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Abstract 
A new vibration control system including viscoelastic or viscoplastic rubber dampers is 

proposed for residential houses. This system consists of braces and a damper unit including a 
high-hardness rubber damper or a linear rubber damper. The high-hardness rubber damper 
possesses many unprecedented properties such as large stiffness, small temperature and 
frequency dependencies compared to most of usual viscoelastic dampers. Post tensioning forces 
are introduced into the braces to reduce small gap in joint parts and this system has high 
damping performance for micro-vibration. The control system can absorb sufficient energy 
through the high-rubber damper and post tensioning braces. A concept is introduced called an 
effective deformation ratio, i.e. the ratio of the actual damper deformation to the interstory drift 
of the frame, as a criterion to measure the damping performance and effectiveness of this system. 
To find out principal parameters that affect greatly the effective deformation ratio of the 
proposed new vibration control system, an incremental analysis method taking into account the 
geometrical and material nonlinearities is developed to simulate the main characteristics of this 
vibration control system. The accuracy of the analysis method is investigated through the 
comparison with the results by two simple analysis methods. The comparison with the 
experimental result is also conducted for further investigation. 
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1. Introduction 

Residential houses sometimes encounter serious problems resulting from traffic and wind 
vibrations even though they have sufficient structural safety against earthquakes and typhoons. 
Damping systems consisting of braces and/or walls (Soong and Dargush 1997) are widely used as 
structural control systems in these houses. However some problems remain unresolved which are 
due to high cost and difficulty in control. The difficulty may come from the controllability in the 
range of micro-vibration. Another type of damper, i.e. tuned mass damper (TMD), is usually used 
in residential houses, but it has a difficulty in tuning. Recently, viscoelastic dampers which can 
improve the habitability as well as the safety are applied to a lot of structures (for example, see 
Zhang and Soong 1992, Aiken et al. 1993, Samali and Kwok 1995, Housner et al. 1997, Hanson 
and Soong 2001, Park 2001, Soong and Constantinou 2002, Min et al. 2004, Xu et al. 2003, 
2004, Christopoulos and Filiatrault 2006, Takewaki 2009, Saidi et al. 2011). 

The purpose of this paper is to propose a new vibration control system which has reliable 
advantages both in traffic and earthquake vibration with low cost and ease in installation. 
Especially, the most important thing is to propose a method capable of confirming simply the 
mechanism of a new vibration control system for evaluating a damping capacity. A concept is 
introduced called an effective deformation ratio, i.e. the ratio of the actual damper deformation to 
the interstory drift of the frame, as a criterion to measure the damping performance and 
effectiveness of this system. Also, an inverse problem approach is proposed to investigate the 
relation among the parameters and the effective deformation ratio. 

A high-hardness rubber (Tani et al. 2008, 2009) for absorbing the energy in the range of micro 
to large amplitudes is introduced in the proposed new vibration control system. This 
high-hardness rubber produced by SRI Hybrid Corporation, Kobe, Japan was developed to 
capture high hardness, large stiffness, small temperature and frequency dependencies. Especially, 
while the high-hardness rubber shows elliptical hysteresis curves in the range of small 
deformation less than 5% of shear strain, it shows bilinear hysteresis curves in the range of more 
than 5% of shear strain. 

In this paper, the accuracy of the analysis method is investigated through the comparison with 
the result by two simple analysis methods (Tsuji et al. 2010). The comparison with the 
experimental results (Tsuji et al. 2009) is also conducted to investigate the accuracy of the 
proposed incremental analysis method.  

2. Preliminary Analysis via Detailed Analysis Model 

2.1 Outline of proposed vibration control system 
The proposed new vibration control system consists of post-tensioning braces using 

turnbuckles and a damper unit including a high-hardness rubber damper (Tani et al. 2008, 2009) 
as shown in Fig.1. This vibration control system has a damping capacity from the small strain 
range through the post-tension introduced by turnbuckles after setting this vibration control 
system in the frame.  

The difference of the shear forces in the braces causes shear deformation of the 
high-hardness rubber. Also, two steel springs and up-down steel frames of the damper unit make 
the high-hardness rubber exhibit only horizontal shear deformation. The axial forces of the 
braces and the force in the damper unit are shown in Fig.2. 
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2.2 Detailed analysis model 
A detailed analysis model is developed and constructed by a general-purpose computer 

software MIDAS. Figs.3 and 4 show the overview and parameter values of the detailed analysis 
model. A pinned connection is used to permit rotation of the end of connected members, for 
examples beam-brace, steel frame-steel spring and brace-damper unit connections. The upper 
and lower steel frames placed in a damper unit (Fig.1 and 4) are set up as rigid elements. The 
two steel springs (shell element) connecting the upper and lower steel frames with a pinned 
connection have sufficient axial stiffness compared to braces (wire element). The shell elements; 
a high-hardness rubber and steel plates are perfectly tied together.  

Two high-hardness rubbers inserted between three steel plates (double layer) have the 
thickness of 5 mm  and the area of 80 80mm mm . As shown in Fig.3, the diameter of braces is 
10mm, and the installation angle   of braces is 60 degree. There is no eccentricity between the 
braces and the post-tension introduced is 7000 N . The parameters of the detailed analysis model 
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are set up based on a one-story residential house made of steel frames.  
The high-hardness rubber used in this research has small temperature and frequency 

dependency compared to general visco-elastic dampers. While the high-hardness rubbers show 
elliptical hysteretic curves in the small deformation range less than 5% of shear strain, they 
show bilinear hysteretic curves in the range of more than 5% of shear strain. But it has 
remarkable strain dependency. The mechanical modeling of high-hardness rubber dampers has 
been proposed by Tani et al. (2008, 2009). The equivalent stiffness [ / ]eq N mmk  and damping 
coefficient [ / ]eqc Ns mm  of high-hardness rubber dampers are described respectively, as 
follows (Suzuki et al. 2007). 
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In Eqs.(1)-(3), S and t are the area 2[ ]mm  and the thickness [ ]mm  of the high-hardness 
rubber, max  is the maximum shear strain experienced so far and max  is the maximum shear 
strain in the current loop. On the other hand, eqc

 
is not used in this paper because of dealing 

with only static response. 

2.3 Results by detailed analysis model 
Figs.5-7 show the relation of shear strain of the high-hardness rubber, the amount of rotation 

of the damper unit and the axial force of braces, respectively, with respect to the prescribed 
interstory drift in the range of 0 to 20 mm . Fig.5 shows the relation of shear strain of the 
high-hardness rubber to the prescribed interstory drift which is almost linear in the wide range of 
deformations. However nonlinearity can be observed in the small strain range. This result shows 
that the high-hardness rubber has a damping capability from a small deformation range. The 
amount of rotation of the damper unit becomes large with the increase of frame deformation. 
However, the amount of rotation of the damper unit is very small and is 0.03 radians even under 
large frame deformation (interstory drift) of 20 mm . Therefore, the loss of deformation 
(effectiveness) of the high-hardness rubber due to the rotation of the damper unit can be 
neglected. In addition, the post-tension introduced to the braces is decreased from 7000 N to 
4000 N due to the beam flexibility of the frame. If the decrease of post-tension by the beam 
flexibility of the frame is considered, the post-tension will be lost in the smaller deformation 
than expected and the braces without post-tension do not work. 
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3. Evaluation of Effective Deformation Ratio of New Vibration Control System via Spring 

Model 

In this section, a spring model (Tsuji et al. 2010) is introduced to explain the mechanism of 
the new vibration control system on the assumption that the damper unit does not rotate. This 
spring model is simpler than the detailed analysis model in the previous section and is 
appropriate in the early stage of design. 

3.1 Spring model 
To express the deformation of the damper unit shown in Fig.8, we introduce a simplified 

model called a spring model as shown in Fig.9. First of all, we assume that the shear 
deformation of the high-hardness rubber is the same as the deformation of the damper unit and 
the ends of the steel plates in the damper unit are displaced in the horizontal direction only 
without rotation. In other words, the vertical displacement of the end of braces, the rotation of 
the damper unit and the displacement of the frame by beam flexibility are neglected.   

3.2 Formulation of spring model 
The elongation L  of the braces in tensile or compressive zone may be expressed as 

 /b bL T K   (4) 

where bT  is the tensile force of the braces after the deformation and bK  is the axial stiffness 
( /EA L ).  In addition, E , A , L  are the elastic modulus, the cross-sectional area and the initial 
length of the brace, respectively.  
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Fig.10 Free-body diagram in spring model        Fig.11 Relation between interstory drift  
                                               and effective deformation ratio 

With the help of Fig.10, we can derive 

      1 22 / 2cos / 2cosbT Q Q Q     (5) 

where 1Q  is the shear force in the high-hardness rubber, 2Q  is the shear force in the steel plate 
and Q  is the total shear force in the damper unit. The horizontal displacement u  of the end of 
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the brace is obtained from the relation between the elongation L  and the installation angle   
of braces.  

  / cosu L    (6) 

The total displacement S  of the frame can then be expressed as follows as the sum of the 
horizontal displacement u  of the end of braces and the deformation D  of the damper unit. 

 2S D u    (7) 

3.3 Definition of effective deformation ratio 
A concept is introduced called an effective deformation ratio, i.e. the ratio of the actual 

damper deformation to the interstory drift of the frame ( /D S  ), as a criterion to measure the 
damping performance and effectiveness of this system. 

3.4 Inverse-problem method of effective deformation ratio by spring model 
Substituting Eqs.(4)-(6) into Eq.(7), the effective deformation ratio is obtained as 

 
2

2
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cos

D

S

b D

Q
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




 (8) 

In the ordinary analysis, the deformation D  of the damper unit is calculated from the frame 
deformation S . However in a simple analysis model such as the spring model, the frame 
deformation S  can be calculated from a specified value of D . In this process, the stiffness of 
the high-hardness rubber and the shear force of the damper unit are used. In other words, the 
effective deformation ratio can be obtained by substituting the shear force Q  in the damper unit 
corresponding to D  and the equivalent stiffness eqK  of the high-hardness rubber into Eq.(8). 
This method based on an inverse problem formulation enables one to avoid repetitive 
calculation. 

Fig.11 shows the effective deformation ratio by a spring model. The parameter values of the 
spring model are taken from the detailed analysis model. In addition, the effective deformation 
ratios of the spring model are compared with those of the simple analysis model shown in 
Fig.12.  

4. Simple Analysis Model Considering Rotation of Damper Unit 

4.1 Simple analysis model 
Based on the results by the detailed analysis model, it can be observed that the rotation of the 

damper unit affects the damping capacity of the proposed vibration control system. Fig.12 
shows a simple analysis model considering rotation of the damper unit. We assume that the 
shear deformation of the high-hardness rubber is the same as the shear deformation of the 
damper unit and the beam in the frame as well as the horizontal steel plates in the damper unit 
are rigid. We further assume that the height of the damper unit does not change in the process of 
deformation and the damper unit is deformed in the anti-symmetric shape. 
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Fig.12 Simple analysis model 

4.2 Geometrical relation and equilibrium equation 
 , ,  are the rotational angles of the braces in the tensile and compressive zones and the 

rotational angle of the damper unit, respectively. l  is the width of the damper unit. Considering 
the rotation of the horizontal steel plates in Fig.12, the horizontal and vertical displacements of 
the ends of the horizontal steel plates (also the ends of the braces) are obtained as  

  ' '' 1 cosu u l     (9) 

 ' '' sinv v l    (10) 

Through the geometrical relation between the node ⑤ and ⑥ of the brace in the tensile 
zone, we can rewrite u  and v  as follows. 

 1' ( ) cos( ) cosu L L L        (11) 

 1' sin ( )sin( )v L L L        (12) 

Furthermore, from those of the relation between the node ⑦ and ⑧ of the brace in the 
compressive zone, we can rewrite u  and v  as follows.  

 2'' cos ( ) cos( ')u L L L       (13) 

 2'' ( ) sin( ') sinv L L L       (14) 

where u  and v  are the horizontal and vertical displacement of the end node of the brace in 
the tensile zone, respectively. On the other hand, u  and v  are the horizontal and vertical 
displacement of the end node of the brace in the compressive zone. 1L  is the elongation of the 
brace in the tensile zone and 2L  is the elongation of the brace in the compressive zone. 

The horizontal force in the damper unit can be obtained as follows from the equilibrium of 
forces acting in the rotated damper unit and two braces as shown in Fig.13. 
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 1 2cos ( ) cos( ) ( )cos( ')b bQ P T P T           (15) 

Similarly, the vertical force in the damper unit can be obtained as follows from the 
equilibrium of forces acting in the rotated damper unit and two braces as shown in Fig.13. 

 1 2sin 2 sin cos ( )sin( ) ( )sin( ')b bQ P P T P T              (16) 

where P  is the post-tensioning force, 1bT  is the increased force in the tensile-zone brace and 

2bT  is the decreased force in the compressive zone brace. 2 sinP   in Eq.(16) shows the sum 
of the axial forces in the vertical steel plates. In the analysis of the simple analysis model, we 
assume that the axial forces of the vertical steel plates do not change in the deformation process.  

From the equilibrium of moments around the point O , i.e. the center of the damper unit, 
Eq.(17) can be obtained. 
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Fig.13 Equilibrium of forces in damper unit  Fig.14 Moment equilibrium in damper unit 

In Eq.(17), 1e , 2e  are the eccentricities of the braces as shown in Fig.14.  
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h
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4.3 Inverse-problem solution for simple analysis model 
In case of no eccentricity of braces as shown in Fig.15, the rotational angles  ,  of the 

braces become less than 0.013 radian when the maximum story deformation angle 
(1/150 /S H ) is specified in the detailed analysis model. In this case, it may be possible to 
use a linear approximation in the simple analysis model. This assumption may be used even in 
case where the eccentricity exists in the braces. 
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With the application of the linear approximation to Eqs.(9)-(19) and the substitution of 

Eqs.(9)-(14), and (18), (19) into Eqs.(15)-(17), the following equations can be obtained.  
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 sin coss c  ,  (28) 

When the deformation D  of the damper unit is given, the shear force Q  acting in the 
damper unit is determined by using the sum of the equivalent stiffness of the high-hardness 
rubber and the horizontal stiffness of vertical steel plates.  By substituting the shear force Q  
into Eqs.(20) and (21),   and   can be obtained.  Furthermore, the rotational angle   of 
the damper unit is determined from the relationship among Eqs.(12), (14) and (10).  

This simple analysis model called the inverse-problem analysis method has a merit that it 
does not need the repetitive calculation of deformation of the damper unit and equivalent stiffness 
of the nonlinear high-hardness rubber. 

4.4 Parametric study 
Several parametric studies are conducted to examine the effect of elements comprising the 

proposed damper system on the effective deformation ratio by the simple analysis model.  

(a) Effect of post tension on effective deformation ratio 
2, 20 and 200% of shear strain, respectively, are given to a high-hardness rubber damper first. 

Then the variation of the effective deformation ratio with respect to the introduced post tension 
is examined in each case. Fig.16 (a) shows the effective deformation ratio is not affected by the 
introduced post tension. However the effect of buckling behavior on braces is not considered in 
the simple analysis model. To confirm the effective analysis range of the proposed analytical 
models, it is necessary to examine the story drift when the buckling behavior of braces begins 
from experiments.  

(b) Effect of installation angle of braces on effective deformation ratio 
Fig.16 (b) plots the effective deformation ratio with respect to the installation angle of braces 

in case of that the shear strains of a high-hardness rubber are given as 2, 20 and 200%, 
respectively. It is known that the optimal installation angle of braces exists, which maximizes 
the effective deformation ratio, and the optimal angles in each case are about 35 degrees.  

(c) Effect of eccentricity in braces on effective deformation ratio 
Fig.16 (c) and (d) indicate the effective deformation ratio and the rotational angle of a 

damper unit with respect to the shear strain of a high-hardness rubber damper, in case where the 
eccentricity exists in the braces. These results present that the eccentricity in braces make the 
rotational angle of braces larger, and it eventually reduces the effective deformation ratio.  
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Fig.16 Results of parametric study 

5. Incremental Analysis Method Taking into Account Geometrical and Material 
Nonlinearities 

5.1 Incremental analysis method 
This incremental analysis method using D  as a principal parameter is aimed at 

incrementally calculating the nonlinear equations (9), (10), (15), (16), (17) using the equivalent 
linearization of these equations. First of all, we differentiate these nonlinear equations by the 
parameter D . Through this incremental analysis method, we can predict the changes of the 
elongation and rotational angle of braces, the rotational angle of the damper unit and the 
effective deformation ratio of the proposed system according to the increase of shear 
deformation of the damper unit from its initial state ( 0D  ). A general-purpose computer 
software MATLAB is used in this incremental analysis and parameter values used in this method 
are the same as those in the simple analysis model. 

5.2 Incremental formulation of nonlinear equations 
Incremental analysis for unknown quantities is performed to get the analytical solutions of 

the shear deformation D  of the damper unit. Substituting Eqs.(11)-(14) into Eqs.(9) and (10), 
Eqs.(18) and (19) into Eqs.(17), Eq.(4) into Eqs.(15) and (16), respectively, five simultaneous 
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equations including five unknown quantities and constants are obtained as follows.  

 1 2( )cos( ) cos cos ( ) cos( ) (1 cos )L L L L L L l                 (29) 

 1 2sin ( )sin( ) ( )sin( ) sin sinL L L L L L l                (30) 

 1 2cos ( ) cos( ) ( )cos( )
L L

Q P EA P EA
L L

             (31) 

 1 2sin 2 sin cos ( )sin( ) ( )sin( )
L L

Q P P EA P EA
L L

                (32) 

 1 2
1 2( ) ( )

L L
P EA e P EA e

L L

 
      (33) 

If the decreased height of the damper unit due to its shear deformation is considered in more 
exact analysis, Eqs.(18) and (19) can be rewritten and 2h  has to be replaced by 2 Dh  .  

 2 2
1 2( ) sin( ) cos( )D De l h                  (34) 

 2 2
2 2( ) sin( ) cos( )D De l h                   (35) 

Differentiation of Eqs.(20)-(24) by the damper unit’s shear deformation D  provides the 
following rate equations.  

1) Differentiation of Eq.(29) 

 1 1 2

2

cos( ) ( )sin( ) 0 0 cos( )

( )sin( ) sin 0

L L L L

L L l

      

    

          

        

 


 (36) 

2) Differentiation of Eq.(30) 

 1 1 2

2

0 sin( ) ( ) cos( ) sin( )

( ) cos( ) 0 cos 0

L L L L

L L l

      

    

             

           

 


 (37) 

3) Differentiation of Eq.(31) 

 
1 1 2

2

cos( ) ( ) sin( ) cos( )

( ) sin( ) sin cos

L L L
EA P EA EA

L L L
L

P EA Q Q
L

      

     

               

            

 


 
 (38) 

4) Differentiation of Eq.(32) 
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1 1 2

2

sin( ) ( ) cos( ) sin( )

( ) cos( ) (2 sin sin cos ) sin

L L L
EA P EA EA

L L L
L

P EA P Q Q
L

      

       

               

               

 


 
 (39) 

5) Differentiation of Eq.(33) 

 1 1 2 2
1 1 2 2( ) ( ) 0

L L L L
EA e P EA e EA e P EA e

L L L L

   
             
 

   (40) 

where  

 
1

2 2
22 2

2

sin( ) ( ) cos( ) ( )

cos( ) sin( ) ( )

D

D
D

D

e l

h
h

        
         



         

          




  (41) 

 
2

2 2
22 2

2

sin( ) ( ) cos( ) ( )

cos( ) sin( ) ( )

D

D
D

D

e l

h
h

        
         



            

            




  (42) 

Substituting differentiated equations (32) and (33) considering the changed height of the 
damper unit due to its shear deformation, Eq.(31) can be rewritten as follows.  

1 2
1 2

1 1

2 2 2 21 1
2 2

2

( ) ( ) cos( ) ( ) ( ) cos( )

( ) sin( ) ( ) sin( )

( ) ( ) cos( ) (

D D

D D

D

L L
EA e EA e

L L
L L

P EA l P EA l
L L
L L

P EA h P EA h
L L
L

P EA l P EA
L

         

         

    

 
    

 
                 

 
                 

             

 





 2

2 2 2 22 2
2 2

1

2 2
2

2

2 2
2

) ( ) cos( )

( ) sin( ) ( ) sin( )

( ) sin( ) cos( )

( ) sin( ) cos( )

D

D D

D

D

D

D

L
l

L
L L

P EA h P EA h
L L

L
P EA

L h

L
P EA

L h

    

         

     


     


     

                    

              
  

           






 


    

 (43) 
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In Eq.(43), 1L  , 2L  , ,  ,   denote 1 / Dd L d , 2 / Dd L d , / Dd d  , / Dd d  , 
/ Dd d   respectively.  Q  can be rewritten as 

 ( )eq pl eq DQ K K K       (44) 

In Eq.(44), plK  is the lateral stiffness of the vertical steel plate and eqK  is an equivalent 
stiffness of the high-hardness rubber differentiated by D .  

 
3

2

12 sin
pl

EI P
K

Hh


   (45) 

 1.661.62 0.62 0.660.62 0.32 0.1 0.66eq D D
S

K t t
t

             
  (46) 

The results of the incremental analysis will be compared with those of the spring model, the 
simple analysis model and the experiment in the following section.  

6. Experimental Verification 

6.1 Outline of 1/1-scale experimental verification 
In this section, the results for these analysis models, i.e. the spring model, the simple analysis 

model, the incremental analysis model, are compared with the results of the 1/1-scale 
experiment to examine the accuracy of these analysis methods and to investigate the vibration 
control effect of the proposed new vibration control system in the range of small amplitude.  

To examine the vibration control effect of the proposed post-tensioning vibration control 
system, a quasi-static test was first performed for the specimen including the 1/1-scale damper 
unit. As shown in Fig.17, a loading frame in this test consists of the shaking table and the 
H-beam fixed on the strong reaction frame. A damper unit is installed with four braces in the 
loading frame. Each brace is connected to the corner of the damper unit and the T-beam fixed on 
the bottom of the H-beam by pinned connection. Post-tension can be introduced by turning a 
turnbuckle placed on the center of braces. The amount of post-tension is controlled by 
monitoring the strain gauges attached on the braces. 

In this test, different kinds of structures are not considered because the main purpose of this 
test is to examine the basic performances of this system. However, different kinds of structures 
are needed to make the stress transferred in a wide range of deformation and make the 
construction easy when this system is installed into residential houses. Detailed joint methods 
are still under investigation.  

One or two rubber plates ( 25 25 3mm mm mm  ; high-hardness rubber or linear rubber) 
between two or three steel plates are inserted in the damper unit as shown in Figs.18(a), (b). One 
is the damper unit with a deformation magnification mechanism and the other is without. We 
also performed other experiments in the case where the amount of eccentricity of braces is 
changed. However, we deal with only one case of no eccentricity of braces in this paper. 
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6.2 Comparison of analytical results with experimental results 
Experimental verification was performed on the two proposed vibration control systems 

including nonlinear high-hardness rubbers and linear rubbers, respectively (see Fig.18). The 
parameter values of the analysis models are taken from those of the experimental specimens. 

Figs.19-22 show how experimental results including high-hardness rubbers (Fig.18(a)) 
correspond to those of the analysis, such as the elongation of braces, the rotational angle of the 
damper unit and the effective deformation ratio. In the experiment, the installation angle of 
braces was 1.25 radians (71.6 degrees) and the force of 850N as a post-tension was introduced 
to the braces through turnbuckles. Figs.19 and 20 show the change of the elongation of braces in 
the tensile and compressive zones, respectively, when the frame deformation S  is 3 mm . The 
initial elongation of the braces by the post-tension was 0.04 mm . More than 3 mm  of the frame 
deformation was not considered in the comparison because the brace in the compressive zone is 
affected by a buckling behavior after the loss of the post-tension. An effective analysis range 
enabling to compare the analytical results with the experimental results by the post-tension was 
determined in case of no eccentricity. The results of the spring model and the simple analysis 
model correspond well with the experimental results although these analysis models are not 
considering the buckling behavior. However, the errors of the results of the detailed analysis 
model and the incremental analysis model from the experimental results are about 0.01 mm  
even at 3S mm  . Therefore, introducing a post-tension larger than 850N to the braces or an 
additional analysis on the buckling behavior is needed to compare the elongation of braces and 
other quantities in the range of more than 3 mm  of the frame deformation.   

Figs.21 and 22 show the rotational angle of the damper unit and the effective deformation 
ratio, respectively. All analysis results exhibit large differences from the experimental results 
except the spring model without damper unit’s rotation. These differences may be caused by 
friction forces at the connections and a small post-tension introduced into the high-hardness 
rubber damper system. These friction forces not only interrupt the rotation of the damper unit 
but also give negative effects on the braces. Therefore, other joint methods are needed to prevent 
the damper rotation and the reduction of the effective deformation ratio. Furthermore, a small 
post-tension makes the effective analysis range narrower, and fully affects the accuracy of the 
analysis models.  
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Fig.21 Rotational angle of the damper unit         Fig.22 Effective deformation ratio 

Under the same experimental conditions except the introduced post-tension, experimental 
verification was performed for the proposed vibration control system including linear rubbers as 
shown in Figs.17 and 18(b). In this comparison, the stiffness of the surrounding portion (upper 
beam and T-beam) connected to the braces was treated appropriately to analyze the elongation of 
braces more exactly. Here, kr  is the stiffness coefficient of the surrounding portion to the brace. 
By multiplying the stiffness coefficient on the stiffness of the brace, more accurate analytical 
results could be obtained as shown in Figs.23-26. Here, the axial stiffness of the brace is 
61541 /N mm . The relations among the stiffness SK  of the surrounding portion, the stiffness 

bK  of the brace, the equivalent stiffness bK   of the brace and the stiffness coefficient kr  can 
be expressed as follows.  

 S k bK r K   (47) 

 
1

1 1 1
k

b b
k

S b

r
K K

r
K K

   


 (48) 

We confirmed that the analysis results are more close to the experimental results by adopting 
an appropriate equivalent stiffness of the brace in the analysis models. Post-tension was lost 
more early although the introduced post-tension was 2000 N  in the experiment. The effective 
analysis range was narrower than that in the first experiment. A triangular point on the x-axis in 
Fig.24 indicates the starting point that the post-tension is lost. In this experiment, the effective 
analysis range can be regarded as 0.88 mm  of the frame deformation. Here, we can confirm that 
using the linear rubber having stiffness smaller than the nonlinear high hardness rubber in the 
post-tensioning vibration control system is not appropriate. Because it is difficult to capture the 
energy in the range of micro amplitudes caused by traffic and wind vibrations, a larger 
post-tension is needed to extend the effective analysis range. On the other hand, capturing the 
energy in the range of large amplitudes caused by earthquake is not provided by small 
post-tension.  
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Fig.23 Elongation of brace in tensile zone   Fig.24 Elongation of brace in compressive zone  
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Fig.25 Rotational angle of the damper unit       Fig.26 Effective deformation ratio 

7. Conclusions 

The following results have been obtained in this paper.  

1) A new vibration control system has been proposed for residential houses which is handy and 
has an advantage of low cost, high safety and high-level habitability under traffic and wind 
vibrations.  

2) Repetitive calculation using an equivalent linearization technique or incremental nonlinear 
analysis is needed to confirm the validity and accuracy of the effective deformation ratio.  
However, these analytical methods entail calculation load because the high hardness rubber 
has a nonlinear hysteretic characteristic. In this paper, a spring model without consideration 
of the rotation of the damper unit, a simple analysis model and an incremental analysis model 
have been proposed. The inverse problem analysis method has been established which can 
analyze the behavior of the damper unit or the deformation of the structural frame by 
prescribing the shear deformation of the high hardness rubber. 
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3) An effective analysis range enabling to compare the analytical results with the experimental 
results by the introduced post-tension was determined in the case of no eccentricity of braces.  
After the loss of the post-tension, the buckling of braces occurs before their contraction. It is 
necessary to increase post-tension for improving the accuracy of the proposed analysis 
models.  

4) Other joint methods are needed to prevent the reduction of the effective deformation ratio 
because the friction force acting at the connections has effects on the behaviors of the damper 
unit and braces.  

5) It is more effective to use a nonlinear high-hardness rubber than a linear rubber in the 
post-tensioning vibration control system. This is because high-hardness rubbers are able to 
capture the energy in the range of micro amplitudes by traffic and wind vibration due to their 
large stiffness in small deformation range less than 5% of shear strain. On the other hand, it is 
confirmed from the experimental results that linear rubbers tend to be easily deformed with 
their primary structures by small external forces. Furthermore the post-tensioning damper 
system including linear rubbers needs to large post-tension to capture the energy in the range 
of large amplitudes caused by earthquakes.  
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