establishes the gait transition from
quadrupedal to bipedal almost within one gait cycle [59], our
speed appears to be slow (T2 > Tsw+Tst). However, this speed
greatly influences the stability during the gait transition. When
we used a high speed for the gait transition (small T2), the
robot easily fell down. Since we focused on the investigation
of the functional roles of phase resetting in the gait transition
by using simple designs, we did not use any optimization
in the motion planning for each gait pattern and the gait
transition. For such an abrupt gait transition, we may need
more precise motion planning by considering the conservation
of momentum and ZMP criteria, as well as the COM location
and the trunk orientation.

E. Control design inspired from biological systems

Recently, interest in the study of legged robots has in-
creased. However, unlike humans and animals, these robots
still have difficulties in achieving adaptive behaviors in various
situations, and a huge gap remains between them. Therefore, to
create new control strategies, it is natural to use ideas inspired
from biological systems and many biologically-inspired robots
have been developed. For example, computational approaches
of motor learning by imitation have been used to create
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various movements of humanoid robots [31], [72], [73]. The
physiological concept of the CPG has been widely used in the
locomotion control of legged robots [19], [27], [39], [40], [44],
[55–57], [77]. We also have established adaptive locomotor
behaviors of a biped robot to perturbations and sudden envi-
ronmental changes, such as slopes [5], and produced adaptive
turning behaviors [6]. In this paper, we improved our control
systems based on the physiological findings and achieved the
gait transition between two gait patterns that have different
dynamic conditions.

Although phase resetting has been demonstrated to be
useful in the generation of adaptive locomotion of legged
robots [5], [6], [55–57], [84], our results show that phase
resetting contributes to not only a single gait pattern but
also to different gait patterns and their switching without
incorporating special techniques. This further clarifies the
usefulness of phase resetting in the generation of adaptive
locomotion of legged robots and will lead to further progress
in the design of a locomotion control system.

This paper employed synergy structures inspired from bio-
logical systems in the motion planning of our robot during the
gait transition. Synergy structure seems to be a key to solving
the redundancy problem in the designing of robot motion. For
the synergy structure, we focused on the COM location and the
trunk orientation, which are especially important parameters
for various whole-body movements [28]. Our approach is not
specific to our robot and task because the approach must
be applicable to various robots and tasks using whole-body
movements. In addition, humans and animals share some syn-
ergetic patterns between various movements in the generation
of their movements and produce such various movements by
adding other synergetic patterns, for example, jump, swim,
and walk of frogs, and walk, obstacle avoidance, kick motion,
and run of humans [15], [21], [41], [42]. To create such
various movements of robots, constructing synergy structures
and choosing the necessary structures depending on the task
might be useful.

Physiological studies have investigated gait transition from
quadrupedal to bipedal walking to elucidate the origin of
bipedal walking. In particular, many studies experimented on
these gait patterns using monkeys and examined the biome-
chanical and physiological differences in the control sys-
tems [51], [52], [54], [58], [59]. Animals generate highly co-
ordinated and skillful motions by integrating nervous, sensory,
and musculoskeletal systems. By synthesizing biomechanical
and physiological knowledge, robotics research is expected
to contribute to the elucidation of the mechanisms in motion
generation and the control strategies, as well as to create new
design principles for the control systems of legged robots.
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