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Abstract

For a digraph D = (V,A) and a partition {S, T} of V , an arc set B ⊆ A is called an S-
T bibranching if each vertex in T is reachable from S and each vertex in S reaches T in the
subgraph (V,B). Bibranchings commonly generalize bipartite edge covers and arborescences.
A totally dual integral linear system determining the S-T bibranching polytope is provided
by Schrijver, and the shortest S-T bibranching problem, whose objective is to find an S-T
bibranching of minimum total arc weight, can be solved in polynomial time by the ellipsoid
method or a faster combinatorial algorithm due to Keijsper and Pendavingh.

The valuated matroid intersection problem, introduced by Murota, is a weighted general-
ization of the independent matching problem, including the independent assignment problem
and the weighted matroid intersection problem. The valuated matroid intersection problem can
be solved efficiently with polynomially many value oracles by extending classical combinatorial
algorithms for the weighted matroid intersection problem.

In this paper, we show that the shortest S-T bibranching problem is polynomially reducible
to the valuated matroid intersection problem. This reduction suggests one answer to why the
shortest S-T bibranching problem is tractable, and implies new combinatorial algorithms for the
shortest S-T bibranching problem based on the valuated matroid intersection algorithm, where
a value oracle corresponds to computing a minimum-weight arborescence.

Keywords: Shortest bibranching, Arborescence, Valuated matroid intersection, Discrete con-
vex function

1 Introduction

Let D = (V,A) be a directed graph (digraph) with vertex set V and arc set A, and let w ∈ RA
+

be a nonnegative arc-weight vector. For a partition {S, T} of V , an arc subset B ⊆ A is called
an S-T bibranching if each vertex in T is reachable from S and each vertex in S reaches T in the
subgraph (V,B).

The notion of bibranchings was introduced by Schrijver [17]. Bibranchings commonly generalize
bipartite edge covers and arborescences.

Bipartite edge cover. In an undirected graph G = (V,E), an edge set F ⊆ E is called an edge
cover if every vertex is incident to at least one edge in F .

Suppose that G is a bipartite graph with color classes S and T . Then, obtain a digraph D from
G by orienting every edge toward T . It is straightforward to see that an edge subset in G is an
edge cover if and only if its corresponding arc subset in D is an S-T bibranching.
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Arborecsence. For a digraph D = (V,A) and a vertex r ∈ V , an arc set F ⊆ A is an r-
arborescence if F contains no undirected cycle and each vertex v ∈ V \{r} has exactly one entering
edge in F while r has no enterng edge in F . Here, consider a partition {S, T} of V , where S = {r}
and T = V \ {r}. Then, it is easy to see that a minimal S-T bibranching is an r-arborescence.

A typical optimization problem concerning edge covers and arborescences is to find those of
minimum weight, when a non-negative edge/arc weight is given. So, our main interest is in the
shortest S-T bibranching problem, the objective of which is to find an S-T bibranching B minimizing
w(B) =

∑
e∈B w(e). Generally, for a finite set V and a vector x ∈ RV , we denote x(X) =

∑
v∈X x(v)

for X ⊆ V .
A min-max relation for the minimum size of an S-T bibranching follows from the Kőnig-

Rado edge cover theorem. Furthermore, Schrijver [17] presented a totally dual integral linear
system determining the S-T bibranching polytope (see also Schrijver [19]). The shortest S-T
bibranching problem can be solved in polynomial time by the ellipsoid method [17], and Keijsper
and Pendavingh [9] designed a combinatorial primal-dual algorithm with running time O(n′(m +
n log n)), where n′ = min{|S|, |T |}, n = |S ∪ T | and m = |A|. This time complexity is al-
most best possible, since the current best time complexity for the minimum-weight edge cover
problem is O(n′(m + n log n)) [3, 24] and that for the minimum-weight arborescence problem is
O(m + n log n) [7]. Therefore, it could be understood that the shortest S-T bibranching problem
is as tractable as its special cases of the minimum-weight edge cover and minimum-weight arbores-
cence problems, and that the tractability derives from the total dual integrality of the linear system
determining the S-T bibranching polytope.

In this paper, we exhibit a new feature of the shortest S-T bibranching problem which explains
its tractability: the shortest S-T bibranching problem is a special case of the valuated matroid
intersection problem, introduced by Murota [12, 13]. For a function ω : 2V → R∪{−∞}, let domω
denote the effective domain of ω, which is defined by domω = {X | X ⊆ V , ω(X) > −∞}. A
function ω : 2V → R ∪ {−∞} with domω ̸= ∅ is called a valuated matroid [1, 2] if it satisfies the
following exchange property:

(VM) for each X,Y ∈ 2V and u ∈ X \ Y , there exists v ∈ Y \X such that

ω((X \ {u}) ∪ {v}) + ω((Y \ {v}) ∪ {u}) ≥ ω(X) + ω(Y ).

It is easy to see that domω forms the base family of a matroid of ground set V . The valuated
matroid intersection problem is described as follows.

The valuated matroid intersection problem

Instance: • a ground set V ,

• a weight vector w ∈ RV , and

• two valuated matroids ω+ : 2V → R ∪ {−∞} and ω− : 2V → R ∪ {−∞}.

Objective: maximize w(X) + ω+(X) + ω−(X).

The valuated matroid intersection problem is a special case of the valuated independent assign-
ment problem, which is a weighted generalization of the independent matching problem, and includes
other important problems such as the independent assignment problem [8] and the weighted ma-
troid intersection problem. The valuated independent assignment problem can be solved efficiently
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with polynomially many value oracles: Murota [13] designed combinatorial algorithms by naturally
extending the classical weighted matroid intersection algorithms [4, 8, 10]. For more information
on the valuated matroid intersection problem, readers are referred to Murota [15].

Our main result shows a relation between the shortest bibranching and valuated matroid inter-
section problems.

Theorem 1. The shortest S-T bibranching problem is polynomially reducible to the valuated ma-
troid intersection problem.

Theorem 1 reveals a new feature of bibranchings underlying the tractability of the shortest
S-T bibranching problem. Furthermore, by combining this reduction and the valuated indepen-
dent assignment algorithms in [13], we obtain new combinatorial algorithms for the shortest S-T
bibranching problem which is based on the weighted matroid intersection algorithms.

In proving Theorem 1, we make use of theory on a more general framework of discrete convex
analysis [14], in particular theory on M-convex and M♮-convex functions [11, 16] (see also [6]). Our
argument is an example where theory of a generalized framework gives a new insight of a certain
special case.

The organization of this paper is as follows. In Section 2, we review bibranchings, valuated
matroids, and M-convex and M♮-convex functions. Section 3 is devoted to proving Theorem 1. In
Section 4, we conclude this paper with a few remarks.

2 Preliminaries

2.1 Digraphs

Let D = (V,A) be a digraph. An arc from u to v is denoted by uv. For an arc a, the initial
vertex is denoted by ∂+a and the terminal vertex is denoted by ∂−a. For a vertex v ∈ V , the set
of arcs with tail v is denoted by δ+v, and those with head v is denoted by δ−v. For X ⊆ V , let
D[X] = (U,A[X]) denote the subgraph induced by X, i.e., A[X] = {a | a ∈ A, ∂+a ∈ X, ∂−a ∈ X}.
For X,Y ⊆ V , let A[X,Y ] = {a | a ∈ A, ∂+a ∈ X, ∂−a ∈ Y }.

A path in a digraph is a sequence (v0, a1, v1, . . . , vk−1, ak, vk), where ai = vi−1vi for every
i = 1, . . . , k and v0, v1, . . . , vk are distinct. A cycle is a sequence (v0, a1, v1, . . . , vk−1, ak, vk), where
ai = vi−1vi (i = 1, . . . , k), v0, v1, . . . , vk−1 are distinct, and v0 = vk. For v ∈ V and U ⊆ V , we say
that v reaches U if there exists a path starting from v and ending in some vertex in U , and that v
is reachable from U if there exists a path starting from some vertex in U and ending in v.

For an arc set F ⊆ A, its reversal is an arc set obtained by reversing every arc in F , that is,
{vu | uv ∈ F}. For a digraph D = (V,A), an arc subset B ⊆ A is a branching if |B ∩ δ−v| ≤ 1 for
every v ∈ V and B contains no cycle. A cobranching is a set of edges whose reversal is a branching.

For an arc subset B ⊆ A, define ∂+B =
∪

a∈B ∂+a and ∂−B =
∪

a∈B ∂−a. If B is a branching, a
vertex in V \∂−B is called a root of B and we denote the set of roots by R(B), i.e., R(B) = V \∂−B.
Similarly, for a cobranching B′, we define R∗(B′) = V \ ∂+B′. Recall that, for a vertex r ∈ V , an
r-arborescence is a branching B with R(B) = {r}.

Let D = (V,A) be a digraph and let {S, T} be a partition of V . That is, S ∩ T = ∅ and
S ∪ T = V . Recall that an arc set B ⊆ A is an S-T bibranching if, in the subgraph (V,B), every
vertex in T is reachable from S and every vertex in S reaches T . A set of arcs C ⊆ A is called an
S-T bicut if C = A[V \U,U ] = {a | ∂+a ∈ V \U, ∂−a ∈ U} for some nonempty proper subset U of
V such that U ⊆ T or U ⊇ T .
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The following linear system describes the S-T bibranching polytope:

0 ≤ x(a) ≤ 1 for each a ∈ A, (1)

x(C) ≥ 1 for each S-T bicut C. (2)

Theorem 2 (Schrijver [17]). The linear system consisting of (1) and (2) is totally dual integral.

2.2 Valuated matroids, M-convex functions and M♮-convex functions

In this subsection, beginning with valuated matroids, we exhibit several basic facts on M-convex
functions [11] andM♮-convex functions [16], which provide broader frameworks than that of valuated
matroids, and also their relation to minimum-weight branchings. For more detailed information on
these discrete convex functions, readers are referred to Murota [14] and Fujishige [6].

Let us begin with matroids. Let V be a finite set and B ⊆ 2V be its subset family with B ≠ ∅.
Then, we say that (V,B) is a matroid if, for each X,Y ∈ B and u ∈ X \ Y , there exists v ∈ Y \X
such that (X \ {u}) ∪ {v} ∈ B.

Actually, this exchange axiom is equivalent to the following simultaneous exchange property:

(M) for each X,Y ∈ B and u ∈ X \ Y , there exists v ∈ Y \X such that

(X \ {u}) ∪ {v} ∈ B and (Y ∪ {u}) \ {v} ∈ B.

By considering this simultaneous exchange property, we can define a quantitative generaliza-
tion (VM) in Section 1, which defines valuated matroids.

Matroids are defined as a pair of a ground set V and the base family B ⊆ 2V . By identifying a
subset of V as a vector in {0, 1}V , B could be seen as a subfamily of {0, 1}V . M-convex sets offer
a generalization of matroids which is defined as a subfamily of ZV .

For X ⊆ V , the characteristic vector of X is a vector χX ∈ ZV defined by χX(v) = 1 for
v ∈ X and χX(v) = 0 for v ∈ V \ X. For an element u ∈ V , χ{u} is abbreviated as χu. For a

vector x ∈ ZV , define supp+(x) = {v | v ∈ V , x(v) > 0} and supp−(x) = {v | v ∈ V , x(v) < 0}
A set of integer points B ⊆ ZV is an M-convex set if it satisfies the following exchange axiom:

(B-EXC) for each x, y ∈ B and u ∈ supp+(x− y), there exists v ∈ supp−(x− y) such that

x− χu + χv ∈ B and y + χu − χv ∈ B.

Note that (B-EXC) generalizes the axiom (M). Now, we can define M-convex functions by
generalizing (DM). For a function f : ZV → R ∪ {+∞}, let dom f = {x | f(x) < +∞}. A
function f : ZV → R ∪ {+∞} with dom f ̸= ∅ is called an M-convex function if it satisfies the
following property:

(M-EXC) for each x, y ∈ ZV and u ∈ supp+(x− y), there exists v ∈ supp−(x− y) such that

f(x− χu + χv) + f(y + χu − χv) ≤ f(x) + f(y).

A function g is said to be M-concave if −g is M-convex. It is straightforward to see that a valuated
matroid is exactly an M-concave function g with dom g ⊆ {0, 1}V .

We can also consider slightly weaker exchange properties. A set Q ⊆ ZV is an M♮-convex set if
it satisfies the following exchange axiom:
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(B♮-EXC) for each x, y ∈ Q and u ∈ supp+(x− y), it holds that

x− χu ∈ Q and y + χu ∈ Q,

or there exists v ∈ supp−(x− y) such that

x− χu + χv ∈ Q and y + χu − χv ∈ Q.

It is known that an M♮-convex set is the set of integer vectors in an integral generalized polyma-
troid [5, 23] (see also [6, 14]). Thus, we often refer to a pair (V,F), where F ⊆ 2V , as a generalized
matroid if (B♮-EXC) holds for Q = {χX | X ∈ F} ⊆ {0, 1}V .

A function f : ZV → R ∪ {+∞} with dom f ̸= ∅ is called an M♮-convex function if it satisfies
the following property:

(M♮-EXC) for each x, y ∈ ZV and u ∈ supp+(x− y), it holds that

f(x− χu) + f(y + χu) ≤ f(x) + f(y),

or there exists v ∈ supp−(x− y) such that

f(x− χu + χv) + f(y + χu − χv) ≤ f(x) + f(y).

A function g is said to be M♮-concave if −g is M♮-convex.
The class of M♮-convex functions is indeed a proper generalization of M-convex functions. On

the other hand, in the following sense these two are essentially equivalent. Let v0 be an element
distinct from V and denote Ṽ = {v0}∪V . Let α be an integer. For a function f : ZV → R∪{+∞},
define f̃ : ZṼ → R ∪ {+∞} by

f̃(x0, x) =

{
f(x) if x(Ṽ ) = α,

+∞ otherwise
(x0 ∈ Z, x ∈ ZV ). (3)

Murota and Shioura [16] proved the following relation between M-convexity and M♮-convexity.

Theorem 3 ([16]). A function f : ZV → R ∪ {+∞} is an M♮-convex function if and only if f̃
defined by (3) is an M-convex function.

An important operation on M-convex (M♮-convex) functions is transformation through a net-
work. Let (N,E) be a digraph with entrance set N1 ⊆ N and exit set N2 ⊆ N , where N1 and N2

are disjoint. Let c : E → Z ∪ {−∞} and c̄ : E → Z ∪ {+∞} denote the lower and upper capacity
functions, respectively. For each arc e ∈ E, a cost function γe : Z → R ∪ {+∞} is attached. We
assume that γe is a univariate convex function for every e ∈ E. For a flow ξ ∈ ZE , define its
boundary ∂ξ ∈ ZN by ∂ξ(v) = ξ(δ+v)− ξ(δ−v).

Given a function f1 : Z
N1 → R ∪ {+∞}, define a function f2 : Z

N2 → R ∪ {±∞} by

f2(y) = inf
x,ξ

{
f1(x) +

∑
e∈E

γe(ξ(e)) | ξ ∈ ZE , c(e) ≤ ξ(e) ≤ c̄(e) ∀e ∈ E,

∂ξ = (x,−y, 0), (x,−y, 0) ∈ ZN1 × ZN2 × ZN\(N1∪N2)

}
. (4)

We have that M-convexity and M♮-convexity are maintained in this transformation.
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Theorem 4 ([11, 20]). Assume that f2 defined in (4) satisfies f2 > −∞. It holds that

• if f1 is an M-convex function, then f2 is also an M-convex function; and

• if f1 is an M♮-convex function, then f2 is also an M♮-convex function.

If an M♮-convex function f satisfies that dom f ⊆ {0, 1}V , then f could be seen as a valuation
on a generalized matroid by corresponding a subset X ⊆ V to a vector χX ∈ {0, 1}. That is, we
can define a function g : 2V → R ∪ {+∞} by

g(X) = f(χX) (X ⊆ V ).

We refer to such a set function g obtained from an M♮-convex function f with dom f ⊆ {0, 1}V as
an M♮-convex function, as well.

An example of such an M♮-convex function arises from branchings. For a weighted digraph (D,w)
of D = (V,A) and w ∈ RA, define F ⊆ 2V by

F = {R(B) | B ⊆ A is a branching in G}. (5)

Further, define a function f : 2V → R ∪ {+∞} by

f(X) =

{
min{w(B) | B is a branching, R(B) = X} if X ∈ F ,

+∞ if X ̸∈ F .
(6)

In [22], it is declared that the following theorems follow from arguments in Schrijver [18].

Theorem 5 ([22]). For a digraph D = (V,A), the pair (V,F) defined by (5) is a generalized
matroid.

Theorem 6 ([22]). For a weighted digraph (D,w) of D = (V,A) and w ∈ RA, the function f
defined by (6) is an M♮-convex function.

Note that F is not an M-convex set, and f is not an M-convex function.
Their cobranching counterparts F∗ ⊆ 2V and f∗ : 2V → R ∪ {+∞} are defined as follows:

F∗ = {R∗(B) | B ⊆ A is a cobranching in G},

f∗(X) =

{
min{w(B) | B is a cobranching, R∗(B) = X} if X ∈ F∗,

+∞ if X ̸∈ F∗.
(7)

It is straightforward to see that (V,F∗) is a generalized matroid and f∗ is an M♮-convex funtion.
We summarize the relation among the notions mentioned in this subsection in Figure 1.

3 Reduction of shortest bibranching to valuated matroid intersec-
tion

In this section, we prove Theorem 1 by exhibiting a polynomial reduction of the shortest S-T
bibranching problem to the valuated matroid intersection problem.
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Matroid bases

Generalized matroid

M-convex set

M♮-convex set

A B : B is a quantitative generalization of A.

B

A

: B is a subclass of A.

Valuated

M♮-convex function

matroid

M♮-convex function

M-convex
function

(V,F) in (5)

f in (6)

A B : B generalizes A from {0, 1}V to ZV .

Figure 1: Relation among the notions.

3.1 A matroidal formulation of the shortest bibranching problem

Let (D,w) be a weighted digraph with D = (V,A) and w ∈ RA
+, and let {S, T} be a partition

of V . As stated in Section 2.1, the shortest S-T bibranching problem is exactly finding an intger
vector x ∈ RA minimizing

∑
a∈Aw(a)x(a) under the constraints (1) and (2), which is tractable by

the fact that the system defined by (1) and (2) is totally dual integral (Theorem 2).
Here, we present another formulation of the shortest S-T bibranching problem focusing on the

matroidal structure of branchings and cobranchings (Theorems 5 and 6). In D[S], define F∗
S ⊆ 2S

and f∗
S : 2S → R ∪ {+∞} as follows:

F∗
S = {R∗(B) | B is a cobranching},

f∗
S(X) =

{
min{w(B) | B is a cobranching, R∗(B) = X} if X ∈ F∗

S ,

+∞ if X ̸∈ F∗
S .

Similarly, in D[T ], define FT ⊆ 2T and fT : 2T → R ∪ {+∞} by

FT = {R(B) ∩ T | B is a branching},

fT (X) =

{
min{w(B) | B is a branching, R(B) = X} if X ∈ FT ,

+∞ if X ̸∈ FT .

By Theorem 6, both f∗
S and fT are M♮-convex functions. Furthermore, the following proposition

immediately follows from nonnegativity of w.

Proposition 7. The functions f∗
S and fT are monotone non-increasing, that is, f∗

S(X
′) ≥ f∗

S(X)
if X ′ ⊆ X and fT (X

′) ≥ fT (X) if X ′ ⊆ X.
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Proof. Consider fT . Let X ′ ⊆ X ⊆ V and suppose X ′ ∈ dom fT . Let B′ ⊆ A[T ] be a branching
in D[T ] attaining fT (X

′), that is, R(B′) = X ′ and w(B′) = fT (X
′). By removing arcs in B′ ∩∪

v∈X\X′ δ−v from B′, we obtain another branching B with R(B) = X. By nonnegativity of w, it

holds that w(B) ≤ w(B′). We consequently obtain that fT (X) ≤ w(B) ≤ w(B′) = fT (X
′).

A similar argument holds for f∗
S .

Now, the shortest S-T bibranching problem is described as the following optimization problem:

(SBP) minimize w(F ) + f∗
S(∂

+F ) + fT (∂
−F )

subject to F ⊆ A[S, T ].

In order to obtain a shortest S-T bibranching from an optimal solution F0 for (SBP), it suffices
to find a minimum-weight cobranching BS in D[S] with R∗(BS) = ∂−F0 and a minimum-weight
branching BT in D[T ] with R(BT ) = ∂+F0, and then return F0 ∪BS ∪BT .

In the next subsection, we show a polynomial reduction of (SBP) to the valuated matroid
intersection problem.

3.2 Reduction to valuated matroid intersection

We consider to transform f∗
S and fT to valuated matroids whose ground sets correspond to A[S, T ].

First, we extend the domain of f∗
S to ZS . Define gS : ZS → R ∪ {+∞} by

gS(x) =

{
f∗
S(supp

+(x)) if x ∈ ZS
+,

+∞ if x(v) < 0 for some v ∈ S.

Proposition 8. The function gS is an M♮-convex function.

Proof. For brievity, let us abbreviate f∗
S and gS as f and g, respectively. We prove that g satisfies

(M♮-EXC).
Let x, y ∈ dom g and u ∈ supp+(x− y).

Case 1 (y(u) ≥ 1). Note that x(u) ≥ 2 holds. It is easy to observe that

g(x− χu) = g(x) = f(supp+(x)), g(y + χu) = g(y) = f(supp+(y)).

Thus, g(x− χu) + g(y + χu) = g(x) + g(y) follows.

Case 2 (x(u) ≥ 2, y(u) = 0). In this case, we have that g(x − χu) = g(x), and g(y + χu) ≤ g(y)
by Proposition 7. Thus, g(x− χu) + g(y + χu) ≤ g(x) + g(y) follows.

Case 3 (x(u) = 1, y(u) = 0). Consider Property (M♮-EXC) of f . LetX = supp+(x), Y = supp+(y).
If f(X \ {u}) + f(Y ∪ {u}) ≤ f(X) + f(Y ) holds, then g(x − χu) + g(y + χu) ≤ g(x) + (y)
follows immediately.

Suppose f((X \ {u}) ∪ {v}) + f((Y ∪ {u}) \ {v}) ≤ f(X) + f(Y ) for some v ∈ Y \X. Then,
it follows that

g(x− χu + χv) = f(supp+(x− χu + χv)) = f((X \ {u}) ∪ {v}),

and, from Proposition 7,

g(y + χu − χv) = f(supp+(y + χu − χv)) ≤ f((Y ∪ {u}) \ {v}).

Thus, we have that g(x− χu + χv) + g(y + χu − χv) ≤ g(x) + g(y).
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We then transform gS so that its domain could be associated to A[S, T ]. Define hS : ZA[S,T ] →
R ∪ {+∞} by

hS(x) =

{
gS(x

′) if x ∈ {0, 1}A[S,T ],

+∞ otherwise,

where x′ ∈ ZS is a vector defined by

x′(u) =
∑

a∈δ+u

x(a) for each u ∈ S.

It is straightforward to see that hS is obtained from gS by transformation through the following
network:

• The digraph is (N,E), where N = S ∪A[S, T ] and E = {ua | u ∈ S, a ∈ A[S, T ] ∩ δ+u}. The
entrance set is S and the exit set is A[S, T ].

• c(e) = 0, c̄(e) = 1, and γe ≡ 0 for every e ∈ E.

By Theorem 4, we have that hS is an M♮-convex function.
We further transform the M♮-convex function hS to an M-convex function. Let a0 be an element

distinct from A[S, T ], and let Ã = {a0}∪A[S, T ]. Let α ∈ Z+ be a sufficiently large integer1. Define

h̃S : ZÃ → R ∪ {+∞} by

h̃S(x0, x) =

{
h′S(x) if x0 = α− x(A[S, T ]),

+∞ otherwise
(x0 ∈ Z, x ∈ ZA[S,T ]).

By Theorem 3, h̃S is an M-convex function.
Let U be a set of elements disjoint from A[S, T ] with size α and denote W = U ∪ AW , where

AW is a copy of A[S, T ]. An element in AW corresponding to a ∈ A[S, T ] is denoted by aW . Define
h+ : 2W → R ∪ {+∞} by

h+(X) =

{
h̃S(|X ∩ U |, χX∩AW

) if |X| = α,

+∞ otherwise.

It is easy to observe that h+ is obtained from h̃S by transformation through the following network
and identifying X ⊆ V as χX ∈ {0, 1}V :

• The digraph is (N,E), where N = Ã∪W and E = {a0u | u ∈ U}∪ {aaW | a ∈ A[S, T ]}. The
entrance set is Ã and the exit set is W .

• c(e) = 0, c̄(e) = 1, and γe ≡ 0 for every e ∈ E.

Thus, by Theorem 4, ω+ = −h+ is a valuated matroid. We also obtain a valuated matroid ω− :
2W → R ∪ {−∞} from fT by similar transformation.

1It suffices that α ≥ |A[S, T ]| −min{min{|X| | X ∈ dom f∗
S},min{|X| | X ∈ dom fT }}.
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We are now ready to define an instance of the valuated matroid intersection problem. The
ground set is W = U ∪A[S, T ] and define a weight vector w̃ ∈ RW by

w̃(v) =

{
0 if v ∈ U,

−w(a) if v ∈ A[S, T ].

Now, we have constructed an instance (W, w̃, ω+, ω−) of the valuated matroid intersection problem.
It immediately follows that, for an optimal solution X for (W, w̃, ω+, ω−), the set of arcs in A[S, T ]
corresponding to X ∩AW [S, T ] is an optimal solution for (SBP).

4 Concluding remarks

We have shown that the shortest S-T bibranching problem falls in the framework of the valuated
matroid intersection problem. Our argument begins with the fact that weighted branchings de-
termine a valuation on a generalized matroid (Theorems 5 and 6), and then make use of theory
of a more general framework of M-convex functions. That is, we transformed the valuation to an
M-convex function, and then applied the operation of transformation through a network, in order
to make the two valuations on {0, 1}S and {0, 1}T have the same ground set.

Let us mention the shortest S-T bibranching algorithms obtained from this reduction. By ap-
plying algorithms for the valuated matroid intersection problem [13] to the instance (W, w̃, ω+, ω−)
constructed in Section 3.2, we obtain new combinatorial algorithms for the shortest S-T bibranching
problem. The algorithms in [13] essentially resemble to classical combinatorial matroid intersection
algorithms, and we need a value oracle for ω+ or ω− in constructing every exchangeability arc in
auxiliary graphs. In our case, this value oracle is exactly computing f(X) in (6) or f∗(X) in (7),
which can be performed efficiently by calling a minimum-weight arborescence algorithm.

We conclude this paper by mentioning one more application of Theorem 6. In a recent paper
of Shioura [21], the following problem is considered.

The k-budgeted M♮-concave maximization problem

Input: • an M♮-concave function f : 2V → R ∪ {−∞},
• cost vectors γi : V → R+ and budgets bi ∈ R+ (i = 1, . . . , k).

Objective: maximize f(X) subject to γi(X) ≤ bi for each i = 1, . . . , k.

For the k-budgeted M♮-concave maximization problem, Shioura [21] presented a PTAS. We can
consider one kind of the network design problem which falls in the framework of the k-budgeted
M♮-concave maximization problem.

Suppose that we are given a weighted digraph (D,w) of D = (V,A) and w ∈ RA
+. We should

determine X ⊆ V , where to open facilities, and construct a subgraph of D in which every vertex
in V \X reaches some facility in X.

In opening facilities, we have k budget-constraints, which are represented as linear constraints
γi(X) ≤ bi (i = 1, . . . , k). Connecting vertices by an arc a ∈ A costs w(a), and thus construction of
a subgraph (V,B) costs w(B). Our objective is to find X ⊆ V and B ⊆ A which satisfy the budget
constraints and achieve the minimum connection cost.

If X is given, a minimal subgraph (V,B) achieving the connection from V \X to X is exactly
a cobranching B with R∗(B) = X, and thus the connection cost is represented by f∗ in (7). By
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Theorem 6, −f∗ is an M♮-concave function, and thus minimizing f∗(X) subject to γi(X) ≤ bi
(i = 1, . . . , k) is a special case of the k-budgeted M♮-concave maximization problem. In this special
case, again the value oracle is computing f∗(X), which can be done efficiently, and thus the PTAS
in [21] can be applied.
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19th Annual European Symposium on Algorithms, LNCS 6942, Springer-Verlag, 2011, 1–12.

[22] K. Takazawa: Optimal matching forests and valuated delta-matroids, in O. Günlük and G.J.
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