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ABSTRACT 

[Background and Aims] 

Plant physiological traits and their relation to soil N availability was investigated as regulators 

of the distribution of understory shrub species along a slope in a Japanese cedar (Cryptomeria 

japonica) plantation in central Japan.  

[Methods] 

At the study site, previous studies demonstrated that both net and gross soil nitrification rates 

are high on the lower slope and there are dramatic declines in different sections of the slope gradient. 

We examined the distributions of understory plant species and their nitrate (NO3
--N) use traits, and 

compared the results with the soil traits. 

[Results] 

Our results show that boundaries between different dominant understory species correspond to 

boundaries between different soil types. Leucosceptrum stellipilum occurs on soil with high net and 

gross nitrification rates. Hydrangea hirta is dominant on soil with high net and low gross nitrification 

rates. Pieris japonica occurs on soil with very low net and gross nitrification rates. Dominant 

understory species have species-specific physiological traits in their use of NO3
--N. Pieris japonica 

lacks the capacity to use NO3
--N as a N source, but other species do use NO3

--N. Lindera triloba, 

whose distribution is unrelated to soil NO3
--N availability, changes the extent to which it uses NO3

--N 

in response to soil NO3
--N availability.  

[Conclusions] 

Our results indicate that differences in the physiological capabilities and adaptabilities of plant 

species in using NO3
--N as a N source regulate their distribution ranges. The identity of the major form 

of available soil N is therefore an environmental factor that influences plant distributions. 

 

KEYWORDS 

Nitrate (NO3
--N); nitrate reductase activity (NRA); soil NO3

--N availability; spatial 

distribution; understory 
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INTRODUCTION 

Topography is among the factors that influence plant distributions on scales of tens to hundreds 

of meters. Plants often have species-specific distribution patterns along landscape slopes, with some 

occurring preferentially on upper slopes, others on lower slopes, and yet others spread across the 

whole gradient. Slope topography does not directly regulate species’ distributions; environmental 

factors that affect plant performance vary across different sections of slope. Soil moisture, nutrient 

availability (Enoki et al. 1997; Giesler et al. 1998; Small and McCarthy 2005), and ground surface 

disturbance (Enoki 2003; Sakai and Ohsawa 1993, 1994) are all regulators of plant growth that change 

with topographic features. Accordingly, there are different types of vegetation on different sections of 

slope. 

Previous analyses of soil N transformations at the site of the present study distinguished spatial 

patterns of different soil types across a selected gradient (Hirobe et al. 1998, 2001; Tokuchi et al. 1999, 

2000). On this gradient, net and gross nitrification rates are high and very low on the lower and upper 

slope sections, respectively, while net N mineralization rates show no clear gradient along the slope; 

the soil NO3
--N pool is larger on the lower slope than on the upper section, while the size of the total 

inorganic N pool does not change significantly along the gradient; and dramatic changes in NO3
--N 

availability occur only in a narrow section of the slope. The changes in soil types across topographic 

gradients occur elsewhere in connection with the gradient of environmental condition such as soil 

moisture contents (Giesler et al. 1998; Velthof et al. 2000; Tateno and Takeda 2003). However, the 

gradient changes in major N forms are especially dramatic at our chosen study site; NO3
--N is the 

major inorganic N species on the lower part of the slope, and ammonium (NH4
+-N) is the major form 

on the upper slope. 

Differences in the major forms of available N in soil likely have a strong impact on plants 

because there are intrinsic differences between plant metabolic processes that assimilate NO3
--N and 

NH4
+-N. Ammonium is directly assimilated into an organic form, whereas NO3

--N must first be 

reduced to NH4
+-N by enzymes such as nitrate reductase (NR) before incorporation into organic N. 

NR is a substrate-inducible enzyme, and the capacity to induce NR differs markedly among plant 

species; some are unable to induce NR, a necessary requirement for the utilization of NO3
--N as a N 

source (Al Gharbi and Hipkin 1984; Gebauer and Schulze 1997; Gebauer et al. 1988; Smirnoff et al. 

1984).  

The change of major form of soil inorganic N with forest succession has been considered as a 

regulating factor of species establishment in each successional stage through the plant physiological 

traits about N use (Kronzucker et al. 1997; 2003; Min et al. 1998). Taking into account the spatial 

heterogeneity of soil NO3
--N availability and the species-specific mechanisms of NO3

--N use, it seems 

very likely that the spatial distribution of different types of soils is a major factor regulating the 

distribution of plant species across landscapes. However, major N source identity has yet to be 
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regarded as an important regulating factor in coincidental plant distribution. In this study, we 

considered soil N transformation as a factor in plant distributions by examining whether plant species 

had different distribution patterns related to their different responses to the quantity and quality of 

available soil N. In addition, we examined the possibility that plant species’ distributions influence soil 

N transformation; we postulated that the underlying mechanism lies in differences in litter organic 

composition among species, which in turn should influence soil N dynamics (Bengtson et al. 2006; 

Ferrari 1999). 

We conducted a vegetation survey of understory species along a slope gradient for comparison 

with the spatial distribution of soil N transformation mechanisms; we also measured other 

environmental conditions including light, soil pH, and soil moisture. Dominant understory species 

were chosen for examination of NO3
--N use. To do this, we measured N concentration, NO3

--N 

concentration, and in vivo nitrate reductase activity (NRA) in plant leaves. The presence of NO3
--N 

within plant tissue is evidence of NO3
--N uptake, as plants generally do not have the capacity to 

synthesize NO3
--N except that certain legume species is observed generating nitrification (Hipkin et al. 

2004). In vivo NRA is an important indicator of plant NO3
--N use, since the reduction of NO3

--N to 

nitrite (NO2
--N) by NR is the first step and the rate-limiting mechanism in the whole sequence of NO3

-

-N assimilation processes (Beevers and Hageman 1969; Tischner 2000). Concurrent with plant 

measurements, we also measured inorganic N (NH4
+-N and NO3

--N) pool sizes in the soil samples 

associated with each sample plant. Measurements were made through the growing period to record 

seasonal patterns. By comparing spatiotemporal changes in plant leaf traits with soil inorganic N pool 

sizes, we were able to discern different species’ responses and physiological adaptations to NO3
--N use 

across the gradient of changing soil inorganic N pool sizes. 

 

MATERIALS AND METHODS 

Study site 

This study site is located in a plantation of Japanese cedar (Cryptomeria japonica D. Don; ca. 

50 yr old) on Mt. Ryuoh in central Japan (35°1´N, 136°20´E). The mean annual temperature and mean 

annual precipitation at the site are 10 °C and 2050 mm, respectively (Tokuchi et al. 1993). 

The site is on an approximately 135-m-long south-facing slope; elevation ranges from 765 to 

851 m. Mean slope inclination is 38.5° (range: 25.3–50.4°) [Fig. 1(a)]. The slope is slightly steeper in 

the central portion than in other sections. The change in inclination is gradual on the lower slope, but 

uneven in the upper section. The light conditions for understory species were measured based on the 

canopy cover ratio determined from hemispherical photographs taken over understory crowns [Fig. 

1(b)]. The canopy cover ratio was highest at the bottom of the slope and declined gradually upslope, 

ranging from 75.21 to 98.36%. There were some canopy gaps that had low canopy cover ratios. The 

change in canopy cover ratio along the slope was presumably due to changes in the size of canopy 
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trees (C. japonica) [Fig. 1(c); Tokuchi et al. 1999]. The mean diameter at breast height (DBH) of C. 

japonica. at the study site was 190 ± 57 mm, and it was higher on the lower slope than elsewhere. In 

contrast to aboveground biomass, the fine root biomass of C. japonica was lowest on the lower slope 

[Fig. 1(c); Kasuya and Shimada 1996]. The organic layer was thicker on the upper slope than lower 

down [Fig. 1(d); Hobara and Tokuchi 1998]. Soil pH was highest on the lower slope, and soil acidity 

changed gradually [Fig. 1(e); Hirobe et al. 1998; Yoshida unpublished data]. Hirobe et al. (1998) 

demonstrated a gradual decrease in soil water content with increasing distance from the base of the 

slope, although previous studies reported highly fluctuating soil water content along the slope [Fig. 

1(f); Kasuya and Shimada 1996; Yoshida unpublished data]. 

 In contrast to other environmental factors that change rather gradually along the slope, soil N 

transformation processes change dramatically in short sections of the gradient (Hirobe et al.1998; 

Tokuchi et al. 2000). Net soil nitrification rates were found to be much higher on the lower slope than 

at higher elevations, while net soil N mineralization rates were not clearly related to position on the 

gradient [Fig. 1(h)]. Net nitrification rates changed dramatically between 60 m and 75 m upward from 

the base of the slope [see also Fig. 3(d); Hirobe et al. 1998]. Gross nitrification rates were also much 

higher on the lower slope than at higher elevations [Fig. 1(g); Tokuchi et al. 2000]. However, the 

section of the slope where the gross nitrification rate changed did not correspond to the zone where the 

net nitrification rate changed. Hence, the gradient was classifiable into three categories by soil 

nitrification rates: the lower slope, where both net and gross soil nitrification rates were high; the mid 

slope, where the net nitrification rate was high and the gross nitrification rate low; and the upper slope, 

where both net and gross nitrification rates were low. 

 

Vegetation study 

To survey understory vegetation, a 1 ! 132-m study plot (plot A) was deployed along the 

length of the slope. The plot was divided into 44 subplots each measuring 1 ! 3 m. Species’ identities 

and the numbers of stems were recorded for plants >10 cm in height in each subplot. Nomenclature 

followed Ohwi and Kitagawa (1983). 

Hirobe et al. (1998) concluded that the boundary zone between mid and upper slopes 

comprises soil patches that are characterized by two completely different net nitrification rates, with 

no gradational change in soil properties. Accordingly, we set up another study plot (plot B) to overlap 

the boundary between the mid and upper slopes (45–90 m upward from the base of the slope) to 

observe relationships between the distributions of soil properties and understory plant species. The 

plot, which measured 5 ! 45 m, was divided into 900 subplots, each 0.5 ! 0.5 m, within which we 

recorded species’ identities and the numbers of stems for plants >10 cm in height. 

Spatial analyses were performed for selected shrub species based on the results of our 

vegetation study in plot B. The spatial traits of understory vegetation were described by using spatial 
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analysis by distance indices (SADIE; Perry, 1995). For this procedure, we used understory shrub stem 

numbers in each 0.5 ! 0.5-m subplot. The degree of non-randomness in spatial distribution was 

quantified by the index of aggregation (Ia; Perry, 1995). In general, a spatially aggregated data set has 

Ia > 1, a spatially random data set has Ia = 1, and a spatially regular data set has Ia < 1. Dimensionless 

indices of clustering (vi and vj) were calculated, and the means of vi and vj were used to quantify the 

degree of data clustering into patches (areas with above-average density) and gaps (areas with below-

average density). Based on the clustering indices, we calculated the index of local association (!) to 

explore patterns of spatial association among the selected tree species. The statistical significance of 

these indices was tested at " = 0.05 by comparison with corresponding values obtained from 5967 

randomizations. All spatial statistics were performed using SADIE software 

(http://www.rothamsted.ac.uk/pie/sadie). 

 

Plant and soil sampling 

Based on the results of our vegetation study, we chose four dominant understory woody 

species and examined their N use traits: Leucosceptrum stellipilum (Miq.) Kitam. et Murata 

(Lamiaceae), Hydrangea hirta (Thunb.) Siebold (Saxifragaceae), Pieris japonica (Thunb.) D. Don 

(Ericaceae), and Lindera triloba (Sieb. et Zucc.) Blume (Lauraceae). Samples were collected five 

times during the 1998 growing season between late April, when leaves had not fully developed, and 

early October, immediately before deciduous leaves were shed. On each sampling date, the leaves of 5 

plants of L. stellipilum, H. hirta, and P. japonica were collected from across their respective 

distributional ranges; 10 plants of L. triloba were sampled because this species had a wider 

distribution than the others. To ensure temporal independence in the data, individual plants were never 

sampled more than once. Soil samples were collected simultaneously with leaves. Triplicate mineral 

soil samples (0–5 cm layer) were collected with a 100-cc corer (5-cm depth) from areas within a 30-

cm radius of the tree trunks. Samples collected within this radius should be considered the rhizosphere 

soil of the target sample plants because a large proportion of fine roots occurs in the upper 10 cm of 

soil at the study site (Kasuya and Shimada 1996). Preliminary observations revealed no significant 

changes in soil inorganic N pool size within a 30-cm radius of individual trees (data not shown). 

 

Plant analysis 

In vivo NRA was measured with a modified version of Jaworski’s method (Jaworski 1971; 

Koyama and Tokuchi 2003). Leaf samples were collected between 10:00 and 14:00 on sunny days, 

and kept at 4°C until analysis. The storage times before laboratory analysis ranged from ca. 3 to 4 h, 

so storage effects were similar across samples; changes in NRA are very slow after the initial decline 

during the first 30 min (Högberg et al. 1986). Petioles and midribs were removed, and ca. 100 mg 

(fresh weight) of leaf laminae were cut into 2.5-mm-diameter disks or approximately 4-mm2 segments 
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and transferred to test tubes. Incubation buffer (5 ml) was added, and the tubes were vacuum 

infiltrated. The composition of the incubation buffer was 0.1 mol L–1 KNO3, 0.1 mol L–1 KH2PO4, and 

3.0% 1-propanol. pH was adjusted to ca. 7.5 using a NaOH solution. The samples were incubated for 

1 h at 30°C in the dark. Enzyme activity was stopped by placing sample vials in hot water (80°C). The 

concentration of NO2
–-N in the incubation buffer was measured colorimetrically by diazotization 

(Keeney and Nelson 1982). The effect of plant pigments was compensated for by measurement of 

controls lacking N-naphtylethylene diamine dihydrochloride (Gebauer et al. 1998). A fraction of each 

leaf sample was oven-dried at 105°C and then weighed to calculate activity per unit dry weight. 

The remaining leaves were dried at 40°C and ground in a sample mill (CMT, Ltd., TI-100, 

Tokyo, Japan). About 100 mg of ground samples were extracted with 10 ml of deionized water for 1 h 

at 45°C. The extract was filtered and the concentration of NO3
--N in the extract was analyzed using 

HPLC within about 48 h to avoid the transformation of nitrate in the extract. Nitrate was separated on 

an anion exchange column (Shim-pack IC-A1 SHIMADZU, Kyoto, Japan) connected to a guard 

column (IC-GA1 SHIMADZU, Kyoto, Japan); electrical conductivity was measured with a 

conductivity detector (CDD-6A SHIMADZU, Kyoto, Japan). A potassium hydrogen phthalate 

solution was used as the mobile phase. The concentrations of N in ground samples were analyzed 

using an NC analyzer (NC-900; SUMIKA, Osaka, Japan). 

 

Soil analysis 

Soil samples were sieved through a 2-mm mesh, and roots were removed by hand. A 5-g 

sample was extracted with 50 ml of 2 M KCl and filtered. The NH4
+-N concentrations in the soil 

extracts were determined using the indophenol blue method (Keeney & Nelson, 1982). The NO3
--N in 

the extracts was determined by diazotization after reduction to NO2
--N with zinc powder (Keeney & 

Nelson, 1982). Total soil inorganic N (NH4
+-N + NO3

--N) and soil NO3
--N pool size were calculated 

as N mass per unit area (5 cm depth). 

 

Statistical analysis 

One-way ANOVA was conducted to detect differences among sampling dates in leaf NRA, 

NO3
--N concentration, N concentration, soil inorganic N pool size, and soil NO3

--N pool size. 

Pearson’s correlation coefficients were calculated between soil N traits and leaf traits. All statistical 

analyses were conducted in SAS JMP IN (ver. 5.1.1; SAS Institute, Cary, NC, USA). 

 

RESULTS 

Vegetation study 

In total, we found 1518 tree trunks belonging to 54 species in plot A (Appendix 1). The 

numbers of both species and trunks increased slightly with increasing distance upward from the base 
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of the slope; the trend was more marked on the upper slope than in the first 30 m from the base [Fig. 

1(i)]. There were four dominant species, which accounted for 67.9% of all trunks, with specific 

distribution patterns [Fig. 1(j)]. Leucosceptrum stellipilum was distributed on the lower slope (<27 m 

from the base). The mid slope (30–87 m from the base) was dominated by H. hirta, which was 

especially localized in the section 36–66 m from the base. The upper part of the slope (>51 m from the 

base) was dominated by Ericaceae species, such as P. japonica. Another dominant species, L. triloba, 

was distributed across the entire slope. 

 There were 2382 trunks of 53 tree species in plot B. Three of the dominant species in plot A 

were also dominant in plot B, i.e., H. hirta, P. japonica, and L. triloba with 434, 602, and 185 stems, 

respectively. Hydrangea hirta was concentrated in a zone <66–69 m from the base of the slope; P. 

japonica was dominant in a zone >63–66 m from the base of the slope [Fig. 2(a),(b)]. L. triloba 

occurred across the entire plot [Fig. 2(c)]. 

 The spatial distributions of H. hirta and P. japonica were significantly aggregated (P < 0.05) 

with extreme patches and gaps (P < 0.05), while that of L. triloba was random and without patches or 

gaps (Table 1). Spatial association pattern analysis demonstrated that the distributions of H. hirta and 

P. japonica and of H. hirta and L. triloba were significantly dissociated (P < 0.05); distributions of P. 

japonica and L. triloba were independent (Table 2). 

 

Seasonal changes in plant N use traits and soil N pool size 

Leaf N concentrations tracked a similar seasonal pattern in all four species [Fig. 3(a), 

Appendix 2]. Leaf N concentrations were highest at the beginning of the growing season (p<0.01), 

declined markedly during the first month, and remained stable thereafter. 

Seasonal changes in leaf NO3
--N concentrations differed among species [Fig. 3(b), Appendix 

2]. There were no significant differences in leaf NO3
--N concentrations among sampling dates for L. 

stellipilum (p=0.12) or H. hirta (p=0.21). The seasonal patterns of leaf NO3
--N concentrations in L. 

triloba and P. japonica were rather similar to those of leaf N concentrations, which declined during 

the first month and remained stable thereafter. Leaf NO3
--N concentrations in P. japonica were very 

low throughout the sampling period. 

 Leaf NRA did not vary significantly across sampling days, except in L. stellipilum (p<0.01), 

for which NRA was maximal on the 2nd sampling day [Fig. 3(c), Appendix 2]. Leaf NRA was hardly 

detected in P. japonica. 

 Inorganic N pool sizes in soils associated with L. stellipilum and H. hirta tracked similar 

patterns; they peaked on the 4th sampling day [Fig. 3(d)(e), Appendix 2]. Inorganic N pool size was 

highest on the 3rd and 4th sampling days in soils associated with L. triloba. Seasonal changes in the 

inorganic N pool size in soils associated with P. japonica differed from those in soils associated with 

other species; the lowest pool size in soils associated with P. japonica occurred on the 4th sampling 
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day. 

 NO3
--N pool sizes tracked the temporal pattern seen in soil inorganic N associated with 

understory plant species other than P. japonica [Fig. 3(e), Appendix 2]. The soil NO3
--N pool size 

associated with P. japonica was an order of magnitude smaller than the pool sizes associated with 

other species. The pool size associated with P. japonica peaked on the last sampling day. Soil NO3
--N 

pool sizes associated with the other three species peaked on the 4th sampling day, in late summer. 

However, in soil associated with L. triloba, differences in the pool sizes between the 3rd and 4th 

sampling days were not significant (p#0.05). 

 

Relationships between plant N-use traits and soil N pool sizes 

With few exceptions, neither soil NO3
--N pool size nor soil inorganic N pool size was 

significantly correlated with leaf N concentration or leaf NO3
--N concentration in any of the species 

across the sampling period (p#0.05; Table 3). There were significant positive correlations between soil 

NO3
--N pool size and leaf NRA for L. triloba throughout the sampling period (p<0.05), except on the 

1st sampling day (p=0.56). For L. stellipilum and H. hirta, there were significant positive correlations 

between soil NO3
--N pool sizes and leaf NRA only on the 1st sampling day (p<0.05). With one 

exception, correlation coefficients between soil inorganic N pool sizes and leaf NRA were not 

significant across the sampling period for any of the species (p#0.05). There was a significant 

correlation for L. stellipilum on the 1st sampling day (p<0.01). 

 

DISCUSSION 

Correspondence between plant species’ distributions and soil N conditions 

The dominant understory plants in the study plots had species-specific distribution patterns 

along the slope [Figs. 1(j), 2(a)–(c), Tables 1, 2]. Spatial analysis by distance indices for the mid slope 

(plot B) demonstrated that the spatial distributions of dominant species other than L. triloba were 

likely reflections of environmental conditions on the gradient. 

As in the classification in the Materials and Methods section, both net and gross soil 

nitrification rates were high on the lower slope; net nitrification rates were high but gross nitrification 

rates were low on the mid slope; and both net and gross nitrification rates were low on the upper slope 

[Figs. 1(g)–(h); Tokuchi et al. 2000, Hirobe et al. 1998]. Interestingly, the boundaries of these three 

categories corresponded to the points on the slope where the dominant understory species changed 

[Figs. 1(j), 2(a)–(b), 4]. Furthermore, additional environmental factors, such as microtopography, light 

conditions, soil pH, and moisture conditions, also changed along the slope, but less dramatically than 

the soil nitrification rate (Fig. 1). Thus, there was correspondence only between vegetation distribution 

ranges and soil nitrification rates. In short, soil on the slope was classifiable into three different 

categories by nitrification rate, and the spatial distribution of these categories corresponded to the 
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spatial distribution of the dominant understory species (Figs. 1, 2). 

 

Species difference in plant NO3
--N use 

Using NRA analysis, we classified the four study species into three categories based on NO3
--

N use: species that lack the capacity to assimilate NO3
--N, species able to assimilate NO3

--N, and 

species that accumulate NO3
--N in addition to assimilating NO3

--N immediately. 

 Many members of the Ericaceae have extremely low NRA and are presumably unable to use 

NO3
--N as a N source (Gebauer et al. 1988; Högbom and Ohlson 1991; Nadelhoffer et al. 1996). In our 

study, the ericaceous species Pieris japonica had very little or no leaf NRA throughout the growing 

period [Fig. 3(c)]. Furthermore, Koyama and Tokuchi (2003) were unable to detect NRA in either 

leaves or roots of P. japonica, even when considerable concentrations of NO3
--N were artificially 

supplied. Thus, P. japonica has essentially no capacity to use NO3
--N as a N source. 

 The family Lamiaceae includes several nitrophilous species that preferentially use NO3
--N as a 

N source (Gebauer et al. 1988). The lamiaceous species at our study site, L. stellipilum, ranks among 

them because of its high NRA [Fig. 3(c)]. Furthermore, leaf NO3
--N concentrations were much higher 

in L. stellipilum than in the other species [Fig. 3(b)]. At its maximum concentration, NO3
--N amounted 

to ca. 40% of total leaf N. Rehder (1982) defined nitrate accumulators as species that accumulate NO3
-

-N above a fixed value (for example, 0.05% of dry weight or 1% of total N); these amounts of NO3
--N 

are detected in leaf laminae, which are believed to have lower NO3
--N contents than roots, stems, or 

leaf stalks (cf. Gebauer et al. 1984, Gebauer and Schulze 1997); and such concentrations of NO3
--N 

are measured not only at the early stage of development but also at the end of the growing season and 

with the decay of leaves. Leucosceptrum stellipilum fits the definition of a nitrate accumulator, 

although we have not as yet measured NO3
--N concentration in decayed leaves. NO3

--N accumulation 

is regulated by the balance between NO3
--N uptake and NO3

--N reduction (Luo et al. 2006). The very 

high NO3
--N concentrations and NO3

--N reduction rates in L. stellipilum leaves indicate that NO3
--N 

uptake was also high [Fig. 3(b),(c)]. In earlier N starvation experiments, NO3
--N was shown to 

accumulate in plant tissues, and it may be mobilized and utilized (Melzer et al. 1984; Chapin et al. 

1990). Even if NO3
--N stored in the cell vacuole is not utilized, the ion may act as an osmotic solute 

(Martinoia et al. 1981; Smirnoff and Stewart 1985; Tischner and Kaiser 2007). 

 

Seasonal changes in plant N use 

Soil NO3
--N availability is frequently cited as a factor that regulates temporal changes in plant 

NRA. For example, temporal NRA changes in the shoots of Deschampsia flexuosa (Troelstra et al. 

1995) and in Picea rubens needles (Tjoelker et al. 1992) correspond to changes in soil NO3
--N 

availability. However, we found almost no significant changes in leaf NRA [Fig. 3(c), Appendix 2], 

while NO3
--N pool sizes in soil associated with the study species other than P. japonica peaked on the 
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4th sampling day in late summer [Fig. 3(e)]. Thus, temporal changes in the soil NO3
--N pool size 

influenced neither NO3
--N assimilation nor NO3

--N uptake in any of the dominant understory species. 

In a variety of species, leaf NRA is highest in the relatively early stages of leaf growth 

(Gebauer et al. 1987; Högberg et al. 1986, 1992; Ohlson and Högbom 1993; Pearson and Ji 1994; 

Stadler and Gebauer 1992; Troelstra et al. 1995). The peak in leaf NRA in selected woody species 

occurs concurrently with the peak in the leaf-expansion rate at the midpoint of leaf opening (Koyama 

et al. 2008). We started sampling in late April, when leaves appeared to be not fully developed, and 

the decline in leaf N concentration in the first month demonstrated that leaves were not fully expanded 

on the 1st sampling day [Fig. 3(a)]. Therefore, it is very likely that the high N demand during leaf 

expansion stimulates NRA. Nevertheless, leaf NRA did not change significantly with season except in 

L. stellipilum, and peak NRA in this species did not occur during the leaf expansion period [Fig. 3(c), 

Appendix 2]. The increase and decrease in NRA during the leaf expansion period occurs rapidly 

(Koyama et al. 2008), and it is therefore possible that the frequency of our observations was 

inadequate to resolve the NRA peak during the leaf expansion period. 

 

Influence of soil NO3
--N pool size on plant NO3

--N use 

 Since the enzyme NR is substrate inducible (Tischner and Kaiser 2007), soil NO3
--N 

availability is considered a factor in regulating plant NRA (Högberg et al. 1986; Koyama and Tokuchi 

2003; Melzer et al. 1984). However, we found almost no correspondence between soil NO3
--N pool 

sizes and leaf NRA, except in L. triloba, which was distributed across the entire slope gradient 

irrespective of soil nitrification rate [Figs. 1, 2, Table 3]. The relationship between L. triloba NRA and 

soil NO3
--N availability was different from those of other species. Most of soils associated with L. 

stellipilum and H. hirta had relatively large NO3
--N pool sizes (>30 mg N m-2), and all soils associated 

with P. japonica had NO3
--N pool sizes <30 mg N m-2. On the other hand, nearly 50% of soils 

associated with L. triloba had NO3
--N pool sizes <30 mg N m-2, and the other of soils had NO3

--N pool 

sizes >30 mg N m-2. Hence, the leaf NRA of species growing where the NO3
--N availability spectrum 

was limited (either NO3
--N rich or NO3

--N poor) did not respond to changes in NO3
--N availability. In 

contrast, the leaf NRA of the species growing across a wide range of NO3
--N availability responded to 

changes in NO3
--N availability. Therefore, species’ responsiveness to changes in NO3

--N availability 

are a factor that regulates plant distributions. 

 Another possible mechanism contributing to the lack of a significant correlation between soil 

NO3
--N pool size and leaf NRA may be partitioning of NO3

--N assimilation between leaves and roots. 

NO3
--N fertilization increases NRA in the roots of seedlings and cuttings of L. triloba and H. hirta, but 

not in the leaves (Koyama and Tokuchi 2003). Thus in our investigation, the soil NO3
--N pool size 

may have regulated root NRA but not leaf NRA. However, scaling up from a small experimental 

configuration, such as that in Koyama and Tokuchi (2003), to our large-scale field study is difficult. In 
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the fertilization experiment, NRA was very low in L. triloba leaves, irrespective of soil NO3
--N pool 

size, whereas we detected considerable NRA in the leaves of L. triloba under natural conditions. It is 

possible that such differences are caused by differences in tree age between studies, or in 

environmental conditions, such as light, moisture, or temperature. Thus, we are presently unable to 

make unequivocal statements about the potential variability in root NRA when the soil NO3
--N pool 

size changes under natural conditions. 

Even though soil NO3
--N availability decreased with distance from the base of the slope and 

this decrease influenced leaf NO3
--N assimilation in L. triloba, the leaf N content in this species did 

not vary in concert with changing soil NO3
--N availability (Table 3). Hence, L. triloba may not depend 

entirely on NO3
--N, but may also be able to use other species of N, i.e., NH4

+-N and organic N. Koba 

et al. (2003) observed that NRA and the natural abundance of 15N ($15N) in leaves of L. triloba were 

significantly negatively correlated at a NO3
--N-rich site, but not at a NO3

--N-poor site. They attributed 

the negative correlation in this species to a high dependence on NO3
--N in NO3

--N-rich soil (cf. Miller 

and Bowman 2002). The corollary is that L. triloba growing in NO3
--N-poor soils depends on N 

sources other than NO3
--N, which is consistent with the results of the present study, suggesting that 

this species changes major N sources according to the form and amount of available N. 

Fujimaki et al. (2001) showed that the arbuscular mycorrhizal colonization of L. triloba roots 

increases with distance from the base of the slope at our study site, but that this is not the case for L. 

stellipilum and H. hirta. Both decomposition processes, i.e., the release of mobile N to the rhizosphere, 

and capture of the less mobile amino acids or NH4
+-N by plants may be enhanced by arbuscular 

mycorrhizal colonization (Read and Perez-Moreno 2003). Therefore, it is possible that in our study L. 

triloba depended more on N acquired by mycorrhizae under NO3
--N-poor conditions than under NO3

--

N-rich conditions.  

Furthermore, the thickness of the organic layer increased with distance from the base of the 

slope [Fig. 1(d); Hobara and Tokuchi 1998], suggesting a slower decomposition rate on the upper 

slope. This is consistent with the proposition that L. triloba under NO3
--N-poor conditions on the 

upper slope acquires organic N through mycorrhizal activities that facilitate plant acquisition of 

organic N. Therefore, mycorrhizal colonization may explain, at least in part, the process by which the 

leaf N concentrations of L. triloba come to be similar across a range of soil NO3
--N availabilities. 

Mycorrhizal colonization very likely contributes to N acquisition in other species. Pieris 

japonica is symbiotic with ericoid mycorrhizae in the study site (Fujimaki et al. 2001). Ericoid 

mycorrhizal colonization facilitates a direct pathway of organic N to the plant symbiont (Read and 

Perez-Moreno 2003). The occurrence of P. japonica was highest on the upper slope at our study site, 

where a thick organic layer had accumulated [Figs. 1(d), (j)] and roots likely took up organic N via 

ericoid mycorrhizae. 
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Possible counter-effect of plants on soil N transformation 

Soil N influences plant N use; conversely, dominant plant species affect N cycling in soil 

systems. Studies of soils beneath different tree species indicate that plant species might influence soil 

N dynamics (Bengtson et al. 2006; Chen and Stark 2000; Zeller et al. 2007). Species’ capacities for 

retaining N in ecosystems mirror differences in their preferences for diverse forms of N (Templer and 

Dawson 2004; Templer et al. 2005). Conversely, the quality of organic matter, i.e., litter quality from 

different plant species, has a considerable influence on soil N transformation in several ecosystems 

(Ferrari 1999). Laughlin (2011) demonstrated in a ponderosa pine forest that soil nitrification potential 

was more strongly linked to the leaf traits of understory species than to functional diversity. Giesler et 

al. (1998) suggested that the correspondence between vegetation and soil on a scale of tens of meters 

mirrors feedback effects of plants on soil processes. Correspondence between the distribution of 

understory species and soil N forms may also reflect feedback effects of plants on the soil at our study 

site. 

Hirobe et al. (1998) concluded that the changes in the net nitrification rate along the slope at 

our study site is regulated by the amount of readily decomposable organic matter, soil water content, 

and pH. The tree layer is a monoculture of even-aged Japanese cedar, which likely provides litter that 

contributes most of the soil organic matter in this study site. The quality and quantity of organic matter 

supplied by overstory species is unlikely to have changed dramatically along the slope gradient. In 

contrast, there is considerable variation in the dominant understory species along the gradient, and the 

distribution of each corresponds to the distribution of different soil types [Figs. 1(g)(h)(j), 2]. Each 

species likely contributes organic matter in a species-specific manner, which may partly account for 

differences in soil N transformation, especially nitrification, along the slope. Information on the litter 

quality of understory species is not available, but the N concentrations of living leaves continued 

different markedly among the dominant understory species to the late growing season [Fig. 3(a)]. 

Since leaf C concentration are almost constant, the C/N ratios of living leaves differed among the 

species (data not shown); consequently, the C/N ratio of leaf litter must vary. Accordingly, it is very 

likely that the amount of readily decomposable organic matter in soil differs with the dominant plant 

species growing in the soil. The distinct change in dominant understory species along the slope 

probably contributes to the formation of spatially differentiated soil types with different N 

transformation properties. However, the ratio of understory biomass to total biomass is small, and 

further investigation is required to accurately estimate the contribution of the understory to soil 

properties and N cycling in this ecosystem. 

 

Relationship between understory plants and soil at the study site 

Read and Perez-Moreno (2003) described changes in vegetation and major soil N species 

across latitudes and altitudes on a global scale; types of mycorrhizae corresponded to changes in 
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vegetation. Based on the relationships among plants, soil N, and mycorrhizal type, and on the function 

of mycorrhizal colonization in plant N acquisition, they proposed that mycorrhizal fungi significantly 

contribute to ecosystem N cycling in ways that are distinctive by latitude and altitude (Read and Perez-

Moreno 2003). They further proposed that this perspective is also applicable at more local scales 

(Read and Perez-Moreno 2003). We believe it probable that similar relationships among vegetation, 

soil N form, and mycorrhizal type have developed along the slope at our study site. 

Based on net nitrification rates, Koba et al. (2003) divided our study area into two sites, the 

lower and the upper. They demonstrated differences in $15N in plants and soil between sites, and 

attributed these to the relative importance of soil nitrification and NH4
+-N immobilization (Koba et al. 

2003). However, their lower site is divisible into two smaller sections based on dominant understory 

species and gross soil N transformations. By comparing our work with previous studies at the same 

study site, we summarize the relationships among position on the slope, soil NO3
--N availability, 

dominant understory species identity, and plant species physiological characteristics (Table 4). Based 

on this comparison among soil N availability, dominant understory species identity, and plant species 

physiological characteristics , the physiological plasticity of species’ response to changes in NO3
--N 

availability regulates plant distribution ranges in accordance with soil NO3
--N availability at the study 

site.  

Kronzucker et al. (1997) suggested that a species with reduced capacity to use NO3
--N 

presented a critical impediment to seedling establishment on disturbed site where NO3
--N availability 

was high. Similarly, a species that certainly lacks the capacity to use NO3
--N in the study site, P. 

japonica, is under disadvantage on NO3
--N rich soil. Therefore, it is highly possible that P. japonica 

has tolerance to the toxicity of NH4
+-N and preference to NH4

+-N as frequently found in ericaceous 

species (e.g. Nordin et al. 2001); consequently, it become dominant on NH4
+-N dominated soil as 

suggested with late-successional species that has high tolerance to NH4
+-N toxicity and high efficiency 

of NH4
+-N transport (Kronzucker et al. 2003).  

Combining the results of our field investigation and an earlier fertilization experiment 

suggesting that H. hirta is more responsive to changes in NO3
--N availability and more dependent on 

NO3
--N than L. triloba (Koyama and Tokuchi 2003), we can summarize the relationship between a 

species' physiological traits and its distribution as follows. A species highly dependent on NO3
--N as a 

N source and sensitive to NO3
--N deficiency, namely H. hirta, has a narrow distribution range. A 

species less dependent on NO3
--N as a N source and insensitive to changes in NO3

--N availability, i.e., 

L. triloba, has a larger distribution range under natural conditions. Therefore, we conclude that 

physiological traits and the plasticity of plant species in their use of NO3
--N are among the factors that 

regulate species’ distribution ranges; thus, soil NO3
--N availability is an environmental factor that 

influences plant distribution. 

However, the spatial differentiation of L. stellipilum and H. hirta cannot be explained by 
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differences in their NO3
--N use. In terms of net nitrification rates, both the lower slope dominated by L. 

stellipilum and the mid slope dominated by H. hirta have high NO3
--N availability [Figs. 1(h), 4]. 

However, gross nitrification rates are markedly different between the two slope sections [Figs. 1(g), 4], 

suggesting a difference in soil microbial activity between the two portions of the slope. A possible 

explanation for the spatial differentiation of L. stellipilum and H. hirta is that there may be differences 

in their ability to compete with soil microbes for NO3
--N in the soils of the two slope sections. 
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FIGURE CAPTIONS 

 

Figure 1 Changing environmental conditions for understory plant species and vegetation along a slope 

gradient (plot A). (a) Microtopography depicted by slope inclination in each 1 ! 3-m subplot; (b) 

canopy cover ratio as an index of light conditions for the understory layer in each subplot; (c) diameter 

at breast height (DBH) of overstory Cryptomeria japonica [!; modified from Tokuchi et al. (1999)] 

and fine root biomass [hatched bar; modified from Kasuya and Shimada (1996)]; (d) thickness of the 

organic layer. Mean thickness at the eastern and western ends of the plot is depicted for the L (litter; 

closed area) and F+H (humus) layers (hatched area). Figure modified from Hobara and Tokuchi 

(1998); (e) soil pH (H2O) measured in August 1995 [!; Hirobe et al. (1998)], and July 1992 (%; 

Yoshida unpublished data); (f) soil water content measured in August 1995 [!; Hirobe et al. (1998)], 

May 1993 [&; Kasuya and Shimada (1996)], and July 1992 (%; Yoshida unpublished data); (g) gross 

soil N mineralization (hatched bar) and nitrification rates (closed bar); (h) net soil N mineralization 

(hatched bar) and nitrification rates (closed bar). (g) and (h) are modified from Tokuchi et al. (2000). 

(i) Numbers of trunks (!) and species (") in 1 ! 3-m subplots; and (j) distributions of four dominant 

understory species, viz., L. triloba, P. japonica, H. hirta, and L. stellipilum. The sizes of circles reflect 

numbers of stems, as indicated in the figure key. 

 

Figure 2. Spatial distribution of dominant understory species and soil trait regarding N transformation 

on the mid slope (plot B). The number of stems is represented by the sizes of circles for (a) H. hirta, 

(b) P. japonica, and (c) L. triloba. Circle size represents (d) % soil nitrification. Figure (d) is modified 

from Hirobe et al. (1998). 

 

Figure 3. Seasonal changes in (a) leaf N concentrations, (b) leaf NO3
--N concentration, (c) leaf NRA 

in four dominant understory species along the study slope, and (d) inorganic N pool sizes and (e) NO3
-

-N pool sizes in soil samples associated with the four species. Leaves of the four dominant species and 

associated soils were investigated simultaneously for L. stellipilum ("), H. hirta [(!), P. japonica 

(!), and L. triloba (!). Bars represent SDs. See Appendix 2 for the results of statistical analysis. 

 

Figure 4. Soil nitrification along different sections of the slope gradient [data from Tokuchi et al. 

(2000)]. Relationships between gross and net nitrification rates are depicted for soil from the lower 

slope where L. stellipilum was dominant ("), soil from the middle slope where H. hirta was dominant 

(!), and soil from the upper slope where P. japonica was dominant (!). Bars show SEs for net 

nitrification rate. 
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Table 1. Spatial distribution parameters for H. hirta, P. 
japonica, and L. triloba in plot B 

Species Ia Mean vi Mean vj

H. hirta 5.91† 6.01* -6.38*

P. japonica 7.44† 7.44* -7.90*

L. triloba 1.08#  0.97ns  -1.03ns

 
†, significantly aggregated distribution at P < 0.05; #, not 
significantly different from random distribution. 
*, significant patch or gap, P < 0.05; ns, no significant 
patch or gap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 Spatial associations among H. hirta, P. 
japonica, and L. triloba in plot B. 

Species !

H. hirta vs. P. japonica -0.48!!

H. hirta vs. L. triloba -0.20!!

P. japonica vs. L. triloba  0.04##

††, significantly dissociated from one another, P < 
0.05; ##, not significantly different from 
independent relationship. 
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Table 3 Relationships between soil N pool size and leaf traits examined by Pearson’s 
correlation coefficients. 

*: p<0.05, **: p<0.01 

1st 2nd 3rd 4th 5th

soil NO3!-N " leaf N -0.681 0.148 0.854 -0.861 0.474
soil inorg N " leaf N -0.621 -0.437 0.813 -0.908 * 0.512
soil NO3!-N " leaf NO3!-N 0.641 0.628 0.287 0.333 -0.156
soil inorg N " leaf NO3!-N 0.509 -0.122 0.368 0.374 -0.062
soil NO3!-N " leaf NRA 0.962 ** 0.087 0.570 0.283 0.039
soil inorg N " leaf NRA 0.906 * 0.601 0.568 0.264 0.124

soil NO3!-N " leaf N -0.350 0.348 0.580 0.694 -0.641
soil inorg N " leaf N -0.597 0.156 0.604 0.755 -0.642
soil NO3!-N " leaf NO3!-N -0.047 0.215 0.736 -0.185 -0.503
soil inorg N " leaf NO3!-N 0.228 0.555 0.725 -0.287 -0.600
soil NO3!-N " leaf NRA 0.945 * 0.627 0.611 -0.345 0.440
soil inorg N " leaf NRA 0.828 0.642 0.648 -0.341 0.598

soil NO3!-N " leaf N 0.298 0.265 -0.125 0.269 -0.440
soil inorg N " leaf N -0.142 0.543 0.480 0.388 0.358
soil NO3!-N " leaf NO3!-N 0.388 0.131 -0.608 -0.786 0.335
soil inorg N " leaf NO3!-N 0.522 0.384 -0.022 -0.926 * 0.475
soil NO3!-N " leaf NRA - - - -0.829 -
soil inorg N " leaf NRA - - - -0.427 -

soil NO3!-N " leaf N 0.131 0.227 0.580 0.592 0.694 *

soil inorg N " leaf N 0.020 0.102 0.479 0.381 0.129
soil NO3!-N " leaf NO3!-N 0.365 0.771 ** -0.065 0.410 0.280
soil inorg N " leaf NO3!-N 0.030 0.536 0.809 ** 0.263 -0.121
soil NO3!-N " leaf NRA -0.209 0.836 ** 0.674 * 0.670 * 0.816 **

soil inorg N " leaf NRA 0.379 -0.044 -0.068 0.575 0.133

Sampling date

L. stellipilum (n=5)

H. hirta (n=5)

P. japonica (n=5)

L. triloba (n=10)



Appendix 1 Plant species distribution in plot-A. The number of trunks was recorded for the plants taller than 10 cm in each subplot. 

Subplot number is represented by the distance from the bottom of the slope to the top of each subplot measuring 1m x 1m. 

Subplot number 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 Total
Pieris japonica  (Thunb.) D. Don 3 14 8 3 21 3 4 4 11 8 34 26 24 18 15 14 49 16 24 36 145 67 31 578
Leucosceptrum stellipilum  (Miq.) Kitam. et Murata 59 69 51 4 9 64 68 16 340
Lindera triloba  (Sieb. et Zucc.) Blume 1 5 2 3 2 5 1 1 3 3 2 8 6 9 6 4 6 1 68
Tripetaleia paniculata Sieb. et Zucc. 1 4 2 1 3 4 13 21 49
Hydrangea hirta  (Thunb.) Siebold 3 14 1 5 5 7 1 3 5 44
Smilax china  Linn. 2 3 1 1 2 1 2 1 3 1 3 1 1 1 1 1 2 2 4 7 40
Clethra barbinervis  Sieb. et Zucc. 2 1 1 7 1 1 1 2 2 1 5 2 1 10 37
Illicium religiosum Sieb. et Zucc. 4 3 4 5 6 6 3 31
Rhododendron kaempferi Planch. 1 6 12 4 23
Akebia trifoliata  (Thunb.) Koidz. 1 4 8 1 1 1 1 1 2 2 22
Callicarpa japonica  Thunb. 1 2 3 3 3 5 1 18
Eurya japonica  Thunb. 3 2 4 4 2 2 1 18
Osmanthus heterophyllus (G. Don) P. S. Green 18 18
Rubus crataegifolius  Bunge 3 15 18
Hamamelis japonica  Sieb. et Zucc. var. obtusata Matsum. 3 3 1 1 1 1 1 2 4 17
Ilex pedunculosa  Miq. 1 9 1 1 1 1 1 15
Pertya scandens  (Thunb.) Sch. Bip. 2 10 2 14
Rubus palmatus  Thunb. 1 1 2 9 13
Abelia serrata Sieb. et Zucc. 1 1 2 3 1 1 3 12
Callicarpa mollis Sieb. et Zucc. 1 4 1 4 1 1 12
Lyonia ovalifolia (Wall.) Drude var. elliptica (Sieb. et Zucc.) Hand.-Mazz. 1 7 2 10
Schizophragma hydrangeoides  Sieb. et Zucc. 1 1 7 1 10
Cryptomeria japonica  (Linn. fil.) D. Don 1 1 1 2 1 1 2 9
Lindera umbellata  Thunb. 1 2 1 5 9
Vaccinium japonicum Miq. 4 1 1 3 9
Viburnum phlebotrichum Sieb. et Zucc. 1 1 2 1 3 8
Symplocos coreana (H.Lév.) Ohwi 1 2 3 1 7
Magnolia salicifolia  (Sieb. et Zucc.) Maxim. 2 3 1 6
Pourthiaea vilosa  (Thunb.) Decne. var. laevis  (Thunb.) Stapf. 2 1 3 6
Rhododendron reticulatum D. Don 5 1 6
Fraxinus lanuginosa Koidz. 5 5
Parabenzoin praecox  (Sieb. et Zucc.) Nakai 3 1 1 5
Viburnum dilatatum Thunb. 1 4 5
Castanea crenata Sieb. et Zucc. 1 2 1 4
Robinia pseudoacacia  L. 2 2 4
Rhus trichocarpa  Miq. 1 1 1 3
Viburnum erosum Thunb. 3 3
Wisteria brachybotrys Sieb. et Zucc. 2 1 3
Ilex crenata Thunb. 1 1 2
Ilex macropoda Miq. 1 1 2
Styrax japonica  Sieb. et Zucc. 1 1 2
Acanthopanax sciadophylloides Franch. et Savat. 1 1
Acer palmatum  Thunb. var. matsumurae  (Koidz.) Makino 1 1
Chamaecyparis obtusa  (Sieb. et Zucc.) Sieb. et Zucc., apud Endl. 1 1
Clematis japonica  Thunb. 1 1
Clerodendrum trichotomum Thunb. 1 1
Corylus sieboldiana  Blume. 1 1
Elaeagnus pungens  Thunb. 1 1
Euonymus alatus  (Thunb.) Sieb. f. striatus  (Thunb.) Makino 1 1
Quercus mongolica Fischer var. grosseserrata (Blume) Rehd. et Wils. 1 1
Quercus serrata Thunb. 1 1
Stachyurus praecox  Sieb. et Zucc. 1 1
Symplocos chinensisDruce var. leucocarpa  (Nakai) Ohwi f. pilosa  (Nakai) Ohwi 1 1
Symplocos prunifolia Sieb. et Zucc. 1 1
Number of trunks 60 73 66 7 9 1 64 69 19 0 0 6 17 5 26 23 8 17 15 23 14 24 21 27 34 11 24 15 40 11 30 50 35 40 24 34 22 65 37 69 79 164 80 60 1518
Number of species 2 4 7 3 1 1 1 2 3 0 0 3 5 4 8 10 4 7 8 10 6 7 7 9 6 5 5 8 7 5 10 4 7 8 4 9 6 8 7 12 9 9 2 6 54



Appendix 2 Results of one-way ANOVA among sampling dates to show seasonal 
changes of leaf traits and soil N pool sizes. 

Species df F p 1st 2nd 3rd 4th 5th
Leaf N concentration

L. stellipilum 4 120.62 < 0.01 a b b b b
H. hirta 4 55.11 < 0.01 a b b b b
P. japonica 4 63.93 < 0.01 a b b b b
L. triloba 4 81.77 < 0.01 a b b b b

Leaf NO3!-N concentration
L. stellipilum 4 2.06 0.12 -
H. hirta 4 1.61 0.21 -
P. japonica 4 21.43 < 0.01 a b b bc c
L. triloba 4 8.55 < 0.01 a b b b b

Leaf NRA
L. stellipilum 4 10.71 < 0.01 b a b b b
H. hirta 4 2.28 0.10 -
P. japonica 4 1.00 0.43 -
L. triloba 4 1.62 0.19 -

Soil inorganic N pool size
L. stellipilum 4 17.25 < 0.01 b b b a b
H. hirta 4 33.38 < 0.01 c c b a bc
P. japonica 4 3.62 < 0.01 b ab a b ab
L. triloba 4 9.68 < 0.01 b b a a b

soil NO3!-N pool size
L. stellipilum 4 18.83 < 0.01 b b b a b
H. hirta 4 25.98 < 0.01 c c b a bc
P. japonica 4 5.74 < 0.01 ab c abc bc a
L. triloba 4 10.05 < 0.01 bc c ab a bc

Sampling date

 
Different letters indicate significant difference within a single species after 
Tukey-Kramer test at the p<0.05 level. 
 


