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Abstract 

We present the final description of the hind limb elements of the Nacholapithecus kerioi holotype (KNM-BG 

35250) from the middle Miocene of Kenya. Previously, it has been noted that the postcranial (i.e., the 

phalanges, spine, and shoulder girdle) anatomy of N. kerioi shows greater affinity to other early/middle 

Miocene African hominoids, collectively called "non-specialized pronograde arboreal quadrupeds", than to 

extant hominoids. This was also the case for the hind limb. However, N. kerioi exhibits a unique combination 

of postcranial characters that distinguish this species from other early/middle Miocene African hominoids. The 

femoral neck has a high angle, but is relatively short, though the adaptive meaning is not readily understood. 

In the distal femur, the shape of the patellar surface and symmetry of the femoral condylar widths suggest that 

the knee was not typically abducted but assumed more variable movements and/or postures. Whereas the 

morphologies of the talocrural and intertarsal joints are generally similar to those of the other fossil hominoids, 

the tibial malleolus is extremely thick and asymmetry of the talar trochlea groove is more emphasized due to a 

more prominent lateral trochlear rim than in Proconsul and other African fossil hominoids. The distal foot 

segment is more elongated. The (non-hallucal) metatarsals appear relatively gracile due to the elongation. The 

proximal joints of these metatarsals are, nonetheless, large. Ligamentous attachments of the tarsal/metatarsal 

bones are generally well developed. The distal tarsal row, which is represented only by the medial cuneiform, 

though, is extremely large for the presumed body mass. In terms of function, the femur, ankle, and tarsal joints 

are interpreted behaviorally to represent a slow-moving arboreal quadruped. However, the foot of N. kerioi 

appears to be more specialized for inverted grasping and subvertical support use. All of these foot features are 

suggestive of a greater role for antipronograde activities in N. kerioi relative to other Miocene "pronograde 

arboreal quadrupeds". 

Keywords: Miocene, hominoids, positional behavior, fossils, functional adaptation 
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Introduction 

This article provides the final description of the hind limb bones of the KNM-BG 35250 Nacholapithecus 

kerioi skeleton and discusses the functional adaptations of the species in light of these remains. N. kerioi is a 

baboon-sized hominoid known from the middle Miocene Aka Aithepus Formation (15 Ma) in Kenya (Ishida 

et al., 1999). Compared to early Miocene hominoids, which are best represented by fossils of Proconsul 

(Napier and Davis, 1959; Walker and Pickford, 1983; Walker and Teaford, 1988), postcranial anatomy of 

middle Miocene hominoids in East Africa was relatively unclear. However, in the late 1990s, a few partial 

skeletons of middle Miocene hominoids were discovered, and understanding of the morphology of these 

species was improved (Nakatsukasa et al., 1998, 2007a; Ward et al., 1999, Ishida et al., 2004). KNM-BG 

35250 from Nachola (Nakatsukasa et al., 1998; Ishida et al., 2004) and KNM-TH 28860 from Tugen Hills 

(Ward et al., 1999) were important discoveries that helped clarify the diversity of middle Miocene hominoids 

in East Africa. KNM-BG 35250 was preliminarily described after its discovery (Nakatsukasa et al., 1998; 

Ishida et al., 2004). Since then, full descriptions of the phalanges (Nakatsukasa et al., 2003), shoulder girdle 

(Senut et al., 2004) and vertebral column (Nakatsukasa et al., 2007b) have been completed. 

Contemporaneous to N. kerioi are Equatorius africanus, Kenyapithecus wickeri and K. kizilli (McCrossin, 

1994; McCrossin and Benefit, 1997; Ward and Duren, 2002; Kelley et al., 2008; Harrison, 2010) and 

somewhat older is Afropithecus turkanensis (Leakey et al., 1988). Although the higher taxonomy of these 

hominoids is debated (Begun, 2002, 2007; Harrison, 2002, 2010; Ward and Duren, 2002), there is a general 

consensus that these species share derived traits such as thicker enamel and robust jaws and (at least many of 

them) form a clade exclusive of earlier hominoids in East Africa such as Proconsul. Postcranially, these 

groups show derived conditions relative to Proconsul in terms of increased orthogrady (Nakatsukasa and 

Kunimatsu, 2009) or terrestriality (McCrossin, 1994; McCrossin and Benefit, 1997; McCrossin et al., 1998), 

while Afropithecus generally resembles Proconsul (Ward, 1998). The evolutionary scheme of hominoids 
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through the early and middle Miocene is vague and there is no consensus how to relate these African taxa to 

later extinct and extant hominoids (Nakatsukasa and Kunimatsu, 2009). This article is dedicated to the 

functional anatomy of the hind limb and does not deal with phylogeny since craniodental morphology 

provides more reliable estimates of such relationships.  Viewed within this context, it remains important to 

reconstruct postcranial morphology, specifically hind limb functional anatomy, within N. kerioi to better 

understand the diversity of locomotor patterns in middle Miocene hominoids 

The first study of hind limb functional anatomy of N. kerioi was done by Rose et al. (1996), which 

described 13 isolated hind limb specimens of N. kerioi (seven proximal femoral fragments, one patella, two 

distal fibula, one talus, one calcaneus, and one hallucal metatarsal; phalanges are not counted here) together 

with other postcranial elements in the 1980s collection. According to Rose et al. (1996), the working position 

of the hind limb in N. kerioi was partial flexion and external rotation and the talocrural joint could bear load 

effectively in the partial flexion and external rotation. While this functional adaptation was best matched with 

Proconsul, the authors noted some features (e.g., enlarged medial process of the calcaneal tuberosity) that 

suggest a greater role of orthograde climbing in N. kerioi. Later studies of the shoulder girdle, phalanges, and 

vertebral column of KNM-BG 35250 (Nakatsukasa et al., 2003; Senut et al., 2004; Nakatsukasa et al., 2007b) 

generally support these earlier conclusions. The present study aims to retest the interpretation by Rose et al. 

(1996) using new materials and to unveil characters that were unknown in the previously available specimens. 

We compare the hind limb elements of N. kerioi with those of early and middle Miocene hominoids from East 

Africa (Proconsul spp., Ugandapithecus major, Morotopithecus bishopi, Afropithecus turkanensis, Equatorius 

africanus). There are numerous studies of the hind limb functional morphology of these fossil hominoids and 

the basal catarrhine (Le Gros Clark and Leakey 1951; Zapfe 1960; McHenry and Corruccini 1976; Conroy and 

Rose 1983; Walker and Pickford 1983; Langdon 1986; Rose 1986, 1993; Rose et al., 1992, 1996; Gebo and 

Simons 1987; Leakey et al., 1988; Leakey and Walker 1997; Ruff et al., 1989; Ward et al., 1993; McCrossin 
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1994; McCrossin and Benefit 1997; McCrossin et al. 1998; Benefit and McCrossin 1995; Rafferty et al., 1995; 

Gebo et al., 1997; Walker 1997; Ankel-Simons et al. 1998; Gommery et al., 1998, 2002; Ward 1998; 

MacLatchy et al., 2000; Madar et al., 2002). This comparison will clarify different/similar functional 

anatomies of the hind limb in these African Miocene hominoids. 

 

Material and Methods 

Hind limb elements of KNM-BG 35250 are listed in Table 1. Since the pedal phalanges have been fully 

described elsewhere (Nakatsukasa et al., 2003), these elements are excluded from the list. Original specimens 

of N. kerioi and other comparative hominoids were studied in the National Museums of Kenya and the Uganda 

Museum. Only E. africanus specimens housed at the Natural History Museum (London) were examined using 

high quality casts. Comparative extant primate samples were studied in the Osteology Department, the 

National Museums of Kenya, Powell-Cotton Museum, and the Anthropological Institute and Museum, 

University of Zurich. Since most elements of KNM-BG 35250 are subjected to deformation, metric 

comparison was limited. Linear measurements were taken by using sliding calipers accurate to one tenth of 

the nearest millimeter. Angles were measure on digital photographs that were taken with settings to reduce 

parallax. 

Repeatedly used terms of anatomical orientation are abbreviated as follows: a-p = anteroposterior/-ly; m-l 

= mediolateral/-ly; s-i = superioinferior/-ly; p-d = proximodistal/-ly; d-v = dorsoventral/-ly; d-p = 

dorsoplantar/-ly. 

 

Ischium 

Description 

The left ischial specimen (KNM-BG 35250G: Figure 1a) preserves the caudal half of the lunate surface 

Table 1 
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and a short part of the ramus (18 mm long from the acetabulum). A fracture runs obliquely crossing the caudal 

part of the acetabulum to the dorsal border of the ischial ramus around 1 cm below the ischial spine. The cross 

section of the ramus is rather flat (8.8 mm thick and 22.6 mm wide at the break) probably due to postmortem 

d-v compression. From the acetabulum, neither diameter nor depth can be obtained reliably. The maximum 

width of the preserved part of the lunate surface is ca. 14 mm. The ischial spine is prominent. It would have 

been about the level of the caudal acetabular border if the ischium were not subjected the fracture. Caudal to 

the spine is a well-defined marking by mm. gemelli and the tendon of m. obturator internus.  

The right ischium (KNM-BG 35250Y: Figure 1b) is rather fragmentary. It is a ca. 4 cm long piece, 

preserving the caudal part of the lunate surface and a shorter length of the ischial ramus. No additional 

information is added. 

 

Comparative Remarks 

Where comparison is possible, the ischium of N. kerioi generally resembles that of Proconsul spp. 

Although it differs from that of P. nyanzae regarding a more cranial position of the ischial spine (see Ward et 

al., 1993), there is variability regarding this feature in P. heseloni. While it is caudally positioned in the 

KNM-KPS 8 individual, it is close to the caudal acetabulum rim in KNM-KPS 3. Although it was suggested 

that the lower position of the ischial spine was related to a greater development of tail muscles (McCrossin, 

1994), it is now known that P. heseloni did not have a tail (Ward et al., 1991; Nakatsukasa et al., 2004). 

Therefore, the functional significance of this character remains an open question.  

 

Femur 

Description 

Both the right and left femora consist of separated proximal and distal end pieces. The proximal piece of 

Figure 1 
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the right femur (KNM-BG 35250A) shows several important characters, though postmortem cracking and 

deformation is apparent (Figure 2b). The left proximal piece (KNM-BG 35250D) lacks the head and most of 

the neck, and is crushed in the a-p direction (Figure 2c). However, KNM-BG 35250D preserves the greater 

and lesser trochanters, which are broken in KNM-BG 35250A. Thus, the morphology of the proximal femur is 

principally described based on the right piece and is supplemented by the left one. The distal piece of the right 

femur (KNM-BG 35250B) is crushed in the m-l direction and the left one (KNM-BG 35250J) in the a-p 

direction (Figure 3). The morphology of the medial and lateral epicondyles was observed in the former 

specimen and that of the condylar and patellar surfaces in the latter. 

The head of KNM-BG 35250A displays strong anteversion. In superior view (Figure 2a), the center of 

the head is weakly displaced anteriorly relative to the neck axis. Furthermore, the head is strongly rotated to 

face anteromedially. Although a moderate head displacement is not unusual in extant anthropoids, such an 

emphasized rotation is anomalous and should be regarded as deformation. Both the s-i and a-p diameters of 

the head are 22.1 mm. Relative to the neck thickness the head is large but less so than in extant apes (Table 2), 

suggesting a moderately wide range of movement at the hips joint (Ruff et al., 1989; Ward et al., 1993; 

MacLatchy et al., 2000). The articular surface of the head is preserved except the posterior margin. The 

articular surface is extensive and mushrooms over the neck except the abraded posterosuperior part (the 

articular border is indicated by an arrow in Figure 2d). In superior view, the articular surface depth (measured 

from the line passing through the anterosupeior and posterosuperior margin in Figure 2a) is 73 % of the head 

diameter. The fovea is oblong along the a-p axis (6.1 mm a-p, 3.4 mm s-i) and situated posteroinferiorly. The 

head extends proximally 9 mm above the most inferior level of the superior border of the neck. By matching 

this specimen with the left counterpart (Figure 2d and e), it is estimated that the superior surface of the head 

was 1.5 mm above the tip of the greater trochanter (Table 2). 

The neck-shaft angle is high (140°). This angle is comparable to that in gibbons and spider monkeys 

Figures 2, 3  

Table 2  
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(Rose et al., 1992; MacLatchy et al., 2000). The trochanteric crest is collapsed and closes the trochanteric 

fossa (Figure 2d). Although this damage precludes an accurate measurement of neck length, the neck is 

apparently short (Figure 2b). The cross section of the neck is moderately compressed in the a-p direction (16.2 

mm s-i and 11.8 mm a-p). It is more expanded in the a-p direction in extant apes (Table 2). A large crista 

trochanterica is observed on the posterior aspect of the neck (arrows in Figure 2e) similar to Proconsul and 

Morotopithecus (MacLatchy et al., 2000). 

The lateral side of the greater trochanter bears a protuberant insertion of m. gluteus minimus. The gluteal 

tuberosity is positioned at a relatively proximal level so that the gap between it and the insertion of m. gluteus 

minimus is narrow. The lesser trochanter of KNM-BG 35250D is wide s-i (16.7 mm at its base). It projects 

medially with weak retroflexion. 

In KNM-BG 35250A, the anteromedial cortex of the shaft is cracked and widely collapsed into the 

medullary cavity. However, plastic deformation of the cortex seems weak. Approximate m-l diameter of the 

mid-shaft is 17.4 mm, which is taken at the most inferior level of the preserved cortex. 

In the distal femur (KNM-BG 35250J), the patellar surface is square-shaped rather than trapezoidal in 

anterior view (Figure 3a arrows). The surface is wide (22.7 mm) compared with similar-sized cercopithecids 

(see Madar et al., 2002), which suggests an emphasis on knee rotation (Ward et al., 1995). The femoral 

condyles are symmetrical in width on the posterior aspect (Figure 3b). The medial and lateral condylar widths 

are 16.1 and 15.9 mm, respectively. If the postmortem a-p compression occurred evenly on the femoral 

condyles, then this symmetry should be the original condition. On the lateral epicondyle of KNM-BG 35250B 

(Figure 3c), there is a large, deep and round fovea for the lateral collateral ligament (lc). Distoposteriorly, 

there is a deep oblong depression for the tendon of m. popliteus (po). On the medial epicondyle (Figure 3d), 

there is a deep fovea for the medial collateral ligament (mc). The origin of m. popliteus is fairly developed but 

not groove-like as in Morotopithecus bishopi (Mactachy et al., 2000). 
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Comparative Remarks 

The previously described proximal femora (Rose et al., 1996) exhibit a close morphological affinity to these 

new specimens but are more fragmentary. Newly recognized characters are as follows: Head projection beyond 

the greater trochanter, wide articular cover of the head, moderately enlarged head relative to neck diameters, and 

high neck shaft angle. Characters of the distal femur are all new reports. 

While the femur of N. kerioi generally resembles that of Proconsul, it differs from the latter in a higher neck 

angle, shorter neck, somewhat better developed posterior bar of the trochanteric fossa, more medially directed 

lesser trochanter, more proximally located gluteal tuberosity, and square-shaped patellar surface (rather than 

trapezoid), although intra-specific variability in these features should also be considered (Rose et al., 1996; this 

study; see Ward et al., 1993 for the Proconsul femoral features). These features, except the orientation of the 

lesser trochanter, distinguish N. kerioi from Ugandapithecus major (Gommery et al., 1998, 2002). The femur of 

N. kerioi remarkably differs from that of M. bishopi. In fact, M. bishopi is distinct among the African Miocene 

hominoids whose femoral morphology is known in its small femoral head relative to the neck (Table 2) and the 

absence of the anterior displacement of the head (MacLatchy et al., 2000). N. kerioi further differs from M. 

bishopi in the developed posterior trochanteric bar, better-developed gluteal ridge, stronger projection of the m. 

gluteus minimus insertion, less rounded neck cross-section and more symmetric femoral condyles (see 

MacLatchy et al., 2000). Despite of these differences, they are similar in showing the short and highly angled 

neck and medially projecting, proximally positioned lesser trochanter and (possibly) rectangular patellar surface. 

N. kerioi resembles E. africanus in the morphology of the proximal femur (Rose et al., 1996) and a 

square-shaped patellar surface [see McCrossin (1994)]. The femur of E. africanus is long and slender, and lacks 

marked m-l expansion (Le Gros Clark and Leakey, 1951; Ruff et al., 1989; McCrossin, 1994). Although the 

femur of N. kerioi seems to lack marked shaft m-l expansion, it is uncertain if the shaft is slender like E. 
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africanus. N. kerioi differs from Sivapithecus in a more emphasized platymery and m-l asymmetry of the distal 

femur in the latter (Madar et al., 2002).  

Rose et al. (1996) interpreted that features of the proximal femur in N. kerioi are related to well-developed 

lesser and greater gluteal muscles and that the lesser gluteal muscles functioned as rotators as well as extensors 

during arboreal quadrupedalism and climbing. While engaging in these activities, the thigh must experience 

partial external rotation with the knee being partially flexed and pointing laterally. Newly recovered characters 

such as the wide articular coverage of the head, moderate expansion of the head and the high projection of the 

head concur with their interpretation. However, it is not readily explained why a relatively short neck is 

observed, which would sacrifice hip joint mobility. This is a conundrum that is also known in M. bishopi. To 

ensure a wide range of hip joint motion, a high neck angle should be essential for a short neck (MacLatchy et 

al., 2000).  

The distal joint morphology complicates such a straightforward functional interpretation. An 

asymmetrically wider medial condyle is suggestive of emphasized loading of the medial side of the knee 

(Rafferty and Ruff, 1994; Mader et al., 2002). Thus, condylar width asymmetry in primates has been 

interpreted as an emphasis of thigh abduction in relation to arboreal quadrupedalism and/or climbing (Tardieu, 

1981; Jungers and Susman, 1984; Fleagle, 1977; Fleagle and Meldrum, 1988; MacLatchy et al., 2000; Mader 

et al., 2002). If the knee of N. kerioi experienced habitual abduction, then condylar width asymmetry would 

have been accentuated similarly to Proconsul and M. bishopi (Figure 3e, Table 2). However, this is not the 

case.  

The patellar surface morphology poses a similar question. A trapezoidal patellar surface with a proximally 

extended lateral side suggests that the contraction of the vastus lateralis was proportionally greater (Fleagle 

and Meldrum, 1988) and concerts with a flexed and abducted knee, a posture suitable for a medium-sized 

mammal to keep balance above a branch. While this is the case for in P. nyanzae (Figure 3e), the patellar 
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surface in N. kerioi is square-shaped. To our knowledge, there is no living large-sized primate that shows N. 

kerioi-like knee morphology. Though admittedly speculative, these differences may reflect that the knee joint 

took more various positions compared to Proconsul. 

 

Patella 

Description 

The proximal half of the right patella (KNM-BG 35250Z) is preserved (Figure 4). The maximum m-l 

width is 22.6 mm, probably being 1 to 2 mm less than the true maximum width. The maximum a-p thickness 

is 9.8 mm. The articular surface is broad and weakly convex m-l. The proximolateral border of the superior 

surface forms an osteophyte projecting proximally.  

 

Comparative Remarks 

Due to the fragmentary nature, KNM-BG 35250Z adds little to knowledge already obtained from a 

previously collected specimen (KNM-BG 15535) (Rose et al., 1996). The m-l width of KNM-BG 35250Z is 

approximately 1.2 times of KNM-BG 15535, suggesting that the latter is a female specimen. Important 

features of N. kerioi patella are m-l wideness, a-p shallowness, and a shallow saddle-type articular surface, 

which permits conjunct/adjunct rotations around the a-p axis (Rose et al., 1996). This form is common with P. 

heseloni and E. africanus (McCrossin, 1994; Ward et al., 1995; Rose et al., 1996) and likely represents the 

primitive state for hominoids (Ward et al., 1995) or catarrhines (Rose et al., 1996). 

 

Tibia 

Description 

The left tibia consists of three distinct pieces: 94 mm long proximal part with epiphysis (KNM-BG 

Figure 4 

Figure 5 
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35250E), 107 mm long shaft (KNM-BG 35250AF), and 30 mm long distal epiphysis (KNM-BG 35250H) 

(Figure 5a). The right tibia consists of 57 mm long proximal (KNM-BG 35250AE) and 27 mm long distal 

epiphyses (KNM-BG 35250L) (Figure 5h, e). All of these specimens were subjected to plastic deformation 

and cracking. Due to better preservation, the description is mainly provided on the left tibia for the proximal to 

middle section and on the right for the distal section. 

KNM-BG 35250E is subjected to m-l compression. The medial plateau of the proximal surface is 

displaced posteriorly and the lateral plateau anteriorly (Figure 5c). The medial plateau is hemi-circular and 

shallowly concave. The a-p length is 26.6 mm. The lateral plateau is ovoid and 23.3 mm along its long axis. It 

is concave in the m-l direction and slightly convex in the a-p direction. The tubercles of the intercondylar 

eminence are abraded. The lateral condyle is thick and the s-i height measures 11.7 mm at the center of the 

fibular facet. The fibular facet is flat and faces distally (Figure 5a). It is 12.2 mm in length and 4.8 mm in 

width. A moderately wide tibial tuberosity (10.4 mm) is located 10 mm below the anterior border of the 

proximal surface.  

Although the shaft piece (KNM-BG 35250AF) does not join with the proximal and distal piece, the shape 

of its proximal break suggests that only a short part is missing between it and KNM-BG 35250E (Figure 5a). 

The lateral cortex is broadly collapsed into the medullary cavity and no useful shaft measurements can be 

taken. The composite length of KNM-BG 35250E, AF and H (measured excluding the medial malleolus) is 

217 mm. Given that the BM of KNM-BG 35250 was 22 kg (Ishida et al., 2004), a great ape prediction model 

estimates 225 mm and a cercopithecoid model 231 mm (Jungers, 1984). Thus, it remains unclear which model 

fits better. A subadult female P. heseloni (KNM-KPS 3), with an estimated BM of 9.3 kg (Rafferty et al., 

1995), has a 181 mm long tibia, which accords with an estimate based on the cercopithecoid model (179 mm) 

rather than the great ape model (198 mm). 

The right distal tibia (KNM-BG 35250L) is subjected to postmortem m-l compression (Figure 5d-f). The 
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posterior cortex is partially collapsed and the groove for the tendon of m. tibialis posterior is broken. The 

fibular notch is wide and deep, forming an angle of 120° in distal view. Due to surface erosion and a 

remaining matrix layer, the articular surface of the synovial distal tibio-fibular joint cannot be defined, 

unlike previous specimens (Rose et al., 1996). The trochlear articular surface is 19.8 mm in the a-p length. The 

articular surface is widest (13.8 mm) anteriorly and narrowest (10.9 mm) at the bottom of the fibular notch 

(these measurements are affected by deformation). A well-defined median keel divides the articular surface 

into the lateral and medial portions. The keel is pronounced anteriorly and ends at the median beak on the 

anterior border of the distal tibia. The lateral portion is wider than the medial one, especially in the anterior 

portion. The most anterior part of the medial portion faces distoanteriorly (Figure 5d). This part would contact 

the trochlear articular extension on the neck of the talus (see below) in full dorsiflexion. The lateral and medial 

portions are well concave a-p and to a lesser extent m-l. Although the medial malleolus is not long, it is thick 

(Table 3). A thick malleolus is common in extant apes. The malleolar articular surface extends onto the 

anterior aspect of the malleolus, occupying the lateral half of the surface (Figure 5d), to form a large 

malleolar-talar cup complex (see below). In distal aspect, the attachment area of the deltoid ligament is widely 

excavated. 

Two other tibial specimens add little useful information. The right proximal piece (KNM-BG 35250AE) 

is smashed m-l (Figure 5h). The inter-condylar eminences are prominent, probably due to postmortem 

deformation. There is a deep pit on the medial side of the medial condyle, which is likely the insertion of m. 

semimembranosus (Figure 5h). The left distal epiphysis (KNM-BG 35250H) is strongly compressed a-p 

(Figure 5g). 

 

Comparative Remarks 

The distal tibia of N. kerioi generally resembles that of Proconsul (e.g., KNM-RU 1939 P. nyanzae; 

Table 3 
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Figure 5i, j). Although proximal tibial specimens are not many, a thick lateral condyle is also observed in P. 

heseloni (e.g., KNM-KPS 3). Features of the talocrural articular surface (salient median keel, distoanteriorly 

facing facet) provide joint stability in the close packed position (Conroy and Rose, 1983). The talocrural joint 

of these fossil apes lacks specialized mobility that living apes attain, and is more like that of cercopithecoids in 

this regard (Conroy and Rose, 1983). N. kerioi differs from Proconsul in the greater thickness of the medial 

malleolus. This trait is probably related to emphasized medial loading during inversion (DeSilva, 2009), and 

suggests a greater proportion of climbing in its total locomotor behavior. The very high value in U. major 

(Table 3) is probably size-related. 

 

Fibula 

Description 

The left fibula is represented by two separate pieces: 92 mm long shaft fragment (KNM-BG 35250AH) and 

76 mm long distal fragment (KNM-BG 35250F) (Figure 6a-c). The right fibula is represented by 111 mm long 

shaft (KNM-BG 35250AG) and 19 mm long distal fragment (KNM-BG 35250K) (Figure 6d-f).  

Both of the shaft pieces are flat m-l throughout and have a sharp anterior border and a rounded posterior 

border. Medially, a 3-4 cm long interosseous border runs distally from the proximal break in both specimens. 

Thus, these specimens preserve almost identical parts, with the right one preserving distally greater amount of 

the shaft. The right shaft is free from plastic deformation. It is widest a-p 4 cm above the distal break (11.0 

mm). Comparing it with a well-preserved fibula of P. heseloni (KPS-FB 5), this appears to correspond to the 

original maximum a-p diameter. At this level, the m-l diameter is 7.3 mm.  

In the (left) distal fibula (KNM-BG 35250F) the anterior border of the shaft changes course laterally as it 

descends distally, and approaches the apex of the fibular malleolus (Figure 6c). This leaves a triangular 

subcutaneous area on the anterior aspect of the bone. Medially, the attachment site of the anterior inferior 

Figure 6 
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tibiofibular ligament is prominent. The maleollus is long and projects distally and slightly laterally. The 

malleolar fossa is deep. The talar facet morphology is affected by postmortem a-p compression. However, it 

otherwise appears similar to that of previously reported specimens (Rose et al., 1996).  

 

Comparative Remarks 

The fibular shaft and distal joint features in N. kerioi are largely comparable with Proconsul and A. 

turkanensis (Walker and Pickford, 1983; Rose et al., 1996; Leakey et al., 1988; Walker, 1997; Ward 1998, 

Ward et al., 1993). Notable features are a flat but very robust shaft and large fibular maleollus. These 

characters are related to the development of m. flexor hallucis longus and ligamentous reinforcement of the 

talocrural joint, in relation to a strong hallucal grasp (Walker and Pickford, 1983; Rose et al., 1996).  

 

Talus  

Description 

The left talus (KNM-BG 35250I) is well preserved (Figure 7), although some damages are noted. The 

lateral tubercle of the posterior talar body is broken off. The medial tubercle is dorsally displaced. The talar 

head is dorsoplantarly compressed being resulted in m-l expansion and flattening of the distoplantar surface. 

Cortical cracks on the middle and posterior articular surfaces of the talocalcanean joint suggest that these 

regions also suffered from postmortem compression. 

The trochlea is 15.5 mm in anterior width and 15.2 mm at mid-width [measurements following Rose et 

al. (1996)]. The a-p length is 23.2 mm along the lateral trochlear rim. The trochlea is moderately long (or 

narrow): Width/length ratio [index 1 in Rose et al. (1996)] is 70.7%. It is only faintly wedged posteriorly 

[wedging index = 96.2%; index 3 in Rose et al. (1996)] with the medial and lateral trochlear rims virtually 

being parallel (Figure 7a). The trochlear groove is deep, and the lateral rim is much higher than the medial one. 

Figure 7 
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Thus, the lateral slope of the trochlear groove is far wider than the medial slope (Figure 7e). Although the 

medial rim might be lowered by postmortem compression, the asymmetry of the distal tibial joint (Figure 5) 

indicates that the medial rim was originally lower than the lateral rim. In dorsal view, the lateral rim projects 

more distally than the medial rim. The medial rim runs distomedially and continues to the anterior border of a 

cup-shaped depression (malleolar cup) on the neck (Figure 7a). The malleolar cup is large. Lateral to the 

malleolar cup and beyond the medial trochlear rim is a wide depression, which is reciprocal for the median 

beak on the anterior border of the distal tibia.  

The lateral surface of the trochlea is moderately tall. This surface is vertical except for the triangular-shape 

inferior part (Figure 7c). Posterior to the lateral articular surface is a deep pit for the posterior talofibular 

ligament. The trochlear height measured at the most distal level of the lateral rim is 12.8 mm. The trochlear 

height/length ratio (56.9 %) is common in anthropoids [index 2 in Rose et al. (1996)]. The medial tubercle of 

the posterior talar body is very large (Figure 7b) as seen in some atelines (Alouatta, Lagothrix). This tubercle 

guides the tendon of m. flexor hallucis longus medially and bears the attachment of the posterior tibiotalar 

ligament.  

On the plantar aspect, the posterior surface of the talocalcanean joint is 17.5 mm long along the long axis 

and concave to a degree common in extant non-hominoid catarrhines. Its anterior margin is beveled 

distoanteriorly, to contact with the calcaneal body in the close packed position. The sulcus tali is deep, and it 

was certainly deeper before the fractures of the posterior and middle calcanean articular surfaces (Figure. 7b: 

st). Medial to the distal articular surface of the talocalcanean surface is a deep pit for the talo-navicular 

ligament (tn). 

The neck deviates medially, forming an angle of 144° with respect to the medial trochlear rim. The neck is 

moderately wide (13.8 mm at the narrowest part) [index 4 (Harrison, 1982) = 59.5 %]. The relative neck 

length [index 3 (Harrison, 1982)] is also intermediate (65.9 %). The head is very wide (18.3 mm) with the 
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relative width [index 5 (Harrison, 1982)] of 78.9 %. However, this is exaggerated by postmortem deformation. 

The original size of the head is unknown. 

 

Comparative Remarks 

Previously, the talar morphology of N. kerioi was reported based on KNM-BG 15529, a weathered talar 

trochlea (Rose et al., 1996). The trochlea of KNM-BG 35250I generally resembles this specimen (Figure 8), 

except its d-p taller form. This difference resulted from postmortem deformation in KNM-BG 15529. 

The talar morphology is generally homogenous in African Miocene apes (Harrison 1982; Conroy and Rose, 

1983; Langdon, 1986) and N. kerioi is not exceptional. The trochlea is a subtly asymmetric trapezoid with 

weak posterior wedging, rather than the asymmetric quadrangle with strong posterior wedging observed in 

extant African apes (Ward, 1998). It is neither very long nor very wide (Rose et al., 1996). The trochlear 

groove is deep being similar to cercopithecoids, though differing from the shallow morphology as observed in 

extant African apes (Harrison 1982; Conroy and Rose 1983; Langdon 1986). The lateral rim is higher than the 

medial rim (Harrison 1982). Like cercopithecoids, the malleolar cup is well developed and a concave tibial 

stop is formed at the distal border of the trochlear groove (Le Gros Clark and Leakey, 1951; Harrison, 1982; 

Conroy and Rose, 1983; Ward et al., 1993). The neck orients medially, more than orangutan, platyrrhines and 

prosimians, but less than gorillas and humans (Harrison, 1982). Since these features are generally common 

among Pliopithecus and small-sized non-cercopithecoid catarrhines from the Miocene of Africa, these 

represent the primitive catarrhine condition (Conroy and Rose 1983; Langdon 1986; Rose 1993; Ward et al. 

1993). In these fossil African apes, inversion of the talocrural joint is intermediate between extant 

cercopithecoids and great apes, and conjunct inversion and abduction occur during dorsiflexion like the 

cercopithecoid ankle (Conroy and Rose, 1983). The tibial stop in the distal trochlea, and the maleollar cup 

provides the joint with stability in full dorsiflexion, which might have been taken in the propulsive thrust 
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toward the end of the stance phase in quadrupedal walking and/or climbing. This basic foot structure is 

representative of extant monkeys and apes, and was certainly suitable for a wide range of generalized arboreal 

activities (Conroy and Rose, 1983).  

However, there is some (relatively minor) variation among these fossil hominoids. In N. kerioi, the 

asymmetry of the trochlea groove is more emphasized than in Proconsul and other African fossil hominoids 

due to a more prominent lateral trochlear rim (Figure 8), which may be related to effective weight transfer 

during inversion. The medial tubercle of the posterior talar body is remarkably large, suggesting greater 

development of the long hallucal flexor, which must be associated with the unusually large size of the hallux 

(Nakatsukasa et al., 2003). The implication is that N. kerioi engaged in climbing or other antipronograde 

activities more frequently compared to Proconsul. 

 

Calcaneus 

Description 

The distal segment of the right calcaneus (KNM-BG 35250O) is preserved (Figure 9). The proximal break 

crosses the calcaneal body obliquely from the posterior base of the sustentaculum tali to the distolateral corner 

of the posterior talar facet (PTF). The sustentaculum tali is intact. The margin of the cuboid facet is eroded 

with exception of the plantarmedial part. 

The maximum breadth of the body (Harrison, 1982) is 25.4 mm. Although the distal segment (distal from 

the anterior border of the PTF) appears somewhat short, this is an artifact of erosion on the cuboid facet. The 

middle talar facet (MTF) on the sustentaculum is continuous with the anterior talar facet (ATF) via a narrow 

articular band (isthmus). The breadth of the MTF is 6.8 mm and the combined MTF/ATF length is 19.6 mm. 

The relative width of the MTF is as low (34.7 %) as macaque and gibbon (index 7 in Rose, 1986). The 

MTF/ATF region is strongly curved in medial view (Figure 9b). Lateral to the articular isthmus is a 

Figure 8 

Figureure 
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distinctively deep (>2 mm) pit for the interosseous talocalcaneal ligament (ITL). Under the sustentaculum, 

there is a quite deep groove for the tendon of m. flexor hallucis longus. This condition is accentuated by the 

lateral expansion of the distomedial planter tubercle, the site of origin for the short plantar ligament and most 

fibers of the spring ligament. 

 

Comparative Remarks 

KNM-BG 35250O differs from the previously described calcaneus (KNM-BG 17805; Rose et al., 1996) 

(Figure 9d, e) in the height of the distal body and the deep pit formation for the ITL. However, the 

shallowness of the distal calcaneal body in KNM-BG 17805 is attributed to postmortem deformation (see 

below). In KNM-BG 17805, the attachment of the ITL is a shallow depression.  

There is additional calcaneal material from the KNM-BG 15532 specimen, which was collected in 1984 

and never reported (Figure 9f). KNM-BG 15532 is a distal half of a small right calcaneus, missing the 

calcaneal tuberosity, sustentaculum tali and medial half of the cuboid facet. The middle and distal segment 

length (distal from the posterior border of the PTF) is 24.5 mm. This specimen is likely a small female or an 

immature male. It resembles KNM-BG 17805 in the morphology of the medial plantar process (only its 

anterior portion is preserved) and KNM-BG 35250O in general morphology except for a shallower groove for 

the tendon of m. flexor hallucis longus (probably, size-related) and the absence of a deep ITL pit. The PTF of 

KNM-BG 15532 is almost intact. It is oval in outline (12.3 mm long and 8.1 mm wide) with its long axis 

being modestly angulated proximomedially to distolaterally. The relative width of 65.9 % is moderate (Rose, 

1986). The PTF is tightly curved along the long axis. The degree of the curvature is tightest at midpoint. The 

cuboid facet is broken dorsomedially. The peripheral (lateral and dorsal) part of the cuboid facet is fairly wide 

and flat resembling calcanei of extant African apes (Rose, 1986). 

These features are generally common in other African fossil hominoid calcanei. The subtalar articulation 
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probably had a greater range of motion than in extant cercopithecids but received habitual loading in either 

inversion or eversion, without large weight-bearing in transitional position (Conroy and Rose, 1983; Harrison, 

1982; Rose, 1986; Rose et al., 1996; Ward et al., 1993). A good development of the medial plantar process 

suggests well-developed intrinsic toe flexors, which would facilitate toe grasp even during foot dorsiflexion 

(Sarmiento, 1983; Rose et al., 1996).  

However, a deep pit for the ITL attachment site observed in KNM-BG 35250O is rare in fossil apes and 

living catarrhines. In Proconsul, its morphology varies from a shallow depression to a rugose surface. U. 

major (KNM-SO 390) shows a somewhat similar pit, but much less deep. This site is merely a rugose surface 

in Sivapithecus (Rose, 1986). Although a deep pit is observed in only one out of the three N. kerioi calcanei, 

none of the other African Miocene ape calcanei (about 10) show a similar feature. More N. kerioi specimens 

are necessary to evaluate the frequency and expression of this trait.  

 

Medial cuneiform 

Description 

The left medial cuneiform (KNM-BG 35250AI) is almost intact (Figure 10). The a-p length is 18.8 mm. The 

d-p length is 21.8 mm. The relative length (Harrison, 1982) is 86.2%. The m-l width is 10.5 mm. The margin 

of the proximal (= navicular) articular surface is partly abraded. It is elliptical (9.4 mm wide and ~12 mm 

long).  

The hallucal metatarsal (MT1) articular surface is 18.6 mm high. It is reniform and well convex m-l (Figure 

10b). The MT1 articular surface in N. kerioi is not a simple ellipse. Its main articular region is a bulged band 

which spirals on the medial and distal sides of the bone superomedially to inferodistally. However, along the 

plantar articular border, the peripheral region incurves dorsally (upward). Therefore, the plantar third of the 

whole articular surface takes seller form.  
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On the lateral side, there are proximal and distal facets for the intermediate cuneiform, and the MT2 facet. 

The latter facet is continuous with the distal facet for the intermediate cuneiform. 

 

Comparative Remarks 

The medial cuneiform of N. kerioi is similar to that of Proconsul in overall shape. However, the prehallux 

articulation, which is present in Proconsul, is absent in N. kerioi. The prehallux participates in the medial 

cuneiform-MT1 joint medioplantarly. The presence of this bone is a primitive feature retained in platyrrhines 

and gibbons (Lewis, 1972; Conroy 1976; Harrison, 1982). When the MT1 is fully abducted on the medial 

cueniform, a bare joint surface remains on the medioplantar part of the articular surface in Proconsul, which 

would serve for the prehallux (Figure 10f). There is no equivalent surface in N. kerioi. An absence of the 

prehallux is also evidenced from the MT1 morphology (see below). However, the occurrence and 

development of the prehallux are rather variable individually and ontogenetically, and its utility for functional 

and phylogenetic consideration is questioned (Wikander et al., 1986). The medial cuneiform in N. kerioi is 

unusually large for its body mass being approximately equal to that of P. nyanzae (Figure 10). The large size 

is unquestionably related to the large hallux. 

 

Metatarsals 

Five MT specimens are associated with KNM-BG 35250. Four of them preserve the proximal joint. The 

remaining specimen is a non-hallucal MT head with a short piece of the shaft and cannot be assigned to a 

particular ray.  

KNM-BG 35250AJ is the right MT1. The head is missing along with the distal shaft (Figure 11a, b). The 

preserved length is 39 mm. The shaft is squashed d-p. [Note orientations are defined by the human standard 

anatomy and differ from those in articulated position (= in opposition) here.] Likewise, the epiphysis is 

Figure 10 

Figure 11 
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compressed d-p to a lesser degree (Figure 11c). Due to this compression, the proximal articular surface is 

lower d-p and more tightly curved than it would have been. The articular surface is reniform. There is no 

articular extension on the medial side of the bone, which would contact with the prehallux if it exists (see 

Figure 11d). 

The MT1s of African Miocene apes are generally uniform. It is large and robust and the proximal joint 

ensures good abduction-adduction mobility (Harrison, 1982; Walker and Pickford, 1983; Ward et al., 1993). 

The sole exception is E. africanus, which is reported to have a reduced articular surface of the proximal joint 

and suggested to have had a limited range of abduction (McCrossin, 1994).  

A 20 mm long proximal part of the left MT2 (KNM-BG 35250AK) is preserved (Figure 11e, f). The 

proximal articular surface measures 11.4 mm m-l and 12.9 mm d-p. On the lateral side of the shaft, there are 

articular surfaces for the lateral cuneiform and MT3. On the medial side, there is a large-rectangular articular 

surface for the medial cuneiform (8.8 mm high, 5.2 mm long). The broken end of the shaft is ovoid being 6.9 

mm m-l and 9.1mm d-p. This specimen is similar to that of Proconsul, particularly KNM-RU5872P. The size 

of the epiphysis is also equivalent (11.2 mm, 12.5 mm). However, the shaft is more slender compared with P. 

nyanzae (8.2 mm m-l and 10.2 mm d-p at the comparable level). 

The left MT4 (KNM-BG 35250AL) is a 30 mm proximal part (Figure 11g, h) and is squashed m-l. The 

cortex of the shaft is cracked and collapsed into the medullary cavity. The epiphysis is also compressed and 

the articular surfaces for the MT3 are flattened. The lateral surface bears an extensive, concave articular 

surface for the MT5 (Figure 11g).  

The left MT5 (KNM-BG 35250AM) is broken proximal to the head (Figure 11k, l). The preserved length 

is 62.4 mm. The proximal articular surface is triangular in shape, wide (10.2 mm in width and 7.3 mm in 

medial height), and well convex d-p, which suggests hyper-dorsiflexion capabilities (Figure 11k). On the 

medial side, there is a large crescent articular surface for the MT4. The dorsal horizontal part is long and faces 
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dorsomedially. The styloid process is obtuse, but projects proximolaterally, with the insertion of the m. 

peroneus brevis located far laterally. Proximomedially on the plantar side, there is a tubercle for the origin of 

m. flexor digiti minimi brevis (Figure 11l, arrow). Between this tubercle and the styloid process, there is a 

groove for m. abductor digiti minimi. The shaft is slender. The cross section is d-p long and elliptical. At 

approximately mid level, it is 5.0 mm m-l and 5.8 mm d-p. This specimen closely resembles KNM-RU 5872H 

P. nyanzae specimen (Figure 11m). The latter specimen is slightly larger in overall size and the shaft is more 

robust. 

A 3.0 cm long distal end of a metapodial (KNM-BG 35250AN) of a lateral ray has also been collected 

(Figure 11i, j). The head is squashed m-l. Even if deformation is taken into account, the narrowness of the 

head bears a greater reminiscence of a MT rather than to a metacarpal [e.g., KNM-BG 17807; see Rose et al. 

(1996)]. Apart from the head proportion, its articular features are common with those of the metacarpal (which 

is also true for P. heseloni). The pits for the collateral ligaments are located close to the mid-line so that the 

articular surface is pinched dorsoproximally. On the plantar side, the articular surface is more extensive 

proximally near the medial and lateral sides, which accommodate the sesamoid bones. However, “fluting” to 

separate sesamoid areas from the central part (Lewis, 1989) is absent. This suggests that the 

metatarsophalangeal joint allowed higher degrees of abduction-adduction and rotations, though not as 

extensively as is in extant great apes (Rose et al., 1996). The shaft is circular in cross section and thicker than 

the distal shaft of KNM-BG 35250AM (6.2 mm d-p and 6.1 mm m-l at the break). 

 

Discussion 

The hind limb of N. kerioi is generally similar to those of other early/middle Miocene African hominoids 

but shows some distinctive traits. However, the distinctiveness is less outstanding when compared to its 

forelimb. This is probably due to differentiated functional roles in positional behavior between the fore- and 
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hind limbs of primates. While the forelimb determines the direction of movement and the body position with 

respect to support, the hind limb principally works to produce propulsive force. Therefore, without some 

specialized form of locomotor/positional adaptation (e.g., leaping, running, deep crouching), the hind limb 

may retain generalized ancestral morphology. The hind limb of the early Oligocene Aegyptopithecus was 

primarily adapted for arboreal pronograde quadrupedalism and (to a lesser degree) climbing (Ankel-Simons et 

al., 1998) with some leaping (Gebo and Simons, 1987). The early Miocene Proconsul had limb bones 

reminiscent of such ancestral catarrhine condition except a few major differences such as more elongated limb 

long bones and wider excursions of the limb joints (Walker, 1997). Probably, Proconsul was a predominantly 

arboreal and slow-moving quadruped relying on strong grasping. This condition is largely retained in the hind 

limb of N. kerioi. Rose (1983) has rightly noted this point as follows: “differences between earlier and later 

Miocene hominoids are mostly of degree rather than of kind. The basic plan upon which these variations were 

made was evidently a very successful one. This success was based on a generalized morphology underlying 

generalized capabilities (P. 415).” 

The present study corroborated the initial interpretation of the hind limb anatomy of N. kerioi (Rose et al., 

1996). N. kerioi has an extremely developed capacity for foot grasping. Rose et al. (1996) correlated the 

development of the medial process of the plantar calcaneal tuberosity (Figure 9d) with the development of the 

intrinsic toe flexors, which can work without being interrupted by movement/posture of the ankle joint. 

Morphology of the hallucal MT head led Rose et al. (1996) to conclude that abduction-adduction and axial 

rotations (for hallucal grasping) are as important as flexion-extension at the MT-phalangeal joint. One of the 

most remarkable specializations in N. kerioi is its absolutely large foot. The distal portion of the foot is as long 

as that of P. nyanzae whose body mass could reach as much as 35 kg (Rafferty et al., 1995) or 1.5 times that of 

N. kerioi. The (non-hallucal) MTs appear relatively gracile due to elongation whereas the proximal joints are 

enlarged. Although the distal tarsal row is represented only by the medial cuneiform, which is large for the 
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presumed body mass, other cuneiforms and cuboids are probably large at least in their distal portions. 

Likewise, the length of the hallux is comparable to that of female chimpanzees (Nakatsukasa et al., 2003). A 

large foot with a developed hallux likely enabled N. keroi to grasp relatively thick vertical supports securely. 

This suggests a more frequent use of (sub)vertical supports compared to above-branch pronograde quadrupeds 

like Proconsul though this does not mean Proconsul did not rely on hallucal grasping while moving on 

branches. 

The inferred kinetic features of the talocrural and intertarsal joints are similar to those of the other fossil 

hominoids regarding the range of movements and magnitude of stability, and in these regards, early/middle 

Miocene African hominoids are intermediate between cercopithecids and extant great apes, and more similar 

to the former (Conroy and Rose, 1983; Walker and Pickford, 1983; Langdon, 1986; Rose, 1993; Ward et al., 

1993). The ankle joint assumed the close-packed position in full dorsiflexion similar to cercopithecids. The 

talocrural and subtalar joints do not have extra inversion and enhanced conjunct inversion and abduction 

accompanying dorsiflexion as seen in extant great apes. However, the foot of N. kerioi might have been more 

specialized to take an inverted position to grasp (sub)vertical support if compared with Proconsul or A. 

turkanensis. This is suggested from the thick tibial malleolus and the emphasized elevation of the lateral rim 

of the talar trochlea.  

Adaptation of the hip and knee joints is somewhat vague. Rose et al. (1996) noted that N. kerioi differ for 

Proconsul in several hind limb traits; a shorter neck, more medially directed lesser trochanter, a shorter 

distance between the gluteal tuberosity and grater trochanter, more gracile proximal shaft of the femur, partial 

external rotation with the knee semi-flexed and pointing laterally. However, the morphology of the knee seems 

to preclude habitual abduction (combined with flexion). N. kerioi might have adopted varying (atypical) knee 

positions rather than general habitual knee abduction. The Proconsul hip joint probably allowed the species to 

take a wide variety of postures/movements (Ward et al., 1993). However, it might have also taken strongly 
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abducted positions more frequently. The same inference has been put forth for Sivapithecus (Madar et al., 

2002). Probably, the hip and knee joints in these fossil apes were not specialized for any single particular 

behavior, but relative frequencies of various joint motions/postures. Therefore, functional meanings that 

account for noticeable morphological variability are difficult to specify. More specimens are needed to reach 

any explicit conclusion.  

In summary, the hind limb of N. kerioi shows a greater affinity to other hominoids from the early/middle 

Miocene of Africa (e.g., Proconsul, Afropithecus, Equatorius) than to extant hominoids. However, several 

characters that distinguish N. kerioi from other early/middle Miocene African hominoids do exist. These 

features are suggestive of a greater role of antipronograde activities in N. kerioi compared to other Miocene 

“pronograde arboreal quadrupeds”. 
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Figure legends 

 

Figure 1 

Ischia of N. kerioi. a: left (KNM-BG 35250G). b: right (KNM-BG 35250Y). Note a large ischial spine located 

relatively cranially. Scale bar = 1 cm. 

 

Figure 2 

Right proximal femur (KNM-BG 35250A) in proximal (a), anterior (b) and posterior view (d) and left 

proximal femur (KNM-BG 35250D) in anterior (c) and posterior view (e). The head of KNM-BG 35250A is 

anteriorly displaced and rotated anteromedially. The latter is postomortem deformation. Note the wide 

articular cover of the head (arrow in (d) indicates the articular margin). Horizontal lines in (d) and (e) shows 

the relative elevation of the greater trochanter. In (e) arrows indicate the large crista trochanterica. Scale bar = 

5 cm. 

 

Figure 3 

Left distal femur (KNM-BG 35250J) in anterior (a) and posterior view (b) and right distal femur (KNM-BG 

35250B) in medial (c) and lateral view (d). Note a square-shaped patellar surface (shown by arrows in (a)) and 

condylar width symmetry (compare white lines in (b)). In P. nyanzae (KNM-RU5527 left femur), the patellar 

surface is trapezoidal with a more raised lateral rim and the medial condyle is asymmetrically wider than the 

lateral one (e). lc: fovea for the lateral collateral ligament. po: depression for the tendon of m. popliteus. mc: 

fovea for the medial collateral ligament. Scale bar = 5 cm. 

 

Figure 4 
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Proximal fragment of the right patella (KNM-BG 35250Z) in proximal (a), anterior (b) and posterior view (c). 

Scale bar = 1 cm. 

 

Figure 5 

Tibiae of N. kerioi and P. nyanzae a: Left tibia fragments (KNM-BG 35250E/AF/H) in lateral view. b-c: Left 

proximal tibia (KNM-BG 35250E) in medial (b) and proximal (c) view. d-f: right distal tibia (KNM-BG 

35250L) in distal (d), lateral (e), and posterior (f) view. g: left distal tibia in distal view (KNM-BG 35250H). 

h: right proximal tibia (KNM-BG 35250AE) in lateral view. i-j: Left tibia of P. nyanzae (KNM-RU 1939) in 

lateral (i) and posterior (j) view. Note the thick medial malleolus of N. kerioi (d, f). Scale bar = 5 cm. 

 

Figure 6 

Fibulae of KNM-BG 35250. Left shaft KNM-BG 35250AH in anterior (a) and medial (b) view. c: left distal 

fragment KNM-BG 35250F in medial view. Right shaft KNM-BG 35250AG in anterior (e) and medial (d) 

view. f: right distal fragment KNM-BG 35250K. Scale bar = 2 cm. 

 

Figure 7 

Left talus of N. kerioi KNM-BG 35250I in dorsal (a), plantar (b), lateral (c), medial (d) and distal (e) view. st: 

sulcus tali. tn: attachment of talonavicular ligament. Scale bar = 1 cm. 

 

Figure 8  

Tali of fossil hominoids in posterior view. a: N. kerioi KNM-BG 35250I. b: N. kerioi KNM-BG 15529 

(reversed). c: P. nyanzae KNM-MW 13142C (reversed). d: P. nyanzae KNM-RU 1743. e: A. turkanensis 

KNM-WK 18120. f: U. major KNM-SO 390 (reversed). Photographs were taken with the lateral side of the 
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trochlea being set vertical. White lines compare the orientation of the trochlear surface. Not to scale. 

 

Figure 9 

Right calcanei of N. kerioi. a-c: KNM-BG 35250O in dorsal (a), medial (b) and distal (c) view. d-e: KNM-BG 

17805 in medial (d) and dorsal (e) view. f: KNM-BG 15532 in dorsal view. The arrow indicates the most 

distal part of the medial process of the plantar calcaneal tuberosity. Scale bar = 1 cm. 

 

Figure 10 

a-d: Fossil left medial cuneiforms. N. kerioi KNM-BG 35250AI in medial (b), distal (b) and lateral (c) view. P. 

nyanzae KNM-RU 5872G in medial view (d). Scale bar = 1 cm. f: articulated medial cuneiform and hallucal 

metatarsal of P. nyanzae KNM-RU 5872. Note the articular areas for the prehallux (arrows). 

 

Figure 11 

a-c: right hallucal metatarsal of N. kerioi (KNM-BG 35250AJ) in medial (a), lateral (b), proximal (c) view. d: 

left hallucal metatarsal of P. nyanzae (KNM-RU 5872E) showing the prehallux facet (asterisk). For 

convenience, orientations are defined by the human standard anatomy (not in the opposed position). Dorsal 

surface upward. e, f: left second metatarsal (KNM-BG 35250AK) in proximal (e) and dorsal (f) view. g, h: left 

fourth metatarsal (KNM-BG 35250AL) in proximal (g) and dorsal (h) view. i, j: distal fragment of metatarsal 

in dorsal (i) and distal (j) view. k-m: left fifth metatarsal of N. kerioi (KNM-BG 35250AM) in dorsal (k) and 

plantar (l) view and of P. nyanzae (KNM-RU 5872H) in dorsal view (m). Arrow indicates the origin of m. 

flexor digiti minimi brevis. Scale bar = 1 cm. 
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Table 1  Hind limb elements of KNM-BG 35250 described in this study. 

suffix description 
A right proximal 1/2 femur 
B right distal 1/3 femur 
D left proximal femur 
E left proximal 1/3 tibia 
F left distal fibula 
G left ischium 
H left distal tibia 
I left talus 
J left femoral shaft and distal end 
K right distal fibula 
L right distal tibia 
O right calcaneus 
Y right ischium 
Z right patella proximal fragment 
AE right proximal tibia 
AF left tibial shaft 
AG right fibula shaft 
AH left fibula shaft 
AI left medial cuneiform 
AJ right first metatarsal proximal half 
AK left second metatarsal proximal fragment 
AL left fourth metatarsal proximal fragment 
AM left fifth metatarsal lacking the head 
AN metatarsal head with shaft 



Table 2  Metric comparison of the femur. 
 

taxon  sex SIFD %SIFD GTPR %APFN %LCW 

Nacholapithecus KNM-BG 35250A & D m 22.1 159.8 -1.5 72.8 98.8 
Nacholapithecus KNM-BG 17821 m -  - 77.5 - 
Nacholapithecus KNM-BG 17778 f 17.6  -  - 
Proconsul nyanzae KNM-MW 13142A m 28.7 166.2 -1.0 78.5 - 
Proconsul nyanzae KNM-RU 5950 m 25.3 157.9 - 77.5 - 
Proconsul nyanzae KNM-RU 5527 ?m 25.5 158.3 - 73.4 76.6 
Proconsul nyanzae KNM-RU 1753 m 26.7 - - - - 
Proconsul heseloni KNM-RU 14227 f - - - - 89.6 
Proconsul heseloni KNM-KPS 3 (right) f 16.7 - - - - 
Proconsul Mean  - 160.8 - 76.5 83.1 
Equatorius BM-M16331 ?m 22.8 164.4 - 76.1 - 
Morotopithecus MUZM 80 ? 26.5 139.8 -1.5 88.1 81.1 
Ugandapithecus NAP IX B'64/65 m 30.9 152.3 -4.0 77.8 - 
Turkanapithecus KNM-WK 16950I ?m 17.6 149.7 -1.2 78.2 - 
Pan troglodytes Mean f 31.14 169.73 -2.44 85.29 81.14 
9 females SD  1.84 12.34 2.99 5.42 4.18 
Pongo pygmaues Mean f 31.50 182.51 -13.50 73.60 90.85 
4 females SD  1.07 13.06 1.73 4.59 4.78 
Hyobates lar Mean m 16.30 191.94 -1.75 82.11 75.67 
10 males SD  0.58 7.27 1.18 4.81 4.59 
Papio cynocephalus Mean m 23.36 151.85 9.20 73.97 88.20 
10 males SD  1.06 9.30 1.55 2.47 4.87 

 

SIFD: s-i diameter of the femoral head. %SIFD: relative head size (= SIFD / (neck s-i diam. x a-p diam.)0.5 
x 100). GTPR: greater trochanter projection relative to the head superior surface. %APFN: relative a-p 
diam. of the neck (= a-p diam. of the neck / s-i diam. x 100). %LCW: relative width of the lateral condyle 
(= lateral condyle w. / medial condyle w. x 100).  
 



Table 3  Size and shape of the tibial malleolus. For extant taxa, average (upper) and SD (lower). 
 

taxon Height 
(mm) 

Width 
(mm) 

width/height (%) 

Nacholapithecus kerioi  
KNM-BG 35250L 

9.7 9.3 95.88 

Proconsul heseloni 7.83 6.33 81.14 
N = 4 0.51 0.13 6.38 
Proconsul nyanzae 
KNM-RU 1939 

12 9.5 79.17 

Ugandapithecus major 
NAP I 1958 

13.1 13.8 105.34 

Pan troglodytes 13.06 12.61 97.75 
8 females 1.62 0.56 11.72 
Pongo pygmaues 8.5 11.53 138.96 
4 females 1.8 0.38 21.39 
Hylobates lar 6.38 6.01 94.56 
10 males 0.54 0.38 6.90 
Papio cynocephalus 11.27 8.73 77.46 
10 males 0.63 0.62 3.67 

 
Proconsul heseloni: KNM-RU 2036BA, 3589, 18390, KPS 3 (TB6). 
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