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Preface

Many optimization problems arisen in practical decision making
are formulated in the framework of mathematical programming. In
the conventional deterministic models of mathematical programming,
it is assumed that we are given precise information about the objec-
tive function and the constraints. However, when we make a decision
in practice, it is necessary to take various constraints and assump-
tions as well as uncertainty into consideration. Since we seldom know
such information for certain, we have to make a decision under un-
certainty. Stochastic programming is a field of mathematical methods
that deals with the optimization problems under uncertainty expressed
by stochastic fluctuation. Optimal decisions are to be made on the
basis of certain criteria, which take into account not only optimization
of objective but also stability of an optimal decision against stochastic
fluctuation. The application areas of stochastic programming include
many fields, e.g., production, inventory, agriculture, finance and mar-
keting, etc., all of which involve inevitable uncertainty in formulating
the problem and estimating the component of the structured model
based on given information,

The main theme of this dissertation is to explore statistical ap-

proaches in stochastic programming. There are three types of uncer-



tainty that stochastic programming deals with; the first type of uncer-
tainty comes from the random variables with known probability dis-
tribution, the second type of uncertainty also comes from the random
variables but with unknown probability distribution, and the third type
of uncertainty comes from the coefficients that are unknown or can not
be known for certain. It is important in case of the second and third
uncertainties to estimate or to predict the unknown distribution and
the uncertain coefficients from given information by using statistical
techniques. Then the estimates of unknown parameters should be in-
corporated into the optimization problem together with a significance
level of the estimation. In this sense, stochastic programming requires
statistical techniques to estimate the unknown parameters with un-
specified uncertainty. The role of statistical techniques is as essential
as that of optimization techniques.

This dissertation begins with the confidence region method for
stochastic programming. It provides a game theoretic minimax model.
The constraint forces the unknown coefficients to exist in their confi-
dence regions estimated under a certain significance level. A minimax
solution is then constructed by optimizing the objective function under
the assumption that the unknown parameters take the worst-case val-
ues among the estimated confidence region. As an important special
case of this model, we consider two typical stochastic linear program-
ming problems. One has a random right-hand side which are normally
distributed with unknown distribution parameters, and the other has
unknown cost coefficients which are estimated in terms of the confidence

region by means of linear regression analysis. The former problem does
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not become a convex programming problem but can be solved by de-
composing it systematically into several cases. The later problem is
solved by proposed algorithm, which alternately solves two problems,
one is solved for making an optimal decision and the other is solved for
computing the realizable worst-case values of the unknown coefficients.

Next, this dissertation investigates the minimax model of the confi-
dence region method for stochastic linear programming problems that
contain unknown parameters in the coefficients matrix. The linear
constraints with unknown coefficients, which are restricted to the con-
fidence regions, form reverse convex constraints. This type of linear
programming problem is a reverse convex programming problem, which
may have a disjunctive feasible region. We derive an efficient cutting
plane algorithm that gives an optimal solution in a finite number of
iterations, assuming that only one linear constraint has unknown co-
efficients. The extension to the problem where more than one linear
constraint has unknown coefficients is also mentioned.

One of the typical problems, for which the minimax model due to
the confidence region method can be effectively solved, is a generalized
P-model of the stochastic linear knapsack problem that contains un-
known distribution parameters. We propose a solution algorithm for
the problem and show that a minimax solution is found in polynomial
time.

Finance problem has recently become a hot field of operations re-
search. As an important application of stochastic programming includ-
ing the parameter estimation, a portfolio selection problem is discussed

in this dissertation. A portfolio selection problem gives the investor an
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optimal investment strategy to receive a large return under a small
risk. The rate of return on investment is predicted from the historical
data based on the market model. A single index model is the simplest
market model among portfolio selection problems, but has been most
frequently used in practice. The coefficients of a single index model
are estimated by means of regression analysis, We formulate the port-
folio selection problem as a stochastic linear knapsack programming
problem. The probability maximizing model of stochastic linear knap-
sack problem is derived and we propose efficient algorithms to solve the
problems with several types of random variables, e.g., block diagonally
correlated random variables, a single index model and a multi index
model.

Finally, this dissertation investigates a stochastic improvement
method. Since, in the confidence region method, we solve the prob-
lem that is built by using the estimates obtained from the currently
available information, we should rebuild the problem whenever new
information becomes available. While, in the stochastic improvement
method, we update the estimates of unknown parameters as well as the
solution whenever new statistical data are delivered. We believe that
this statistical approach is important in stochastic programming.

The statistical approaches proposed in this dissertation for stochas-
tic programming extend the territory of mathematical programming,.
We hope for the development of the statistical approaches for stochas-
tic programming to a dynamic technique and/or a sequential technique
like a stochastic approximation procedure.

Hiroshi MORITA
March, 1992
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Chapter 1.

INTRODUCTION

1.1. Purpose of the Dissertation and Historical
Background

Statistical approaches in stochastic programming are discussed in
this dissertation. Stochastic programming has been developed as prob-
abilistic generalization of mathematical programming and has become
an important field of mathematical programming from the view point of
theory as well as practice. For many problems encountered in practice,
optimal decisions are usually made under some uncertainties, because
practical problems are subject to stochastic fluctuation and necessary
information for decision making are not always available for certain. In
most of practical cases, the stochastic fluctuation has some probability
distributions, but the exact forms of distributions are not available.
Therefore, it is important to identify the distribution from historical
and/or experimental observations. The optimization problems with
unknown or uncertain parameters necessitate statistical approaches to
evaluate them.

The main purpose of this dissertation is to provide a new class of

statistical approaches in stochastic programming and to consider some
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related applications. Some methods to be characterized as statistical
approaches have recently been proposed [C3, D4]. In these methods,
model formulation is affected by not only the optimization techniques
to be solved but also how to treat the statistical data affect the model
building. Many statistical methods have been studied (M2, R2] to
process the statistical data. For example, a linear regression analysis is
one of the most useful methods for estimating the unknown parameters
of linear models and the results of analysis have desirable properties to
be incorporated into optimization problems.

This dissertation focuses on a confidence region method and a sto-
chastic improvement method, both of which are important statistical
approaches in stochastic programming. The confidence region method
provides a game theoretic minimax problem, which gives a minimax so-
lution under the assumption that unknown parameters take the worst-
case behavior among the confidence region under a certain significance
level. The stochastic improvement method gives a point sequence that
converges to an optimal solution of the stochastic programming prob-
lem and is improved when the unknown parameters in the problem
are updated as a result of additional statistical data. As a typical ex-
ample of stochastic programming including parameter estimation, we
consider a stochastic linear knapsack problem with random cost co-
efficients, which arises as a mathematical formulation of a portfolio
selection problem. In a portfolio selection problem, the rate of re-
turn on investment is viewed as a random variable and is expressed
as a linear function of some indices based on the market model. This

dissertation proposes solution algorithms for several types of portfolio
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selection problems formulated as a probability maximizing model of a
stochastic linear knapsack problem.

It is also emphasized here that these statistical approaches for
stochastic programming with unknown parameters can be applied to

many other practical optimization problems.

1.2. Brief Review of Stochastic Programming

This section reviews the development of stochastic programming
related to the subjects of this dissertation. Stochastic programming
deals with the optimization problem that involves stochastic fluctua-
tions. Application areas of stochastic programming have been widen
to a great extent, e.g., agriculture [F1, N1|, water storage [P2], trans-
portation [Q1], inventory [B5], finance and marketing [D5, M3, S1],
production, engineering and others.

In 1941, Tintner [T2] made distinction between subjective risk and
subjective uncertainty. The former implies the random variable which
has a known probability distribution of anticipation, while the latter
implies the random variable which has only a priori probability of the
probability distributions themselves. Subjective risk led to the main
body of stochastic programming, and recently subjective uncertainty
has been treated in stochastic programming by statistical approach.

The epoch making paper by Dantzig [D1] in 1955 is motivated
by the recognition that a method for the classical linear programs is
not appropriate to formulate the problems in many practical situations.

Since the quantities of activities in practical problems have uncertainty,

3



the classical programming models based on the fixed known data should
be extended to the stochastic programming models. There are two
situations in stochastic programming. which are called the “wait-and-
see” situation and the “here-and-now” situation according to Madansky
[M1]. The former situation requires to wait until an observation on the
random variable is actually made and then to solve the nonstochastic
problem. In contrast to this, the latter situation requires to solve the
problem before observing the realization of the random variable. This
dissertation belongs to the “here-and-now” situation.

Give the known probability space (£2,.4,P), where 2 is a set of
possible environments, A is a set of possible events and P is a prob-

ability measure. We consider the following optimization problem on

(R, A,P):

Minimize 7(w) = go(z,w),
(1.1) subject to g¢i(z,w)<0,71=1,2,--- ,m,
z€X cRY,

where X is a given subset of R™ and g; : R" x Q — [—00,+00),
¢t = 0,1,...,m are real-valued random functions. The environment
variable w is an element of §2, which is introduced to determine the en-
vironment of the optimization problem prescribed under uncertainty.

The “wait-and-see” situation leads to the distribution problem to
be described as follows. When the environment is completely known
before we solve the problem, we can solve the deterministic problem by
assigning the known values to the variables w. However, different envi-
ronments w' and w? may give different optimal decisions 2! = z*(w')

and r? = 2*(w?), respectively, and we want to know the behavior of

4

an optimal decision under all possible values of the environment vari-
ables. Typical questions in the wait-and-see situation are: * What is
the expectation or 95% percentile of the optimal value?”, “What is the
distribution of this optimal value?” and so on. These problems are
called distribution problems. Due to the difficulty of an analysis of
these problems for general stochastic programming problems, the fol-
lowing stochastic linear programming problem (1.2) has been studied
intensively as a special case of stochastic programming.

Minimize 7 = c(w)'z,
(1.2) subject to A(w)z = b(w),
z >0,

When the optimal basis does not change for all w € €, the distribution
of the optima value 4 has been considered by Babbar [B1] and Wagner
[W1]. Bereanu [B6] derives the cumulative function and the mean value
of the optimal value, when all coefficients are stochastic. Kall surveys
the distribution problem for stochastic linear programming in his book
[(K1].

In the “here-and-now” situation, there are many probabilistic def-
initions of feasibility; z € X satisfies the constraints of problem (1.1)

with a certain significance level a € (0,1):

(1.3) Pr{wl|gi(z,w) <0, i =1,2,...,m} 2 a,
or in the average:

(1.4) E{gi(z,w)} £0,i=1,2,...,m,

and others. Similar definitions are also applied to optimality. Many

concrete formulations of stochastic programming may be reduced to
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the general version of the stochastic programming problem over the
probability space (2, A, P):
Minimize Fy(z)= E{fo(z,w)},
= [ e wP(a)
(1.5) subject to Fi(z) = E{fi(x,w)},
= /fg(.r.u)??(dw) S0 r= 10,
r€X CR",

where

fo:R" x 2 - RU {—o0, +00},
(1.6)
iR xQ—=R, t=1,2,...,m,

and the expectation operator E is assumed to be well-defined for ev-
ery * € X. The functions f;, i = 0,1,...,m, correspond to g,
i = 0,1,...,m, respectively in (1.1), and are introduced to express
the several probabilistic definitions of feasibility and optimality, which
are to be noted later.

Beale [B3] and Dantzig [D1] independently considered the two-
stage problem in 1955. This is categorized as the “here-and-now” sit-
uation. In the first stage, we have to make a decision before the real-
izations of random variables take place. Since several constraints may
be violated by the realized values of random variables, an adjustment
of the violated constraints is made in the second stage. In the case
of stochastic problem (1.1), the cost required for an adjustment of the
violated constraints is considered to be proportional to the amount of
violation. The adjustment cost is added to the objective function as a

penalty, that is,
m

(1.7) fo(z,w) = go(z,w) + Z gi - max[0, g;(z,w)),

6

where ¢;, 1 = 1,2,- -+ ,m, are positive weight coefficients.

For stochastic linear programming problem (1.2), Beale [B3] and
Dantzig [D1] formulate the two-stage problem:

Minimize ¢z + E(minq'y),
y
(1.8) subject to Az +y = b(w),
20, y20,

where only b is assumed to be stochastic. The deterministic convex
problem equivalent to (1.8) is derived by Wets [W3]. Everett and
Ziemba [E6] and Walkup and Wets [W2] consider more general prob-

lem:
Minimize 'z + E[Q(x,w)],
(1.9) :
' subject to z > 0,
where

(1.10) Q(z,w)= lléifg{Q(w)'y | W(w)y = fw) — A(w)z, y 2 0}.
Y

This problem is characterized as “stochastic programming with re-
course” by Walkup and Wets. We call the vector y € R' and the
matrix W € R" x R' a recourse variable and a recourse matrix, respec-
tively. The recourse action y is chosen so as to minimize the penalty
cost with respect to a decision variable x and a realized environment w.
An optimal decision should minimize the total costs, which are the sum
of the net cost ¢’z and the expectation of the cost for an adjustment
of violation E[Q(z,w)]. When ¢ and W are nonstochastic, (1.9) is said
to be a fixed recourse problem. When {y|Wy = z,y > 0} # ¢ for

all z € R™, W is said to be a complete recourse matrix.
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The simple recourse problem given as follows is surveyed by Ziemba

[Z1] and Wets [W4].

Minimize c'z + E| Tin P’y +4'v7).
y ‘y_
(1.11) subject to A(w)z +y*t —y~ = b(w),
gy g 30

where

yT = max[0, —A(w)z + b(w)].
(1.12)

y~ = max[0, A(w)r — b(w)].
The above two-stage recourse problems do not take into account the
concept of time. However, the multi-stage recourse problems arisen
in dynamic models are also considered. The L-shaped method for the
two-stage stochastic linear problems given by Van Slyke and Wets [V2]
is extended to the multi-stage recourse problems by Birge [B6]. The
L-shaped method is an outer linearization decomposition approach for
the L-shaped linear programs which are arisen in stochastic linear pro-
gramming with recourse.

Charnes and Cooper [C1] introduce “chance constraints”, which
is an extension of the notion of constraints from the view point of the
“here-and-now"” situation. It is different from the two-stage problem in
the manner of treatment of the violation of stochastic constraints. In
the two-stage problem, the constraints should be always satisfied and
therefore the amount of violation incurred in the first stage is adjusted
in the second stage. On the other hand, it is not always required to
satisfy the constraints for the chance constrained approach. The con-

straints should be satisfied with a given probability, that is, the chance
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constraints watch only the probability that the constraints are violated,
rather than the amount of violation. For stochastic problem (1.1), the

chance constraints are given by

(1.13) Pr(w|gi(z,w) <0) > ay, | =1,2,...,m,
or
(1.14) Pr(w|gi(z,w) £0,1=1,2,...,m) 2 a,

in the form of joint probability, where a,a,,...,a, € (0,1) are the
satisficing levels of chance constraints, which are given in advance. In

the formulation of (1.5), we have that (1.13) and (1.14) are expressed

as
a—1 if gi(z,w) <0
L85 Iieu)= { a otherwise,
for1=1,2,...,m, and
(1.16) s {a—l if g;(:r.u-j)SO, (=1,2++=,m
otherwise,
respectively.

The chance constraints can be transformed into the equivalent de-
terministic constraints. However, the transformation is usually difficult
and the resulting nonlinear constraints are intractable in the sense of
computation, Even if the original constraints are defined by linear
functions, it is not easy to carry out the transformation to the deter-
ministic problem unless the random variable has a certain special type

of distribution like normal. Prékopa [P1] applies a logarithmic concave
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probability measure to stochastic programming and shows that the fea- EV-model has an objective function incorporating two conflicting

objectives, such as

Efc(w)'z]
Vie(w)'z]’

sible region of chance constraints is convex if the distribution is given

by the logarithmic concave probability measure.

(1.20) Ele(w)z] - p- Vie(w)'z]

The stochastic objective function of the stochastic programming

1 ] i : 3 , i ositive weight coefficient on the variance.
problem is handled by its certainty equivalent in the framework of de- and so on, where pis a p &

ili imizi del [C2]:
terministic models. For the following stochastic linear programming (iti) Probability maximizing model [C2]

problem,

Minimize c¢(w)'z,

(Rl g) subject to A(w)r < b(w),

z = 0.

There are four types of certainty equivalent F\(x).

(i) E-model [C2]:

(1.18) F(z) = El¢(w)'z].

The E-model minimizes the expectation of the objective value.
This is a classical model that can handle the random cost coeffi-
cients (D1]. However, it is argued that the consideration on the
variance may also be necessary, since it may not be desirable to
optimize the expected value when its variance is very large. This

consideration leads to the next model.

(1.21) F(z) = Pr(c(w)'z < f).

The probability maximizing model maximizes the probability that
c(w)'z does not exceed a given goal value f. If the joint distribu-
tion of the components ¢;(w) of ¢ is normal with the mean y and
the variance covariance matrix V, the probability of ¢(w)'z not
exceeding f is

f-uz
Va'Vr

where ®(-) is the distribution function of A(0,1), i.e., standard

(1.22) Pr(c(w)'z < f) = &( ),

normal distribution with the mean 0 and the variance 1. It is
known that the maximization of this probability is equivalent to
the maximization of the fractional function (f — p"r)/m.
P-model [K3]:

(1.23) F(z)=f, Prc(w)z<f)=a.
(i1) V-model [C2]:
Kataoka [KK3] considers to minimize f subject to Pr(c(w)'z < f) =
1) FiE) = ¥letay =i a for fixed a. Assuming again that ¢ has the normal distribution,

The V-model minimizes the variance of the objective value. It

is also possible to consider both expectation and variance. The

10

the chance constraint is transformed into
(1.24) f=p'z +KovVa'Vz,
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, e 1
where Ko = 7 !(a). fa > 5 then K, > 0 and f is convex. Ishii,
Nishida and Nanbu [I5] generalize the P-model into the following

model by considering the satisficing level & as a decision variable,

too.

Minimize f — Aa,

subject to Pr(c(w)'z < f) = a,
Alw)z < b(w),
z 20,

(1.25)

where ) is a positive weight coefficient on a.
In the probability maximizing model, the goal value that a decision
maker wants to attain is specified in advance and the probability that
his goal value is attained is maximized. On the other hand, in the
P-model, the probability that a decision maker’s objective is attained
is fixed and then his goal value is minimized.

Stochastic programming is closely connected with a game theory
[S2] and an information theory [R1]. A game theoretic situation nat-
urally arises in applying stochastic programming. A two-person zero-
sum stochastic game can be constructed with problem (1.2). Player 1
is the decision maker who chooses a strategy vector 2 € M where
M is a subset of RY. Player 2 is nature, i.e., stochastic fluctuation,
who chooses a strategy vector z € N, where z = (A(w),b(w), c(w))
and A is a subset corresponding to the feasible region of variation in
{(A(w),b(w),e(w));w € §2} which is given in advance. The game is
denoted by G = (M, N g) with the following payoff function g:

(1.26) 9(z,2) = c(w)'z + Y p; - max[0, A;(w)'z — bi(w)].

=1

12

The mixed strategies of the two players are denoted by F and H, re-
spectively, where F' is a set of distributions F, of vector x and H is a
set of distributions H. of vector z. By the minimax principle, the value
of game is given by

(1.27) T\-ia_:;illgﬁzoM}}tig;}ze /MKMQ(U‘UMFI(" )dH.(v)

F:€

— / glu,v)dF}(u)dH(v)
MN

for the optimum strategies F;y € F and H} € H C H, where H is
a subset of H representing the restriction on the choice of the pure
strategies of two players.

The statistical approach in stochastic programming is related to an
information theory. If several parameters describing a model of math-
ematical programming are unknown, we are faced with the problem of
estimating such parameters based on limited information and with the
problem of updating them when additional information becomes avail-
able. The unknown parameters may have a priori distribution, and
the observations provide posterior information. The values of informa-
tion in this context, which is first considered by Raiffa and Schlaifer
[R1], are introduced by Bracken and Soland [B8], to stochastic pro-
gramming. They consider two types of values of information, i.e., the
expected value of perfect information ( EVPI) and the expected value
of sample information (EVSI). The additional sample information re-
duces the uncertainty of the parameters, while the perfect information
gives the complete knowledge of the parameters. The EVPI is consid-

ered as the upper bound of the value of information, representing what

13



would be paid for the perfect information. The EVSI is used to decide
whether one more sampling of information is valuable or not, compar-
ing it with the sampling cost. The EVSI approaches to the EVPI as

sample size increases and the optimal sample size n* is decided by

(1.28) n* = min[n|(EVSI), —vy-n < 0],
where v is the sampling cost for one observation [J1] and (EVSI), is
the EVSI with n samples.

Another statistical approach is a game theoretic minimax one.
Consider the case in which the distribution of some stochastic com-
ponents is not known for certain, that is, the distribution parameters
are unknown or it is only known that the distribution belongs to a
certain class. The minimax approach defines an optimal decision un-
der the most pessimistic situation, and then the resulting problem is
formulated as follows.

(1.29) Maﬁtelﬁ}lzeMlglensnze Er(fo(z,w) — o(z,w)],

where F' is a probability distribution of stochastic components, § is a
given class of distributions, X is a nonempty closed subset of R" and
¢(x,w) is a penalty cost required to adjust the infeasibility with dis-
tribution F' in class §. This problem is considered by Dupac¢ova [D4].
When the unknown distribution parameters 6 of the stochastic compo-
nents are estimated and their confidence region S, are obtained with
a significance level a, the possible distribution F in problem (1.29)

is restricted to F € §, C §, where §F; = J(-|0 € S,). Stability of

14

the optimal solutions of stochastic linear programming problems for-
mulated along this line is studied by Dupacovéa [D3] for the simple
recourse problem with a random right-hand side.

When stochastic components appear as statistical time series data
in stochastic linear programming and the current components are pre-
dicted using the previous observations, Cipra [C3] has discussed the
statistical approach in terms of prediction regions. Then the linear
programming problem with a random right-hand side is solved using
the method of parametric programming. He defines an a-optimal de-
cision and gives the (1 — a)-prediction interval of objective value, in
which the value of objective function located with probability at least
1 — a, and the ellipsoidal (1 — a)-prediction region of optimal solution,
in which the optimal solution located with probability at least 1 — a.

The statistical approach in stochastic programming is useful and
important for the cases in which we would like to use the available
information to make an optimal decision for the problem under un-
certainty and for the problem involving stochastic components with
statistical properties, e.g., the estimator based on regression analysis

and statistical time series data.

1.3. Outline of the Dissertation
This dissertation consists of eight chapters, all of which are con-
cerned with statistical approach for the stochastic programming prob-

lems.
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In Chapter 2, the confidence region method is considered for two
types of stochastic linear programming problems. The unknown param-
eters in the problem are restricted to their confidence regions. The con-
fidence region method gives a game theoretic minimax solution which
optimizes the objective function under the assumption that the pa-
rameters may take the worst-case values in their confidence regions
under a given significance level. First, we consider the stochastic lin-
ear programming problem which has a normally distributed random
right-hand side that contains unknown distribution parameters. The
confidence region are estimated from the information of sample data.
An solution algorithm is given for this minimax problem due to the
confidence region method. It is also discussed how an optimal solu-
tion behaves as the number of obtained samples increases. Next the
stochastic linear programming problem that contains unknown cost
coefficients is considered. The unknown cost coefficients are estimated
that they locate on the ellipsoidal confidence region under a certain
significance level. A proposed algorithm finds an optimal solution after
a finite number of iterations by solving alternately two problems, one is
to find an optimal decision and the other is to determine the realizable
worst-case values of the unknown cost coefficients.

Chapter 3 discusses the confidence region method for the stochas-
tic linear programming problem with a random coefficients matrix. The
linear constraint whose unknown parameters are restricted to the confi-
dence region forms the reverse convex feasible region. A Tuy's cutting
plane method [H3,T1] is known as an effective procedure for reverse

convex programming, but its finite convergence is not proved. This
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dissertation gives a cutting plane algorithm for the problem that only
one constraint has unknown parameters. It is a modification of the
Tuy's algorithm, but finds an optimal solution after a finite number of
iterations. The possibility of expansion of this algorithm to the problem
that several constraints have unknown parameters is also discussed.

Chapter 4 treats the confidence region method for a generalized P-
model of the stochastic linear knapsack problem. The cost coefficients
are assumed to be normally distributed random variables with unknown
means and variances, which are to be estimated by their confidence
regions. It is shown that this problem can be transformed into the
problem with a known distribution. A proposed algorithm finds an
optimal solution in polynomial computational time.

Chapter 5 and Chapter 6 discuss a portfolio selection problem as
an application of the stochastic linear knapsack problem. The portfolio
selection problem is a mathematical finance problem that consider an
optimal allocation of a given amount of money among several invest-
ments in order to receive a big return under a small risk. A probabil-
ity maximizing model of the stochastic linear knapsack problem with
random cost coefficients is considered in Chapter 5. This problem is
transformed into the equivalent deterministic quadratic programming
problem by introducing two positive parameters. An optimal portfolio
on the efficient frontier is discussed in the mean variance framework,
and several properties of an optimal portfolio are shown as the prepa-
ration for the next chapter.

Chapter 6 discusses two types of the portfolio selection problems.
First, this dissertation considers the case in which the variance covari-

ance matrix of random cost coefficients is block diagonal. The problem

17



is decomposed into subproblems corresponding to the blocks and an
optimal allocation to each block is determined according to the gen-
eralized Zipkin's [Z2] ranking properties. A proposed algorithm finds
an optimal solution in reasonable computational time. Next, this dis-
sertation considers the case in which the random cost coefficients are
expressed by the index models. In a single index model of a portfolio
selection problem, the rate of return on investment is expressed as a
linear function of the common index, where information on the correla-
tion between possible investments are condensed to a linear regression
model with one explanation factor. The coefficients in a linear regres-
sion model need be estimated from historical data. This dissertation
gives an effective algorithm to find an optimal portfolio for the prob-
lem of a single index model. A multi index model introduces other
common indices for capturing additional information. A modified al-
gorithm is also developed to solve the problem of a multi index model
by introducing several parameters corresponding to the indices.
Chapter T discusses a stochastic improvement method for the linear
programming problem that the linear constraints have unknown coef-
ficients. The unknown coefficients are estimated using a multi-variate
regression a.na.lysis. Upon receiving new statistical data, this method
improves the solution in real time by making use of a descent method
in an adaptive way. It is shown that this iteration of improvements
finds an optimal solution with probability one, based on the fact that
the consistency of the estimator assures that the estimated problem

converges to the problem with true parameters with probability one.

18

Finally, Chapter 8 summarizes the results obtained in this disser-
tation and discusses further directions of developments for statistical

approaches in stochastic programming.
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Chapter 2.

A CONFIDENCE REGION METHOD
FOR STOCHASTIC
LINEAR PROGRAMMING

2.1. Introduction

This chapter discusses the confidence region method for two types
of stochastic linear programming problems that contain unknown pa-
rameters. One is the problem with a random right-hand side and the
other is the problem with a random objective function. In both cases,
random components are induced by noisy observations for estimation
of the unknown parameters. The confidence region method gives a
game theoretic minimax solution, where the unknown parameters are
restricted to their confidence regions and a minimax solution optimizes
the objective function considering the worst-case behavior of parame-
ters with a given significance level.

Consider the following stochastic optimization problem on the
probability space (2, A, P):

Maximize E{fo(z,w)},
SP: subject to E{fi(z,w)} <0, 1=1,2,...,m,
reXCR*, weSl,

where X is a subset of R™ and fo, fi, ¢ = 1,2,...,m, are extended

real-valued functions. Let § denote a class of distribution and let the
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parameters € of distribution F € § be unknown. Then a minimax
model due to the confidence region method is formulated as

2.1 Maximize Minimize E T,w)— ¢z,
(2.1) iive Mimize  E(fo(z) — 6(2,0)]

where ¢(z,w) is a penalty cost for adjusting the infeasibility. Given
the confidence region S, of unknown parameters 6, the probability

distribution F of stochastic components is restricted to the subclass &,

of § defined as follows.
(2.2) FeFo=3(-10€S.)CF

In practice, for example, sizes of industrial products are normally dis-
tributed but the mean and the variance are unknown, and their life-
times are exponentially distributed but the mean is unknown. In the
confidence region method, these unknown parameters are estimated
and their confidence regions are obtained from observed data. This
approach is also applicable when we need to get a desirable precision
of estimates by additional information.

We consider the following stochastic linear programming problem.

n
Maximize ch-:rj,
j=1
LE: L
subject to Zaiﬂ:j = =12 550
j=1
25 20, 3=1,2;:::4n.

Section 2.2 through Section 2.5 discuss the case where only b;, 1 =
1,2,...,m, are random variables which have a certain class of distri-

bution with unknown parameters. Section 2.2 formulates the problem
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as a recourse problem in case that b;, ¢+ = 1,2,...,m, are normally
distributed random variables. The details of solution method is de-
seribed in Section 2.3. Section 2.4 clarifies asymptotic properties of the
problem when sample size tends to infinity. An illustrative example is
given in Section 2.5. The dual of this problem has random variables
in the objective function, that is, b;, ¢ = 1,2,...,m, are known but ¢;,
j =1,2,...,n, are unknown, Section 2.6 formulates the problem as a
minimax model, when the unknown coefficients are observed including
random noise. Section 2.7 describes the details of solution algorithm
and an illustrative example. Finally, Section 2.8 gives a summary of

Chapter 2.

2.2. Stochastic Linear Programming with an Esti-
mated Right-hand Side

First, we consider the following stochastic linear programming

problem P;:

n
Maximize Z ¢;Tj,

=1

n

subject to Za;jxj = 3=1.2 0m,
=1
x; 20, j=12,...,n,

where a;; and ¢j for ¢+ = 1,2,...,m, j = 1,2,...,n, are known but
b;, i = 1,2,...,m, are random variables which have the distribution
function F( - ; 6) with unknown parameters 6. Let A, denote the i-th
row of matrix A = (a;;). Now we assume that A = (A;,A2,...,4Am)

has a full column rank.
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Consider the following two-stage problem P, with a “quadratic”

recourse.

P : Max;mlze Zc)xj Er

j=1

iwg(A,-r — b; )2] 3

i=1

where w;, 1 = 1,2,...,m denote positive weight on the i-th constraint
Az = b;, respectively. The quadratic recourse in this model is more
tractable than the corresponding simple recourse (1.11) and reflects the
situation in which the constraint infeasibility has a critical meaning,
since the quadratic recourse is greater than simple recourse when y; is

large. Problem P, is equivalent to the following problem Pj:

n
Maximize E c;;

>0
_ //Z Wil iz~ b5 PP s oot B,
=1

Now unknown parameters € are restricted to the confidence re-
gion S, with a given significance level a, and we propose the following

minimax problem P4 due to the confidence region method:

e o I Y0 Gl TRl i3
P, : Maicgll}"uzeMlglelgilze L—jz_;cj:r, f /;w.(ri..r $3)" %

Namely, we minimize the objective function added the penalty cost,
assuming that the parameters 6 take the worst-case values in the con-
fidence region S,. This model reflects the situation in which we should
make a decision to minimize the maximal possible damage, if the values

of parameters 8 are not known perfectly.
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We mainly consider the case of a class of normal distributions. Let
b;, i =1,2,...,m, be normally and independently distributed random
variables with unknown distribution parameters 8 = (u,0?%). To con-
struct the confidence region S, of distribution parameters, we define
the following notations.
pi: meanof b;, t =1,2,...,m
: variance of b;, 1 = 1,2,...,m
ji;: sample mean of b;, 2 =1,2,...,m
: sample variance of b;, 1 =1,2,...,m
N: sample size
a, 3: significance level (%)
F,(m,n): a percentile of an F-distribution with (m,n) degrees of
freedom
x5(n): B percentile of a x2-distribution with n degrees of freedom
®(-): the distribution function of an m-dimensional standard
normal distribution
The confidence region of mean y;, 1 = 1,2,...,m, is obtained from

the fact that the Hotelling statistics

N(N —m) « Z (i — a.)z

(2.3) R 2

has an F-distribution with (m, N —m) degrees of freedom. Then, under
a significance level a, the confidence region of iy, & = 1200 18
given by

m

:)2 (N"
(2.4) Z ,u < ;(N_m)Fa(???-.N—m)-

=1
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Note that the confidence region of p;, 1 = 1,2,...,m, is an ellipsoidal
region.

Due to the difficulty of solving the maximizing problem with re-
spect to the variance in problem P4, we relax the confidence region of
variances as a collection of the confidence interval of each variance as-
suming that random variables are mutually independent, instead of the
confidence region of variance covariance matrix. They are constructed

from the fact that the statistics
52
(2.5) x* = (N - 1)?
has a y%-distribution with (N — 1) degrees of freedom. Then the con-
fidence interval of each o7 is given by
(N —1)s? 2 (N —1)s?

(2.6) Lichimel ) GO s, B

Pt i=1,2,...,m,
Xl =1} = Xi_g(N -1)

1
where f = iaT}n‘. Note that the confidence region of 67,7 =1,2,...,m,
1s a rectangular region.
From (2.4) and (2.6), the confidence region S, of 8 is given by

Ai)? m(N —
Z == N((N m]) G(m&N_m)s

(2.7) So= {(#,

(N —1)st 2 (N—1)s7 .
————— < S T 1=1,2,...,m .
X5(N —1) X3 -g(N=1)

The minimizing part of problem P4 with respect to theta is given by
2

+oo ‘oo m
(2 8) / f Zw, a,-j:rj~t,' d@(tl,...,fm;#,ﬂ'z)

=1
2

and then we obtain the following minimax problem.
n
Maximize Minimize C;2;
220 (4,0?)€Sa 2 %

P5: i n

The minimizing part with respect to 6 of problem Ps is decomposed

into the following two problems.

L Max;mlze Zw' i
e (N — 1)3 5. (N=1)sf .
; LU= AP sghe e =,
subject to g(N = Xf_g(N ~1)
2
Maximize L; = Z w; Za;'jxj =z }
p! . # i=1 j=1
4 ™ (= i)
subject to Z B 32'[ —— < K
where
N
(2.9) goe =L g S i)

N(N —m)
Problem P} represents the maximization with respect to variances, and
problem P represents the maximization with respect to means. Since
the maximum of problem P} is independent of a decision variable z
and problem P4 1s a minimization problem with respect to x, we may
regard L, as a constant in problem Py. Hence it is sufficient to consider

only problem P5.
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2.3. A Solution Method

Here we will show several properties that are useful to solve prob-

lem P4 induced from problem P;.

LEMMA 2.1. The maximum of L, in problem P{ is attained on the
boundary of feasible region, and the sign of (u} — ji;) is opposite to

that of (A;z — ji;), where u} is an optimal solution of problem Py .

PROOF: It is easily shown that L, is a convex function of p;, 1 =

1,2,...,m. Therefore the first part of Lemma 2.1 is clear. L, is maxi-
mized when it holds

(2.10) (’“;—2”)2 = K2, =32,

that is, '

(2.11) pi =gy Kyy, v=1,2,...,m,

where K; > 0 and Z K? = K. Since (Aiz—u!)? = (Ajz—p:i F5:K,)?,
1=+
the maximand u} of L, is given as follows.

i —siK; if Ajxz—p; >0,
(2.12) ;1 =< i if Ajz—j; =0,
i+ s Ky if Az —j; <0,
for : = 1,2,...,m. This proves the second part of Lemma 2.1. |
By variable transformations z; = (p; — fi;)%/s%, ¢ = 1,2,...,m,

problem PY is transformed into the following problem.

Maximize L, = E wisfz; +2 E wisi( Az — 14)\/zi
z : o
=1 i=1 &
z : e = Y2
Ps : g S wl(A!‘T P‘I) ]

subject to Z 2 < K,

The Kuhn-Tucker condition for problem Pg is given by

1 n
—w,.sf —wisi(Aiz — i)z, *+A+6=0, 1= , - TS .

9 m
B S e, =0, tame), T2

=1
where A and §;, ¢ = 1,2,...,m, are Lagrange multipliers. From Lem-
ma 2.1, when A;x — ji; = 0, we obtain z; = 0 and §; = w;s? — A. While,
when A;x — ji; # 0, we obtain
wis?(Aiz — i)’

o 3 =020 s
(X —w;s?)? ’

(2.14) =

and Lagrange multiplier A satisfies

m 252 e N
Z wl-si(A,:r #-1) A

(2.15) O —wialf

i=l
Let A* denote the largest solution of equation (2.15). Then the following
lemma shows that the optimand 27,2 =1,2,...,m, are given by
wis?(Aiz — i)’
(A* — wis?)?

LEMMA 2.2. The objective function L, is maximized when A in (2.14)

= 152 veaiiTie

(2.16) 2 =

is the largest solution of equation (2.15).

PROOF: Substituting (2.14) into L, we denote L, with Ly(A) as func-

tion of A as follows.

(2.17) Ly(N) = i;wi(Ai-f - pi)? (A—::m)z .
Let A\; and Az(> A;) be _two solutions of equation (2.15). Then
(2-18) ilwi(AiI = ﬂi)ztﬁ%?? =
=
:lei(ﬂiir = ﬁi)zﬁ%-
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Therefore,

w?s?(A;z — j1;)? -
— w;s7)%} (A2 — uu,.s?)2 .

2§: stAix — 1;)?
4\1 — w;is?)2( Ay — wis?)?’

Using (2.17) and (2.19), it is obtained that

219) (A1 +A
( )(1+2)§(A1

(2:20) Lj(ha) — L3(M) =

(A2 —M1)® & wis?(Aix — ji;)?
: Z ‘S‘Fz Sl > 0.
2 (A —wisi)* (A2 — w;s?)?

Hence the largest solution of equation (2.15) gives the maximum of

Ly(A)- 1
A lower bound of A* is given by the following lemma.

LEMMA 2.3. It holds that

(2.21) A > Ap = maxw,-s?,
€]
where
(2.22) I=dsl Aoy =" #0: S =12 /v m}

and A* is the largest solution of equation (2.15).

PROOF: Related to (2.15), we define

= wis¥ (A — )
(2.23) G()\) = ; D—w?P K.
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Since

. hin G(A) = 400 >0,
(2.24) B :

lim G(A\)=-K <0,

A—+o0

and
252(Aix — ii)*

2‘ ! /\ = _2 w: 3;( i 1 :
( 25) G( ) ; (,\—w,-s?)3 >0

just one solution of equation (2.15) exists in an interval (Ag,00). So it

is the largest solution of equation (2.15). i

The optimal value L3 of problem P is given by

e X e N N Ny e

(2.26) L; —;wl(Al-r—P‘l) (/\—wisff) ’
where it should be satisfied that

m 9.3 _ 12

wisi(Az — )" _ -

(2.27) Z e K,

3=1
and
(2.28) A > Ao

Problem P¥ can also be solved by using a duality theorem of non-

linear programming [I7] as shown below. We have that

Z(Ft P"t) <I\}

(2.29) SUP{Lz Zwa(Aw 1i)?

t=1

mf {sup{L(;t A) = Ew CAjz~— ﬁ:) +

=1

,\20}.

R Z (pti ';;_‘i )}
=1 .
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Then, for A > )¢, the maximum of L(u,\) is attained at u; = [,

t=1,2,...,m, where
Aty — w,—sz,-;r

(2.30) =gt res i=1,2,...,m,
and
N . Aw;(Ajx — ﬂ.,)
2.31 L(ji,)) = AK +
(2.31) (1, 0) = AK g ——
From dL( i, A)/d\ = 0, we obtain that
O wis(Aix — i)’

2.32 K = Jud
2:92) : ; (X — wis?)?
and

m A 2

P e ) SES 1 A 2

(2.33) L(ji,\) = ‘Z;w,(Al:r. ;) ( e w,-sg) :

Therefore, (2.26)-(2.28) are derived from (2.32), (2.33) and Lemma 2.3.
On the other hand, the optimal value L} of problem Pj is given

by
(N — Dwisi 1 Jw;s?
(2.34)
Z Xi- sV
Then the objective function of problem Ps is given by
(2.35) L= Zc,x, $ — Ly(A%);

1=1
and it should be maximized with respect to z. Since L] is independent

of a decision variable x, we neglect L]. Problem Pj is rewritten as
follows.

\ 2
Ma.xlgmze L= ZC,I, Ewa(fltf ﬂu)z(m) )

J"‘I =1

Fys {st(Aiz — u)?
subject to Z EHEY 3 ~ =K,
fe (A — w;s?)?

:\_> /\0.

Note that A\ = mea}x wis? depends on a decision variable z.
L ]
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. 3
LEMMA 2.4. Problem P; is a convex programming problem if A 2> 5)«0.

PROOF: It is sufficient to show that the Hessian matrix of the objective

3 -
function is negative semi-definite for A > 31\0. The elements of Hessian

=

matrix H = (h;;), 1,7 =1,2,...,n+1, are given as follows.

9*L A2
(2.36a) hi; = m = —2Zwmhak;u i
W = ) g8 R
0*L
(2.36b) hnt1,i = hint1 = 92,00
. ; Awgst :
= 4;1{.’&-&’:,'(141-37 = ﬂk)m, = 1’2,' ol
8‘2 m

2(2) 82
L = —2Zwk{Akm - ﬂ;‘.)?’ lUkSk( t+ wqu).

(2.36c) hptintr = £Vl (A — wys? )

k=1

Then the matrix H is expressed as the sum of the following two matri-

ces.
0
' !
- - 0 e
23y H=-(U v)(U v) an
0 0 d
where
V2w .
— — :1121"'1 ] =1,2,...,ﬂ,
(uu) /\__w,.s_2 atp? m, ]
2\/2TUT(A & — fii )W; 3 o'l
(298] well==TSSmm ot =12
m
(Agz — ik )? wist 2
=40 ey R
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. . : 3 ;
Since d is nonnegative for A > 5/\9, —H is expressed as the sum of two
positive semi-definite matrices. Therefore, the Hessian matrix of the

objective function of problem P is positive semi-definite. Ji

Because the value of A depends on z, we should consider several

cases according to the value of A\. We define

— . g%
(2.39) Amax = el

Case A. A\ > g/\max:
Since it is clear that A\g < Apax, problem Pz is a convex program-
ming problem from Lemma 2.4. Then we can use an appropriate
solution method for a constrained nonlinear convex programming
problem, e.g., the steepest descent method. J§

Case B. g <A< gz\mx:
For fixed A, L is a convex function of 2. Then we obtain optimal
solution 2*(A) as a function of A and choose the A* so as to min-
imize z*(\). But we must divide A into the following intervals,
because the constraints differ on these intervals. For the sake of
convenience, we arrange w,-s?, 1 =1,2,...,m, in increasing order,
together with the corresponding constraints. By definition of A,

we have
(2.40) X =Wpst, & Aw#pi=12...,m;
and

(2.41) Ao = wps?

. Az #i1i, i =1,2,...,p,
» —

Aiz = i=p+1,...,m,
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for 1 < p < m. Thus p denotes the largest index such that A;z #
jii. For A\ = w,,.sf,, 1 < p < m, the first constraint of problem P

is changed to

zP: IU?S?(A,'I = ﬂ,‘)z e P

(2.42) O — sl

i=1
and equality constraints A;z = fi;, ¢ = p+ 1,...,m, are added.
Then the constraints of problem P for each p are shown as follows.
(i) p<m-—n:
Since rankA = n, the constraints (2.41) are infeasible.

(i) m—n<p<m:

XP: w?s?(A,-r — j;)? < o

i=1 ()t—wl's?)z
(2.43) Air =Tt =P Lyvns M
z; 20, Jg=12,...,n

e .2
wp.‘,'ip ‘( A < u’p+lbp+l.

(i11) p=m:
e : = \2
Z w?s?(Ax ;,u;) o
(2.44) z; 20, j=12,...,m

3
wmsfn < NZ ;/\max'

We need to obtain optimal solutions for all p. Choosing the best
solution among them, we get a global optimal solution. §

The following lemma shows the existence of the global optimal

solution.
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LEMMA 2.5. The objective function L of problem P; is bounded.

PROOF: Assume that an optimal solution is unbounded. Since the
denominator of the first constraint of (2.43) or (2.44) is bounded, its
left-hand side must be unbounded. This contradicts the boundedness

of K. I

We define problem P7(A), which is minimized with respect to x,
as problem P7 for a fixed A. Then the following lemma shows that an

optimal solution of problem P;() is continuous with respect to A.

LEMMA 2.6. An optimal solution of problem P()) is continuous with

respect to A,

PROOF: Let z, and x, denote optimal solutions of problems P7(\,)
and P7(\z), respectively. It is easily shown that L(z,) — L(x3) as
A1 — Ay and that problem P+()\) has a unique solution. Therefore, an

optimal solution has the continuity with respect to A. |}

Consequently, we can find an approximate optimal solution of
problem P; by choosing the best solution among the optimal solu-
tions of problem P7()\) obtained for discretized values of A between \g
and g}\m“ in cases B. (1) and B. (iii). Note that problem P; is a
normal distribution model of problem P4, which is a minimax model

due to the confidence region method for problem P;.

2.4. Asymptotic Properties
We discuss here how the problem behaves when sample size be-

comes sufficiently large. Since a sample mean and a sample variance
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are consistent estimators for the mean and the variance of a normal dis-
tribution, the estimates of unknown parameters tend to the true values,
if the number of independent samples tends to infinity. With true dis-
tribution parameters, simple quadratic recourse problem P; becomes

the following problem.

n m
. - 2 2
Pg : Ma.)rclzlguze g ] Cilty = E {wi(A;x — pi)* + wio; },
J=

1=1
Here we show that problem Py is obtained from our proposed problem

when sufficiently large number of samples are available.

LEMMA 2.7. Let F,(M,N) and x%(N) denote a percentiles of an F-
distribution with (M, N) degrees of freedom and a x*-distribution with

N degrees of freedom, respectively. Then

2
oy ekl _

(2.45) Jim 2o .
. Fo(M,N)

PROOF: As in [T1], using the Cornish-Fisher expansion, we have

£
VN

where u, is an a percentile of a standard normal distribution. Since

(2.47) V2x2(N) = V2N =1 = ua + O(—),

lug| < 00 for 0 < a < 1, (2.45) is derived.
The following relation holds between a percentiles of an F-distribu-

tion and a y?-distribution.
(2.48) M F,(M,) = x%(M).

Since F,(M,o0) is finite, we obtain Nlim Fo(M,N)/N =0. 8
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THEOREM 2.8. Problem Py is obtained from problem Pjs as sample

size tends to infinity.

PROOF: From Lemma 2.7, optimal solutions of problems P} and P}
2

tend to sf, : = 1,2,...,m, and @;, ¢ = 1,2,...,m, respectively, as
sample size tends to infinity. Therefore, the consistency of statistics ji;
and s} implies that problem Pjs brings to problem Py as sample size
tends to infinity. §

Note that an optimal value A* in problem P; tends to infinity as

sample size increases, when the linear programming problem

Maximize c'z.
Py : subject to Az = p,
x>0,

replacing the random variable b by the sample mean ji is infeasible. It
is considered that A* is an index of violation of constraints A,z = ji;,
i = 1,2,...,m. The estimates of variances are concerned only with the
magnitude of recourse, which are independent of an optimal decision

in both problems Ps and Pg.

2.5. An Illustrative Example
(Example 2.1.) Consider the following problem:

Minimize 2z, + z2,

subjext to T +x9 = by,
PE1 : 2-‘!‘1—;1.‘2:62,
x2 = by,

Ty, T2 201

where by, by and b; are normally distributed random variables with un-

known parameters, which are assumed to be independent each other.
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Let the weight vector be given by w = (10,5,10). As a result of sam-
pling with 11 samples by computer simulation, the sample means f
and the variances s are obtained as given in Table 2.1, where the true

means i and the true variances o2 are also listed.

Table 2.1. Parameters of by, b, and b3

2 ¥ Py e

H 8
by 2.979 0.007 0.070 3 0.01
b, 0.056 0.360 1.800 0 0.36

by 1.020 0.043 0.430 1 0.04

The problem PE; is transformed into the following problem based

on the confidence region method.
10(zy + z2 — 2.979)%)?

Minimize L =2z + 23+

Ty,12,A (A = 0.070)2 :
5(2x; — z2 — 0.056)2A%  10(xp — 1.020)%A?
() — 1.800)2 (A —0.430)?
PE; : ke o 0.7(z1 + z2 — 2.979)% e 9(2z, — x3 — 0.056)*
ek (X — 0.070)2 () — 1.800)2
—1.020)?
4.3(z2 — 1.020)* _ 1:388;
(A —0.430)2
T3, 23 2 0,

where a significance level is set to 5%.
Optimal solutions for all cases of p are given in Table 2.2. When
p = 3, we solve problem PE{ for 1.80 < A < 2.70. When p = 2, the
objective function L is minimized subject to
0.7(xy + 22 — 2.979)%  4.3(x2 — 1.020)?
(A — 0.070)2 (A — 0.430)2
(2.49) 22y — 23 = 0.056,

= 1.388,

IIZO's 13220,
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Table 2.2, The optimal solutions for different p

Case P range of A A* Zy r} L*

A. — A>270 2700 0.736 1.710 16.809

B. p=3 180<A<270 1807 0.803 1.551 12.234
p=2 043<A<180 1471 0.821 1.587 13.232
p=1 007T<A<043 infeasible

for 0.43 < A < 1.80. When p = 1, the objective function L is minimized

subject to
0.7(xy + 3 — 2.9?9)2
= 1.38
(X — 0.070)2 Lt
(250} 21‘1 — Xy = 0056,
Ig = 1.020.

y 20, 22 20,

for 0.07 < A < 0.43, which have no infeasible point.

The best solution among these solutions is (A*,x],z3) = (1.807,
0.803,1.551) and L* = 12.234. Figure 2.1 illustrates an optimal solu-
tion of problem PE)|. Furthermore, in Table 2.3, the optimal solutions
corresponding to several sample sizes are given, which illustrates the
asymptotic properties discussed in Section 2.4. Note that N = oo

implies that the estimates give the true values of parameters.
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7 2-1']—.'172:’)2

* optimal solution when N = 11

o optimal solution with true parameter

Ty =by

.

T+ = b

Figure 2.1. Optimal solutions of problem PE,

Table 2.3. The best optimal solutions for several sample sizes

N A* zy x5 L*
11 1.807 0.803 1.551 12.234
100 5.870 0.825 1.710 11.355
300 8.642 0.820 1.649 10.640
1000 16.270 0.840 1.651 10.271
o0 — 0.967 1.580 9.557
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2.6. Stochastic Linear Programming with an Esti-
mated Objective Function

We consider in this section the following linear programming prob-
lem Pyg which has unknown coefficients in the objective function:

n
Maximize Z 5T 55
1=1
P]g H Lis
subject to z:a,-ja:j =bpy A= L2 o
J=1
5. =0 =220,

where A = (a,;) and b = (b;) are known coefficients, but ¢ = (¢;) are
unknown coefficients which are estimated by noisy observations. We
assume that rank A = m and {z|Az = b,z > 0} is bounded and
nonempty.

Problem Pq is viewed as the dual of problem P;. These prob-
lems treat two types of stochastic behaviors. In problem Py, there are
normally distributed random variables with unknown parameters. On
the other hand, in problem P,q, there are unknown coefficients which
should be estimated only through the observations disturbed by nor-
mally distributed random errors.

We consider the situation in which the unknown coefficients ¢ can
not be directly observed, and so the objective function is estimated by
means of linear regression analysis based on an output y = ¢z + € with
a random disturbance € for an input z. The normal linear regression

model is expressed as follows.

(2.51) y=Xc+e,
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where X is an N x n matrix of N sample points, y is an N dimensional
column vector of observations and € is an N dimensional column vector
of independent identically distributed random variables, which have a
normal distribution A'(0,0%). If there is no redundant data, that is,

rankX = n, the least square estimator ¢ of ¢ is given by
(2.52) é=(X'X)"'X"y.

Note that ¢ is the best linear unbiased estimator of ¢ and is normally

distributed as follows.
(2.53) é~ N(c,o?(X'X)™).

Denoting the unbiased estimator of o with s*, we have

(c - (X' X)(c— )
ol d

N-2n)s
v2=(—%~x2(1\’—n),

x:(n),

P =
(2.54)

which are mutually independent. So the following statistics has an

F-distribution with (n, N — n) degrees of freedom.

n/n _ (e=&)(X'X)(c—é)
ve/(N —n) ns?

(2.55) ~ F(n,N —n)

Then we construct the joint confidence region of regression coefficients

with a significance level a as follows.
(2.56) (c—&)(X'X)(c—¢&) £ ns’Fo(n,N —n)

Note that this confidence region is an ellipsoid in R".
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The unknown coefficients exist in the ellipsoidal confidence region
with a significance level a. Then our confidence region method leads
to a minimax problem that optimizes the objective function under the
situation that estimated coefficients take the worst-case values in the
confidence region. We obtain a minimax problem due to the confidence

region method as follows.

Minimize Maximize c'z,
x

Py, : subject to Az =h,
20,
(e — &)(X'X)(c— &) < K,

where K = ns?*F,(n, N — n).

2.7. A Solution Algorithm for Problem P,, and an
Illustrative Example

Problem Py, is viewed as the following two-stage problem.

Minimize max{c'z|Az =0b, =z > 0},
c

Pys:
K subject to (¢ — &) (X'X)(c — &) < K.

Then we consider the following two problems P},(¢) and PY,.

P’ (c): Maximize c'z,
12\Cs subject to x € Q) = {a| Az = b, z > 0},
"o Minimize  f(¢),
A& subject to ¢ € Q, = {c|(c-&)(X'X)(c—¢) < K},

where f(c) is the optimal value of problem P},(¢). Problem P},(c)
corresponds to the first stage problem to maximize with respect to z,

where ¢ is fixed, and problem PY, corresponds to the second stage
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problem to consider the worst-case values of the estimated coefficients.
Since problem P/,(c) is a linear programming problem, it is sufficient
to consider basic solutions for obtaining f(c) for every ¢. We get the

following lemmas concerning to these problems.

LEMMA 2.9. The objective function f(c) of problem PY, is a piecewise

linear convex function.

PROOF: There are a finite number of basic feasible solutions for prob-
lem P/,(¢). Denote them by mf’,:c,f, ... 2B, where r is their number,
Since the function f(c) is expressed as the maximum of r linear func-

tions of ¢, that is,
(2.57) f(c) = max{(z?)'e, i=1,2,...,r},

f(c) is a piecewise linear convex function. il
LEMMA 2.10. Problem PY, has a unique optimal solution.

PROOF: From Lemma 2.9 and 2 > 0 for all 7, the subgradient 9f(c)

of f(c) is nonnegative. Then any optimal solution of problem o i8

located on the boundary of €. Let ¢! and ¢*(# ¢') denote optimal

solutions of problem PY,. Then
(2.58) A = Ac' + (1-=))c?

for 0 < A < 1 is also feasible and is located in the interior of Q3. The

convexity of f(c¢) implies that

(2.59) F() € Af() + (1 = N)f(F) = f(c') = f(c*),
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which means that ¢* is optimal and is not located on the boundary
of ;. This contradicts that an optimal solution of problem PY, is

located on the boundary of §2,.

An optimal solution of problem P;; is obtained from (2.57) by
solving the following problem:
Minimizeec z,

Pis: subject to (c—¢é)'(X'X)(c—¢) < K,

el <5, ¥=1,2... .9
However, r is a rather large number and it is not computationally
feasible to get all basic feasible solutions in advance. To develop an
effective solution algorithm, we define the following subproblem P4(z)

with parameter z:

Minimize z'e,
C

P :
14(z) subject to (¢ — &)'(X'X)(c—¢) < K.

Problem P4(x) is based on the fact that only one linear constraint
of problem P,3 is active when problem P}, (¢) satisfies non-degeneracy

assumption. An optimal solution of problem P,4(x) is easily obtained

by

/ K
(2.60) C.(I) = - W(.\H«Y)_II + é

Given a basic feasible solution, we can decompose a matrix A into
a basis B and a non-basis D, that is, A = [B, D] and we denote

correspondingly z = [zp, *p] and ¢ = [eg, cp].
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LEMMA 2.11. (z*,¢*) is an optimal solution of problem Py, if and
only if, ¢* is an optimal solution of problem Py4(z*) and satisfies the

following optimality condition for linear programming problem P},(c*).
(2.61) (¢p) = (cp)B™'D <0

PROOF: The value of (¢*)'z* gives the minimum of ¢/z* over ¢ €
and the maximum of (¢*)'z over z € ;. Therefore, ¢* is optimal to
problem Py4(z*) and z* is optimal to problem P{,(c*). Then inequal-
ity (2.61) is satisfies from the nonnegativity of z. The ‘only if’ part is
clear. §§

In the solution algorithm, problems P{,(¢) and Py4(z) are alter-
nately solved until (2.61) is satisfied. To avoid cycling, we introduce
a set J which stores optimal solutions of problems P{,(¢) for every c.
The following is a solution algorithm for problem Py;.

Algorithm 2.1.

Step 1. Set ¢® « ¢, k « 0 and J « ¢.

Step 2. Solve problem P{,( c*) and let % be an optimal solution of
problem P}, (c¥).

Step 3. If ¥ € J, then go to Step 5. Otherwise, set J « J U {z*}
and go to Step 4.

Step 4. Solve problem Pj4(z*) and let c**! be an optimal solution of

problem P14(z).

(262) = -\/ (xk),(xffx)-lxk(X'X)-‘x* +é

Let k «— k + 1 and return to Step 2.

47



Step 5. If 2* = %=1, then z* is optimal to problem P;; and termi-
nates. Otherwise, solve problem P}, with f(c) = max{(z?)'c|
2’ € J} and let ¢**! be an optimal solution of problem P,

Let k « k + 1 and return to Step 2. |}

THEOREM 2.12. If 2% = 2*~' in Step 5 of Algorithm 2.1, then z* is

an optimal solution of problem Py,.
PROOF: Since z* is an optimal solution of problem P},(c*), we get
(2.63) (ch) = (ch)B'D <0,

from the optimality condition (2.61). If z¥ = z*~!, then problem

k

Py4(z*~1) is equivalent to problem Pi4(z*). Therefore, c* is optimal

to problem Py 4(z*). From Lemma 2.9, z* is optimal to problem P,;. @

THEOREM 2.13. Algorithm 2.1 finds an optimal solution of problem

P, after a finite number of iterations.

PROOF: Let Jo = {z2,i = 1,2,...,r} be a set of all basic feasible
solutions of problem P{,(¢). Note that Jj is finite and J C Jy. In each
iteration, J is augmented with a new solution. When J = Jy holds,
problem PY, in Step 5 is equivalent to the original problem. Then from
Lemma 2.8, Algorithm 2.1 gives an optimal solution in a finite number

of iterations. i

Now we show an illustrative example.

(Example 2.2.) Consider the following problem.

Maximize c¢;x; + ¢,
subject to 1+ 323 <15,
€Iy + 2I2 S 11,
14+ @258,
221+ 12 <14,
2y, o > 0.

PE-z s
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Table 2.4 Computational result by Algorithm 2.1

k ck 2~ J

0 (1.282,1.694) (5,3) ¢

1 (0.977,1.960) (3,4) (5, '}

2 (1.514,1.367) (6,2) {(5,3),(3,4)")

3 (0.941,2.032) (3,4) {(5,3)" (3 4)',(6,2)'}
4 (0.979,1.958) (3,4),(5,3)

The coefficients ¢; and ¢y of objective function are unknown and are
estimated by noisy observations. By computer simulation with sample

size N = 20 and a significance level a = 5%, we have obtained

1w (190.0 165.0 . (1282
A (165.0 157.5)’ ch- (1.694)'
(2.64) s* =0.2884, F(2,18;0.05) = 3.55,

Q = {c|(c— &)(X'X)(c — &) < 2.048}.

Algorithm 2.1 applied to this problem PE; proceeds as shown in
Table 2.4. It is concluded that optimal solutions are ¢* = (0.979,1.958)'
and 2* = (5 —2),3+ A)’ for any 0 < XA <€ 1, and the optimal value is
10.769.

2.8. Conclusion
The confidence region method for two types of stochastic program-

ming problems are considered in this chapter. One is the problem with
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a random right-hand side whose probability distribution includes un-
known distribution parameters. The other is the problem with random
cost coefficients whose stochastic behavior is introduced through the
estimation of cost coefficients by randomly disturbed observations.

A proposed minimax model based on the confidence region method
is useful and effective for the above two problems in the sense that the
unknown parameters, which are estimated by historical or experimental
data, are incorporated into the decision problem with an appropriate
significance level. Note that the above two problems deal with the
different stochastic aspects of parameters. These problems are viewed
as dual problems to each other, since the dual of the problem with a
random objective function becomes the problem with a random right-
hand side and the dual of the problem with an estimated right hand side
becomes the problem with estimated objective function. Therefore, for
the problem with random cost coefficients whose distribution functions
includes unknown parameters, we can solve its dual problem by using
a proposed solution method in Section 2.3, and for the problem with
unknown coefficients in the right-hand side of constraints, we can solve
its dual problem by using Algorithm 2.1.

It is left for the further research to investigate the confidence region
method for other problems, e.g., the problem with nonlinear constraint

such as f(z,w) < 0 and the problem with distribution free stochasticity.
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Chapter 3.

STOCHASTIC LINEAR
PROGRAMMING WITH
ESTIMATED CONSTRAINTS

3.1. Introduction
This chapter discusses the confidence region method for a sto-
chastic linear programming problem that contains unknown coefficients

in a coefficient matrix. Consider the following linear programming

problem:
n
Maximize ZCJ'.I‘J',
i=1
LP: % .
subject to ZGUI-’ = =002 v
j=1 ,
z2; 20; J=12.:31
where some of a;;, ¢ = 1,2,...,m, j = 1,2,...,n, are assumed to

be unknown while others are known. The stochastic variation comes
from estimation of unknown coefficients by means of the multiple re-

* . . “ n Ty

gression analysis by noisy observations of Zj:l Gij it = 1,2, ;.
. . . n

The confidence region of the left-hand side of constraints }°7_, a:;z;,

i = 1,2,...,m, becomes the intersection of reverse convex regions,

which is the intersection of complement of convex regions and may
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be disjunctive. Meyer [M4] have considered reverse convex programs
and proposed an algorithm for finding a Kuhn-Tucker point when one
feasible point is given in advance. Note that his iterative lineariza-
tion algorithm gives a sequence of feasible points, but does not always
converge to an optimal solution. The algorithms by a cutting plane
method [T3] and by a combinatorial method [H1, Ul] are also known
for reverse convex programming. However, the convergence of a cutting
plane method is not yet proved. For linear programming with one ad-
ditional reverse convex constraint, the combinatorial algorithm, which
finds an optimal solution in a finite number of iterations, is proposed
by Hillestad and Jacobsen [H2], where they obtain all vertices of linear
constraints by the lexicographic simplex algorithm and find an opti-
mal solution by searching the edges of polytope defined by the linear
constraints.

We mainly consider a linear programming problem, in which un-
known coefficients appear in only one constraint. This problem is equiv-
alently transformed into a linear programming problem with an addi-
tional reverse convex constraint. Our algorithm is based on a cutting
plane method but finds an optimal solution of the reverse convex prob-
lem in a finite number of iterations. The proof is based on the fact that
an optimal solution lies on the intersection of the boundary of reverse
convex region and the edges of polytope constructed by known linear
constraints.

Section 3.2 formulates the problem and estimates the unknown co-
efficients in the constraint. Several properties on an optimal solution of

a reverse convex programming problem are summarized in Section 3.3.
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Section 3.4 describes an iterative algorithm and proves its finite conver-
gence to an optimal solution. This algorithm generates a point sequence
converging to an optimal solution, but each point in the sequence be-
fore convergence is not feasible. A lower bound of the optimal value
obtained at each iteration is discussed in Section 3.5. An illustrative
example is given in Section 3.6. Section 3.7 extends the discussion to
the problem, in which unknown coefficients appear in more than one

constraint. Section 3.8 is a summary of this chapter.

3.2. Formulation of the Problem
We consider the following linear programming problem with one

additional linear constraint that contains unknown coeflicients.
mn
Maximize E e

3=
n

subject to E age; =&, 1=12...,m,
=1

T
> Bz =
=1

z; 20, =12 .0

P]l

where a;;, b;, ¢; and 7 are assumed to be known coefficients, but some
of B;, j = 1,2,...,n, are assumed to be unknown. By the confidence
region method, constraint ) 7_, Bjz; = n is interpreted as that 7 is
restricted to the confidence interval of E;;l Bjx; with a certain sig-
nificance level. Let CI(z;a) denote a confidence interval of 37, f,z;
with a significance level a. Then problem P, is treated as the fol-

lowing problem with the constraint that 5 should be in the confidence
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interval CI(z; a).

n
Maximize E C525)

i=1
Py : subject to Eaij;r,-=b,. = B S R
Jj=1
n € Cl(z;a),

:rjzl), j:1,2,...,n,
Multiple regression analysis is a useful technique to construct the
confidence region of the linear constraint with unknown coefficients.

We consider the following regression model
(3.1) y=XpB+e,

where y is an N dimensional column vector of observations, X is an
N x n matrix of n independent variables observed on each of N in-
dividuals, 7 is an n dimensional column vector of unknown regression
parameters, and ¢ is an N dimensional column vector of unobserved
random disturbances which are assumed to be mutually independent
and normally distributed with the mean 0 and the variance 0. When
rank(X) = n, the least square estimator of the regression parameter /3

is given by
(3.2) B=(X'X)"'X"y,

which is exactly the same as the maximum likelihood estimator of 4 and
is the best linear unbiased estimator of 3 [M2]. Then the confidence

region of the regression parameter is given by

(3.3) (B-B)(X'X)""(B—B) < ns’Fa(n,N = n),
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where s? is the sample variance. The confidence interval of 'z for a

given r is

(3.4) Bz — \/nFa(n,N —n)Wa'Vz < f'z <
B'r+ ﬁf},(n. N = n)Va'Vaz,

where V = s*(X'X)~'. The constraint n € CI(z;a) is equivalent to

the following two nonlinear inequalities.
—B'z + \/nFa(n,N —n)Va'Vz > -y,
B'z + /nFa(n,N —n)Va'Vz > 1.

For a sake of simplicity, we denote them by

(3.5)

9 (z) 2 —n,
(3.6)

g™ (x) 2,
respectively. Since the regions {z|g~(z) < —n} and {z|g*(z) < n},
which are defined by reversing the inequalities, are convex, the regions

{z|l¢g~(z) = —n} and {z|g*(z) > n} are called reverse convex.

3.3. Reverse Convex Programming
We summarize properties on reverse convex programming in this

section. The reverse convex programming problem is defined by

Minimize f(z),

Py subject to g,-(.r) DO B 0 R

where f : R® — R is a differentiable and pseudo-concave function,

and g; : R® — R', i = 1,2,...,1, are differentiable and pseudo-convex

functions. It is assumed that
(3.7) G = {zlgi(z) =0, 1=12,...,1}

55



is nonempty and compact. Let convG denote the convex hull of G.
A vector T € G is said to be a vertex, if ¥ cannot be written as a
convex combination of other points of G, and let V(G) denote the set
of vertices of G. Then, since f is pseudo-concave, an optimal solution
of the following problem P4 belongs to V(convG),

Minimize f(z),

B subject to x € convG,

and it holds that V(convG) = V(G) C G, which is easily obtained by
showing that V(convG) C V(G) and V(convG) D V(G). We see that
it is sufficient to seek an optimal solution of problem P; among the
vertices of G. Note that the number of vertices of G is finite and, as a
consequence, convG is a convex polytope [H1].

As a special case of reverse convex programming, we also consider
the following linear programming problem with one additional reverse
convex constraint.

Maximize c'z,
subject to Az = b,

g(z) 20,
z=>0,

Ps:

where ¢ : R" — R is a continuous and pseudo-convex function. We
define that

(3.3) G ={zlg(z) > 0},

(3.9) Dy ={z|Az = b,z 2 0},

where Dy is assumed to be nonempty and bounded. Let E;, i =
1,2,..., K, denote the edges of Dy, where K is their number. Then
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conv(Dg N G) is a convex polytope and an optimal solution of prob-

lem Ps lies on E;, i = 1,2,..., K [H2], since

(3.10) V(conv(Dy N G)) C | JV(E:n G) c | {E:inG}.

Now we consider the problem

Maximize ¢z,

Ps : ‘ subject to = € Dy,

which is obtained by dropping the reverse convex constraint. Let zg
denote an optimal solution of problem Pg. If 2 € G, z is obviously an

optimal solution of problem Pjz. Otherwise, z, satisfies the following

inequalities:
zg € Dy,
(3.11) g(zg) <0,
czo > 'z,

where # is an optimal solution of problem P5. Let G and intG denote
the boundary and the set of interior points of G, respectively. Let w
denote the point where the line segment [z, zo| meets 0G. Then w is

given by
(3.12) w=tz+(1-t)z
with ¢ € (0,1], which is uniquely determined by solving the equation

(3.13) gtz + (1 —t)zo) = 0.
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Since
(3.14) cdw=tdz +(1-t)zy > c'z

for every z € Dy N intG, an optimal solution of problem Pj lies on
Dy N 9G [T4].
Here we state problem P; again.
Maximize 'z,
subject to Az = b,
Py 9~ (z) 2 —n,
g*(z) 2 n,
o=
where ¢~ () and g*(z) are convex functions defined by (3.5). The fea-
sible region of problem P, is an intersection of the convex polytope D,
and two reverse convex regions. Since (¢~ (z) + n) + (9t (z)—n)>0
holds for any x € R", at least one reverse convex constraint is always
satisfied for any # € R™. Then it is sufficient to consider only one
reverse convex constraint which is not satisfied by z,. Let z* denote
an optimal solution of problem P,. If ¢g~(z5) < —n, it holds that
gt(z*) < n, and if gt (xg) < 1, it holds that g (2*) < —1n. Therefore,
defining that

(3.15) g(z) = { 9~ (z) +n if ¢7(x9) < —9,

g (z)=n if gt(zo) <,

problem P, is viewed as a linear programming problem with one addi-

tional reverse convex constraint.
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3.4. A Solution Algorithm

We can get an optimal solution of problem P3, in principle, by com-
puting all edges of Dy and comparing the objective values of all points,
at which edges E;, 1 = 1,2,..., K, of Dy meet the boundary of G. In
other words, an optimal solution of the following problem P; is also
optimal to problem P,.

Maximize ¢'z,

By subject to z € conv(Dy N G).

The proposed algorithm is based on a cutting plane method, where the
linear programming problems, generated by adding linear constraints
to cut off some regions not in G from Dy, are solved iteratively until an
optimal solution is found. Here we assume that o ¢ G. An optimal
solution is found at the point which is located on the intersection of
some edges and boundary 9G.

We construct sequences of cutting hyperplanes H(xz) and linear pro-
gramming problems P* given as follows:

Maximize c'z,

Pk 2
; subject to z € Dy,

where
(3.16) Dy = Dy N H(zk-1)

for k > 1, when zj_, is an optimal solution of problem P*~!. Figure 3.1
illustrates these Dy, Dy and G.
We show the way to construct the cutting hyperplane H(z,) as fol-

lows. For an optimal solution zj of problem P*, let adj(z4) denote a
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Figure 3.1. Dy, Dy and G

set of vertices of Dy adjacent to zy. If zi is a nondegenerate vertex,
there are n affinely independent adjacent vertices of D;. We denote

the set of such vertices by
(3.17) adj(zx) = {sh, 53, ..., s},

See Figure 3.2. The n linearly independent vectors on Dy emanating

from xy are given by

(3.18) Ul =S8l =g J=12...n

The point that the extension of edge [z, s1] meets to G, say y1, is given
by solving the following one-dimensional problems for each j and k: (b) H(zy) of (3.23) when z; does not lie on an edge of Dy
Minimize 6, Figure 3.2. The cutting hyperplane H(zy)

Pe(s, k) : subject to g(fu} + zx) > 0.
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Then we have

(3.19) yi=é£ui+rk, j=1,2,...,'ﬂ,

where 67 is an optimal solution of problem Pg(j, k). If problem Pg(j, k)
is infeasible, é_?i is set to an arbitrary number greater than 1. The
cutting hyperplane H(zy) is defined from affinely independent yi, g
B TN S

(3.20) H(zr) : eM;'(z —a¢) <1,
where
(3.21) M = [yk — Zk, U — Thy - 1 Yk — T4

is an n X n matrix and e = (1,1,...,1)" is an n dimensional vector of
ones. See Figure 3.2 (a).

If x4 is a degenerate vertex, there are more than n adjacent vertices
of Di. Then the cut defined by (3.20) is not uniquely determined and
if we choose n adjacent vertices arbitrary, the resulting cut may delete

portions of the feasible region. However, the Carvajal-Moreno cut
(3.22) H(zy) : 2%(z—2x) < 2°

gives the cutting hyperplane in such a case, where (23, 2*) is an optimal

solution of the following problem:

Minimize zo,
subject to' ‘Hujz >z, 7=1,2,...;n';

Py : n' By
Zﬂiuiz <1,
=1
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where n’ denote the number of such adjacent vertices. Note that (3.20)
and (3.22) are the same when n' = n.

The zj, which does not lie on an edge of Dy, cannot be an opti-
mal solution of problem P;. Since simplex S(z,sk.s%,...,s}) has no
edge of Dy and so has no optimal solution of problem P;, we con-
struct the cutting hyperplane H(z;) by taking the base of simplex

S(zk,sk,8%,...,87) given by

(3.23) H(zi) : eM (2 —z¢) €1,
where
(3.24) My = [s} — Tk, 5% — Thy .-, 8% — Th]

See Figure 3.2 (b). Since cut (3.23) deletes one vertex of Dj, we have
(3.25) [V(Dx)| = |V(Dg-1)| — 1.

THEOREM 3.1. When an optimal solution xj of problem P* is not
feasible to problem P,, the cutting hyperplane H(z\) defined above

separates x; from the feasible region of problem P;.

ProoF: If z; does not lie on an edge of Dy, H(zy) is the base of
simplex S(zx,sk,s%,...,s}) and all points of the simplex are located
in Dg\G. Then it is clear that H(zy) separates zx from Do N G. If
zx lies on an edge of D, H(xi) is defined by yi, R T
which is the base of simplex S(zk, vy}, ¥s,... ¥p). Since yi € 9G for
all j and G is a reverse convex region, any point that is expressed

as a convex combination of yi, j = 1,2,...,n, is located outside of
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procedure CPMEP1:
begin
Set k + 0;
Solve problem P?;
while 2, ¢ D do
begin
if 24 € edges of Dy
then Construct H(z) of (3.20) or (3.22);
else Construct H(zy) of (3.23);
Di41 + Dy N H(zy);
Let k — k +1;
Solve problem P¥;
end
Ty is an optimal solution of problem P,:

end.

Figure 3.3. Procedure CPMEP1

the region G. Therefore, simplex S(xk,y},yi,...,y}') is contained in
Dy\G, and H(zy) separates z; from Dy N G.

Now we describe a solution procedure, named CPMEP1, to solve
problem P; in Figure 3.3, which generates a point sequence {24}, k =
1,2,..., of optimal solutions of linear programming problems P*. Since

xk € Dg\Dgyy, the optimal value of problem P* is non-increasing at

each iteration, that is, c'zy > ¢'zjy,.

THEOREM 3.2. The point sequence {z}} of optimal solutions has the

subsequence {zx, }, 0 < ky < ky < ..., whose objective values strictly
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decrease, that is,

(3.26) c".rkq = c":r,..q+l :

for any q.

PROOF: Let | denote the number of basic feasible solutions of prob-
lem P¥. Since the cutting hyperplane H(x) cuts off at least one basic
solution of problem P* from Dy, at most [ cutting hyperplanes cut off
all such basic solutions. After adding ! cutting hyperplanes to Dy, the
optimal value of problem P**! is less than that of problem P, that
is, 'z > c'zg4. This implies the existence of the strictly decreasing

subsequence {zy, } such that ¢'zy, > 'z . 1

From the fact of (Dy N G) C Dy, the sequence {c'zy} of optimal
values is bounded by ¢’z* from below. The following theorem shows

the convergence of the sequence.

THEOREM 3.3. The sequence {c'z}} of optimal values of problems P¥,
k =1,2,..., generated by procedure CPMEPI converges to the opti-

mal value ¢'z* of problem P, after a finite number of iterations.

PROOF: (Finiteness) There exists at most one point that is optimal to
one of problems P*, k = 1,2,..., but is infeasible to problem P, on one
edge of Dy. Once the vertices, which are not located on an edge of Dy,
are selected as an optimal solution of problem P*, they are cut off from
Dy by H(zx) of (3.23). Therefore, we can obtain an optimal solution
of problem P; on an edge of D, after a finite number of iterations. If

the proposed algorithm iterates infinitely many times, there must be an
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edge of Dy which has more than one optimal solution of problem P*.
This is a contradiction.

(Convergence) The decreasing sequence {c¢'zy} of optimal values
bounded from below converges to a certain value u. Let g be achieved
at #, that is, u = /#. When u > ¢'z*, the point # is infeasible to
problem P;. Theorem 3.2 implies that there exists the point whose
objective value is less than u as far as g > ¢'z* holds. Therefore we

obtain u < ¢'z*. Tt is clear that p > ¢'z* and hence u = ¢'z*. |

Problem P**+! i effectively solved by a dual simplex method, since
problem P**1 is obtained by adding one linear constraint to problem P*
and an optimal solution zj of problem P* is available. The number of
active constraints of Dy in problem P¥ tells us whether z; lies on an
edge of Dy or not. In fact, denoting their number by m', zx lies on an

edge of Dy if and only if m' > m — 1.

3.5. A Lower Bound of the Optimal Value

Since zj generated in our algorithm is not feasible to problem P,
before converging to an optimal solution, we derive a lower bound of
the optimal value by projecting zx upon the feasible region Dy N G.
Let z; be a point that gives a lower bound of the optimal value at the
k-th iteration.

First, we consider the straight line from z; normal to the hyper-
plane @'z = 1), which denotes a regression line and is located in the
center of confidence interval CI(z;a). Then we construct the hyper-

plane tangent to the surface g(z) = 0 as illustrated in Figure 3.4. This
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Figure 3.4. Tangent hyperplane (I)

hyperplane is defined by
(3.27) (BR)'z = nk,

where

BL =Vg(zx + a}B),
(3.28) nk =(8L) (zx + alB),

al ={a|g(zk + af) = 0}.
This is a linear approximation of the surface g(x) = 0 at the k-th
iteration. Then we solve the following linear programming problem:
Maximize c'z,
subject to Ax = b,

(B)'z = ng,
.20,

P}D(k) :

and obtain an optimal solution zj.
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Figure 3.5. Tangent hyperplane (II)

Next, we construct the hyperplane tangent to the surface g(z) =0
at an intersection point of the line segment [z, 2 +—1) and the surface

g(z) = 0 as illustrated in Figure 3.5. This hyperplane is defined by
(3.29) (B)'z = i,

where
Bt =Vg(zk + af(zx—1 — 2k)
(3.30) i =(B}) (xx + a(Zx—1 — k),
ai ={a|g(zr +alzp_y —2k)) = 0}.
Then we solve the following linear programming problem.
Maximize c'z,
subject to Az = b,

P%D(k) . (BE)'I s nz'
z 2 0,
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and obtain an optimal solution z%.

Note that both of optimal solutions z; and z} are feasible to prob-
lem P, since problems P} (k) and P?,(k) are more strictly constrained
than problem P;. The first point z} reflects the estimated constraint
Bl = n and the second point z7 reflects the previous point generating

a lower bound. The updated lower bound is determined by
(3.31) dz, =max|e'z, k. 'zt

Then the sequence {¢'z,} of lower bounds is nondecreasing with an
upper bound ¢'z*. It is easily shown that |c'zy — 'z | tends to 0 for k
sufficiently large, since zx becomes identical to x* after a finite number
of iterations. If xx = *, it holds z; = 2°.

When one feasible point is obtained, the following iterative scheme
gives a point that satisfies the Kuhn-Tucker first order necessary con-
ditions for problem P, [M4].

(1) Choose zg € Dy N G.
(ii) Given z;, let z;4, be an optimal solution of the following problem,

which is obtained by the linearization of g(z) = 0 at = = z,.

Maximize c'z,

subject to Az = b,
g(z:) + Vy(zi)(z — 2) 2 0,
el )

P(25) ¢

By Meyer [M4, Theorem 2.1], the above procedure gives an accu-
mulation point z* of the monotonically increasing sequence {z;} and z*
is an optimal solution of problem P(z*). Then z* satisfies the Kuhn-

Tucker first order necessary conditions of problem P;. We shall say
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that a feasible solution z; is an e-optimal solution of problem P; when
it satisfies |c'zx — ¢'z;| < € for a prescribed positive number e. If we
choose an epsilon-optimal solution for z; in the above scheme for a

sufficiently small €, it is considered that 2* is an optimal solution of
problem P,. An optimal solution of problem P; is given by proce-
dure CPMEP1 as well as by the above scheme. The former procedure
generates a sequence of infeasible points and the later one generates a

sequence of feasible ones.

3.6. An Illustrative Example
(Example 3.1.) Consider the following problem:

Maximize 4 x; + 3 x5 + 13x3,

subject to 2x; + 3 x; + 8x3 <4,
2x1+ X2+ 4x3 £3.2,
3x1+ 8x2+ 4x3 <3,
Bixy + Baxa + Baxz = 1,
X1,Xp.X3 = 0,

PE] 3

where 3y, #; and 3 are unknown coefficients. Using the results of
sampling by computer simulation with sample size N = 10 and a sig-

nificance level a = 5%, we obtain the following estimates of 3.

A = (1.9959,1.0193,2.8677)

1.0497 -1.1185  0.3399
(3.32) V=1 -11185 2.2543 -1.5573 | x 1072
0.3399 —1.5573  2.4672

Fu.05(3,7) = 4.35

The computational results of procedure CPMEP1 in Section 3.4 are as

follows.

(1) first iteration:
ro = (0.5000,0.0000,0.3750) : infeasible
so = (. 0.0000, 0.1539, 0.4423), yj = ( —0.1266, 0.1928, 0.4594)
$4 = (. 0.0000, 0.0000, 0.5000), y2 = ( —0.0671, 0.0000, 0.5168)
s = ( 1.0000, 0.0000, 0.0000), y3 =( 1.8743, 0.0000,—0.6557)

H(zp) : 1.2680x; + 1.0165x; + 2.0997x3 < 1

(1) second iteration:
xy = (0.0000,0.0000,0.4762) : infeasible
s} = (0.0000, 0.0000, 0.0000), y! =( 0.0000, 0.0000, 0.4578)
s; = (0.7886, 0.0000, 0.0000), y? =( 1.8744, 0.0000,—0.6558)
s} = ( 0.0000, 0.1806,0.3888), y3 = ( 0.0000, 0.0000, 0.2703)

H(xy) : 1.2977x; + 0.9629x; + 2.1843x3 < 1

(iii) third iteration:

zg = (0.0000,0.0000,0.4578) : feasible
An optimal solution is, therefore, z* = x, = (0.0000,0.0000,0.4578)
and the optimal value is 5.9514. This problem is solved by adding two
cutting hyperplanes.
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3.7. Extension to the Linear Programming Problem
with more than One Additional Constraint Includ-
ing Unknown Coefficients

We consider the following linear programming problem with more

than one additional constraint including unknown coefficients.

n
Maximize E Gy
=1
n
subject to E auzi=0b =12 M0,
Py =1

n
Bigi=nn =120
1

j:
z; 20, j3=12,...,n,

where matrix B = (4;;) includes at least one unknown coefficient in
each row. Let CIi(z;«a) denote a confidence interval of Z_';:l Biixj
under a significance level a. Then problem P,; is equivalent to the
following problem with estimated constraints.

n
Maximize E Ci T4

=1
n

Pig: subject to Za,-}-:r}- =b =L 2coam:
J=1

n & Clila:a), 1=1,2:: 3,
&5 2 0, 3=1;2:.0,10,

Each constraint 1; € CI;(x; a) is equivalent to the following two reverse

convex constraints

g; (z) = =i,
(3.33)

9,+(41') 21,
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which are defined similarly to (3.6). We define

I ]
(3.34) G=[)Gi={zlgi(x) >0},
1=1 i=1
where
g; (x)+m:i if g (20) < —ni,
3.35 1 == ‘
e g4 { g (z)—ni if gF (o) < mi.

An optimal solution of problem Py; is obtained by solving problem P;.
The difficulty of this problem is that an optimal solution is not always
attained on an edge of Dy, but may be attained on an intersection point
of nonlinear functions ¢g;(z) =0,1=1,2,...,L

Based on the Tuy’s cuts, we construct the cutting hyperplanes as
follows. Let Iy denote an index set of constraints violated by z, that

is,
(3.36) =% mlax) <0, i=12,....03.

The point that the extension of edge [z4,s}] meets to G, for i € I,
say yili‘ is given by solving the following one-dimensional problems for

each 7, j and k:

Minimize 6} ,,

Pia(2,5, k) : .
) subject to  g;(6; ;uz + zx) > 0,

where ui is defined by (3.18). Then we have

(3.37) vii=ox+ 0l §=12 .51,



where 6} ; denotes an optimal solution of problem Py3(z,j, k). If zx is
a nondegenerate vertex of Dy, the cutting hyperplane H(z;?), which

cuts off the point z from the i-th reverse convex region G;, is given by

(3.38) H(zi;i) @ eM}(z—a) <1,
where
(3.39) Mii = [Yki — Tks Ybi — Thyo o1 Yps — Tk

is an n X n matrix. The degenerate vertex can be cut off by the
Carvajal-Moreno cuts (3.22) for the violated constraints g;(z) > 0,
t € Ii.

The cut H(x) at the k-th iteration is defined by

(3.40) H(zy) = ) H(zi;i),
1€l
which separates an optimal solution zx of problem P* from the feasible

region Dj. Here we state problem P* again.

Maximize 'z,

Pk .
: subject to =z € Dy,

The feasible region Dj of problem P* is defined by (3.16) and it is
shown that Dy, D (DoNG) for all k [H1]. As discussed in Section 3.4,
we obtain a point sequence {2} of optimal solutions of problems P*,
k= 1,2,.... It is not, however, guaranteed that a point sequence
{2k} of optimal solutions of problems P*, k = 1,2,... converges to an
optimal solution of problem Py;. When the cutting hyperplanes gener-

ated in these iterations become parallel to the contour lines of objective
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Figure 3.6. Convergence to an infeasible point

function, that is, eﬁdl,:!-1 — ¢ as k — oo, the amount of updated value
|e'zy — ¢'zr4q]| tends to zero and the sequence {zy} may not reach a
feasible point. Figure 3.6 illustrates the convergence to an infeasible
point z°. The cutting hyperplanes are becoming parallel to the con-
tour of objective function. A point sequence {z;} of optimal solutions
of problems P¥, k = 1,2,... converges to an infeasible point on such

hyperplane.

THEOREM 3.4. If a point sequence {x}} of optimal solutions of prob-
lems P*, k = 1,2,... converges to an infeasible point z° such that
c'z® > c'z*, then the cutting hyperplane H(zy) becomes parallel to

the contour of objective function.
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PROOF: Let € > 0. When a sequence {zy} converges to z°, it holds
|zx — 2p41]|| < € for a sufficiently large k. Let dist(zy, H(xx)) denote
the distance between xy and H(z). Then it holds dist(zx, H(zx)) < €

from that z; € Dy\H(xy) and zg4q € Dy N H(xy). Since
(3.41) Diy1 = DiN[[) Hzi1)),
IEI&

it is obtained that
(3.42) dist(zg, H(zp;1)) < €

for all ¢, and

oy Z €Y1 .
(3.43)

yi‘;‘ € H(zy;1)
for all : and j. If the cutting hyperplane H(zj ) does not become parallel
to the contour of objective function, (3.42) and (3.43) imply that there

exists at least one yii such that
(3.44) lzk — il < e

From 2 € Dy and yi'l— € G, it is concluded that there is an accumula-

tion point z° € Dy N G. This contradicts that z° is infeasible. |

Now we define the distance between a point zp and the feasible

region by

(3.45) dar) = Y llex — 2.l

1€l
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where zj ;, ¢ € I, is the point on g;(z) = 0 nearest to zx. Consider
the following linear programming problem P,4(k), which is the inner
linearization of problem Py at 2} ;, 1 =1,2,...,[.

Minimize ¢z,

subject to Az = b,

V(2 (x—2};) 20, i=1,2,...,1,
@ >0,

Pa(k):

Let 2} denote an optimal solution of problem Py4(k). Then z} is a
feasible point of problem Py; and 'z} < ¢'2* < ¢'z4. Note that zy —
z* implies z} — z*.

The convergence is checked by |¢'zx — ¢'zx41| < € and the feasi-
bility is checked by d(zx) < €, for sufficiently small ¢; and €;. Using
these criteria, there are two cases in which this algorithm fails to ob-
tain an optimal solution. One case is that the convergence speed is too
slow even though the algorithm converges to an optimal solution. The
other case is that the algorithm converges to an infeasible point and
the cutting hyperplanes become parallel to objective function. Then
|c'z} — c'zk| tends to zero in the former situation but |¢'z} — ¢'z4| does
not tend to zero in the latter situation.

When a point sequence {z} of optimal solutions of problems P*,
k =1,2,... does not go to an optimal solution of problem P,,, it is
necessary to introduce an exceptional cutting hyperplane to restart the
point sequence {z}} toward z*. Assuming that the cutting hyperplanes

become parallel to the contour of objective function, it holds
(3.46) I maxc'yy ; —minc'yp | < e,
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and
(3.47) minc'y;; < c'zpqy < max yr i
1,] 1

When |c'zy — 'zx41| < €, we set the accumulation point x° to .
When d(x°) < €3, we consider that z° is feasible and the sequence of
optimal solutions attains to an e-optimal solution of problem Pj,. If

d(z?) > €, we consider that z? is infeasible, Then it holds that

(3.48) de® =mineys > 2’
1,7 X

In this case, we construct an exceptional cutting hyperplane defined by
(3.49) H(zy) : 'z < c'z°

After adding the exceptional cutting hyperplane H(zi) to prob-
lem P*, problem P*+! with the feasible region D4y = Di N H(zy) has

an optimal solution zy4, on the hyperplane H(z)). Note that
(3.50) Diyy =Dy N ﬁ(:xk )

and at least one adjacent vertex 3i+1 of Di4; is a vertex of Dy, since
it holds c'yi" > ¢'z? for all 7 and j and y.{.i are cut off by the hyper-
plane H (zg). Then we have that

(3.51) minc'yl,, , <z’
1,) '

and the sequence of optimal values of problems P¥ restarts from ¢'z°.
Figure 3.7 shows the resulting algorithm, named CPMEP2, to solve
problem Pj;.

procedure CPMEP2:
begin
Set k «— 0;
Give tolerance levels ¢; and ¢,;
Let H(zo) = R™;
repeat
begin
Construct exceptional cut f}(:rk) of (3.49);
Let D4y «— DN ff(:ck) and solve problem P*;
Let k — k + 1;
while |’z — c'zk—1| > € do
begin
Construct H(xy) of (3.40);
Let Dgyy « Dy N H(z) and solve problem Pk,
Let k — k4 1;
end
end
until d(z;) < e;:
Zk 1s an optimal solution of problem Py,:

end.

Figure 3.7. Procedure CPMEP2

Consider the sequence of exceptional cuts and let {z{} denote the
sequence of corresponding accumulation points. If we assume that

the exceptional cuts are generated by this algorithm infinitely many
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times, it contradicts the finiteness of V(Dy), since at least one ver-
tex of Dy is located between two any exceptional cuts. Therefore, the
sequence {c'z?} is a monotonically decreasing sequence bounded by
¢'z* from below and this algorithm converges to an optimal solution of
problem Pq,.

Next we consider a lower bound of the optimal value and a sequence
of feasible solutions of problem Py;. We find that an optimal solution x}
of the inner linearized problem P4 is a feasible solution of problem P,
and ¢z} is a lower bound of the optimal value. Then consider the
following scheme.
(1) Let zg = 2} € Dy NG.
(ii) Given z;, let z;4; be an optimal solution of the following linearized

problem, which is obtained by linearizing g;(z) =0, =1,2,... .1,

at = 2.
Maximize c'z,
subject to Az = b,
P'(z) : g;i(2z:) + Vg;(2i)(z — zi) > 0,

v AT
=0,

When we obtain z} which is very close to an optimal solution, that
is, |c'a} — c'zg| < € for a sufficiently small ¢, this iterative scheme is
considered to construct a sequence of feasible solutions converging to

an optimal solution of problem P,.

3.8. Conclusion
The confidence region method for a stochastic linear programming

problem that contains unknown coeflicients in a coefficient matrix is
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considered in this chapter. The unknown coefficients are estimated by
means of regression analysis based on noisy observations. The con-
straints including unknown coefficients are replaced by confidence re-
gions derived under a certain significance level. The confidence region
of such constraints are reverse convex and our problem is regarded
as a linear programming problem with additional reverse convex con-
straints.

We have mainly considered a linear programming problem in which
only one constraint includes unknown coefficients. In such a problem,
an optimal solution lies among the points that intersect edges of poly-
tope constructed by the known linear constraints to the boundary of
reverse convex region. A cutting plane method is proposed by utilizing
the Tuy’s cut. We show that the algorithm finds an optimal solution
of the reverse convex programming problem in a finite number of iter-
ations. Since the algorithm generates a sequence of infeasible solutions
converging to an optimal solution of problem P;, a lower bound of the
optimal value is also considered at each iteration. A lower bound of
the optimal value gives a sequence of feasible solutions of problem P,
according to optimal solutions of problems P*, k=1,2,....

For the linear programming problem in which more than one con-
straint includes unknown coefficients, an optimal solution may be lo-
cated on the intersection of the boundaries of reverse convex regions.
Therefore, the algorithm for the former problem may converge to an in-
feasible point. We discuss how to find the convergence to an infeasible
point and propose a modified algorithm to restart the point sequence
toward an optimal solution. A lower bound of the optimal value is also

obtained at each iteration by solving the linearized problem.
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Chapter 4.

A CONFIDENCE REGION METHOD
FOR A STOCHASTIC LINEAR
KNAPSACK PROBLEM

4.1. Introduction

The linear knapsack problem has been well studied and some ef-
ficient algorithms of O(n) computational time are known, if all co-
efficients are known, where n is the number of items. This chapter
discusses the confidence region method for a stochastic linear knapsack
problem. A stochastic linear knapsack problem with random cost coef-
ficients is one of the generalized versions of a linear knapsack problem.
We consider the following P-model of a stochastic linear knapsack prob-
lem introduced by Kataoka [K3], which is to find an optimal solution
minimizing the goal value subject to a chance constraint that the total

cost is less than the goal value with probability more than ay.

Maximize f,
n
subject to Pr( Zc,-x_, > f) 2 ao,

; 1=1
Pl . n

ZGJ'IJ; - b,

=1
Ug.erbJ'. B T R 3
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where it is assumed that
(i) aj >0,b; >0for j =1,2,..., n, and Z;-'___l ajb; > b > 0,

(i1) 1/2 < ag £ 1,

(1) ¢;, j = 1,2,...,n, are mutually independent random variables
which have a normal distributions N(ji;,5;), j = 1,2,....n, re-
spectively.

Problem P; is solved parametrically in at most O(n?logn) computa-

tional time by the algorithm of Ishii and Nishida [12].

In usual stochastic programming, the distribution parameters of
random variable are known in advance. However, the confidence region
method for stochastic programming discussed in the previous chapters
assumes that the distribution parameters of random variable are un-
known. We shall show that the game theoretic minimax model based
on the confidence region method for a stochastic linear knapsack prob-
lem can be solved in a polynomial time by reducing it to a problem
with known distribution parameters.

Section 4.2 summarizes the solution procedure for problem P; with
known distribution parameters. By introducing the auxiliary problem
with a positive parameter, problem P is solved in at most O(n?logn)
computational time [I2]. Section 4.3 discusses the minimax model based
on the confidence region method for problem Py with unknown distribu-
tion parameters, where unknown distribution parameters are restricted
to the confidence region. It is shown that this problem is also solved by
the same procedure as proposed in Section 4.2. Section 4.4 summarizes

this chapter.
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4.2. A Stochastic Linear Knapsack Problem
We summarize the solution procedure for problem P;. Problem P,

is equivalent to the following deterministic problem:

n
S
ZJJ’“’J‘

j=1

n
Maximize E fjz;— Ko
1=1

P'z: n
subject to Zaj.r_,- =14

j=1

OSJ‘J‘ Sbj, j=1,2,...,n,

where K, is the a-percentile of a standard normal distribution. By

variable transformations
- 2 7222y 9
(4.1) Y; = a;25, v = asby, py = jij/ag, of = Ki65/aj,

for j = 1,2,...,n, problem P, is further transformed into the following

problem:
n n
Maximize Z;t_,-y_, - Za'fy?,
j=I j=I
P3 . n
subject to Zyj =
=1
OSy;S‘YJ‘ j=1,2,...,n.

Now we introduce the following auxiliary problem P¥ with a pos-

itive parameter R.

n n
. s 1
Maximize Rz,u,-y,- o Zafyf,
J=l 3 J:]

PE. n
subject to Zy-‘ =

j=1

D 29§22 i

The following theorem shows a relation between problems P3 and P¥.
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THEOREM 4.1. Let y* and y® denote optimal solutions of problems Py

and PR, respectively. If

(4.2)

then it holds that y* = y&.

PROOF: Since problems Py and P¥ are convex programming problems
with a single linear constraint and upper bounded variables, optimal
solutions of problems P; and PR satisfy the following Kuhn-Tucker

conditions (4.3) and (4.4), respectively.

2
95Y;

—p;+uj—vi+A=0, 3=12,...,n

>3
J=l
(4.3) vy; =0, uj(y;—)=0, 1=12,...n

T
Syi=b 0<y;<v, upv;20, j=12...m
j=1

oiy; — Rpj+u;j—vi+A=0, 3=12,...,n
(4.4) viy; =0, uj(y;—7)=0, J=12,...yn
Zyj =b. 0 wisa w20, F=21.%...4M
j=1
where A ,uj, vj, j = 1,2,...,n, are Lagrange multipliers. Let (y*,u
v*,A*) and (y®, u®, v AR) denote solutions of (4.3) and (4.4), respec-
tively. Then if R = \/y_;;‘:l o2(y™)2, it holds that

(4.5) y; = yf, uj = u_‘;{/R, v = vf/R. M»=\E/R
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Therefore yR is also an optimal solution of problem P;. §

Let R* denote the R satisfying R = \/ZJ 1 03 R)i Theorem
4.1 implies that y® is an optimal solution of problem P3. Then we
define T(R) as a function of R.

(4.6) T(R) =R~

Since T(R) is continuous and non-decreasing function of R, there exists

the unique R* that satisfies (4.2). Furthermore, it holds that
T(R)<0 <= R<R',
(4.7) T(R)=0 = R=sR"
T(R)> 0, <= RBR>R'
The solutions of (4.4) are given as functions of A as follows.
uf(A) = max(0, Rpj — A — 057;),
/\) max(0, A — Rpu;),

(4.8) Y; if A < —yj02 + Ry,
Ru; — A . .
y;l('\)= ‘2—2' if —‘}',ﬂf+Rp_,- < A < Ry,
]
0 if A > Ry,

for j=1,2,...,n, and

n

(4.9) Y vy =
=1

Since y; R(X) is a non-increasing function of A, y ¢ is found by solv-
ing equation EJ_lyJ (A) = b. We sort —‘yJO' + Rp; and Rpy, j =

1,2,...,n, in non-decreasing order and denote their different values by
(4.10) A= -0 < AR < AT <o < AR, < AR 41 = +oo,
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procedure AUX(R):

begin
i« 05
] N +1;
repeat
begin
L [(i+4)/21;
X = AR

lfzJ lyJ )>btheni « [;
1fzj=,yj- (A) < bthen j « I
end
untllzJ ly_,()«)-bmj—z—l
find A® such that Y=Y HA) =5
y® — yB(N);

end.

Figure 4.1. Solution procedure for auxiliary problem P¥

where N; denotes their number which is at most 2n. g R(,\ is deter-
mined by (4.8), for each interval A € (A J:_H) k=0,1,...,Ni.
Now we give an algorithm AUX(R) in Figure 4.1 to solve prob-
lem PR which finds an optimal solution y® of problem P¥ in at most
O(nlogn) computational time. To find R*, we obtain the values of
positive R such that Af = A% for all pairs i and j with ¢ # j. We sort

such R’s in non-decreasing order and denote their different values by

(4.11) Ry=0< Ry < Ry <--+< RN, < Rn,41 = +00,
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where N, denotes their number which is at most %n(.')’n —1). For
each interval of R, the order of Af, J = 1,2,...,n, is uniquely deter-
mined and problem P¥ is solved by algorithm AUX(R). We denote
(Ri+, Ri»41) the interval to which R* belongs. For A € (AH,AH_I)
compute the A satisfying Z lyrJ (A) = b, where R is contained as
a parameter and we denote it by A(R). Note that the order of Af,

7 =1,2,...,n,is the same for all R € (R;+, Ri+4;). Then we have
(4.12) R* € {RIAf < MR) < AR} 0 (Ris; Ris 1),

and let S; = (RE, RY) denote the closure of a set in (4.12). If S; = ¢,
A* is not located in interval (AR, A%, ) and we search other intervals
of A for A*. Otherwise, we have \* € (Af,AfEH) and R* € (_RL,RE),
so R* is obtained by solving

(4.13) ZazyR (A)=0.

Figure 4.2 is an algorithm to solve problem Pj3, which finds an optimal

solution y* of problem P3 in at most O(n?logn) computational time.

4.3. A Confidence Region Method for a Stochastic
Linear Knapsack Problem

We consider the problem in which normally distributed random
cost coefficients have unknown distribution parameters. Based on es-
timation through noisy observations, we derive a confidence region in

which the parameters are restricted under a certain significance level.
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procedure SLKP:
begin
1 — 0
J = No+1;
repeat
begin
L [(i+7)/2];
AUX(Ry);
if T(R;) > 0 then ¢ « [;
if T(R;) <0 then j <1
end;
until 7(R;) =0o0r ) —1 = 1;
if T(R;) = 0 then y* « y i
else
for every k =0,1,2,...,N; do
if Sy # ¢ then
begin
AUX(R{);
AUX(R});
if T(RE) =0 then y* — yf&
if T(RY) = 0 then y* — yR+;

if T(RE) < 0 and T(RY) > 0 then y* — y

end;
y* is an optimal solution of problem Pj;

end.

Figure 4.2. Solution algorithm for problem Pj
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The minimax model based on the confidence region method, discussed
in this section, gives a minimax solution that optimizes the objective
function under the possible worst-case values of estimated parameters.

Now consider problem P3, which is equivalent to problem P; by
variable transformations (4.1). The confidence region of distribution
parameters has been given in Section 2.2. Then the minimax prob-

lem P4 is given as follows.

Maximize Mmumze !
v (11,7)ESa Z‘ 395 =
P.g :
subject to Zyj =
1=1
OSyJSAU' j=l,2,...,n,
where

iy o b =i _
(-14) Ss = Slu.o) Z(H} 2”"'} < i I)Fﬂ(n,N—n.),

o s — N(N —n)
(N —1)sj g?<—(N_1)3§ $=1,2.... n}.
) =1L A
Optimal solutions o7, j = 1,2,...,n, of the minimizing part of prob-
lem P4 with respect to 0, ) =1,2,..., n, are given by
(4.15) ui = E%ﬁs?, j=1,2,...,n,

from the nonnegativity of y;. By substituting (4.15) into problem P4

with variable transformations

(4.16) g= = im0,



the minimizing part of problem P4 with respect to u;, 7 = 1,2,...,n,

becomes the following problem with a quadratic constraint.

n n
Maxifmize Z 8;¥;&; + Z HiY; + )
=1 ¥

=1
P5 . n
subject to fo < K,
Jj=l
6} 2 01 j — 1,21-..1?'1‘
where
4 _ niN=1)
(4.17) K= NN = n)Fm(?fz,;’\’ n).

Now we introduce the following subsidiary problem P5(#) with a

parameter 6.

et e gn

Minimize 5 Z &5
=1

Ps(8) : L

subject to Z 3;4;6; 2 0,

j=1
gy gl 20 i

Let £(8) = (&1(0),£2(0),...,£,(8)) denote an optimal solution of prob-
lem Ps(6). Then the following theorem describes a relation between

problems Ps and P5(6).

THEOREM 4.2. If £(8) satisfies

(4.18) Zn: gO)=K
=1
and
(4.19) Zn: 5;9;€;(0) = 6,
i=1
92

then £(6) is an optimal solution of problem Ps.

PROOF: Since problems Ps and P5(#) are convex programming prob-
lems, optimal solutions of problems Py and P5(#) satisfy the following

Kuhn-Tucker conditions (4.20) and (4.21), respectively.

1 .
VJ-:E?I&J'-S}'QJ', J=1»21—--,?1,

n
(420) Y <K, €020, uE=0, j=12n
j=1

n()_€-K)=o.
7=1

v; =& —ns;y;, J=12,...,n,
4.21 sty 28, Enwe=0) wbi=0, y=1.2.....n,
14385 YIRS 187 J
i)
n
??(9—Zsjyjfj)=0,
=1

wheren, 15,&5, 1 =1,2,v:4 n, are Lagrange multipliers. Let (£*,v*,n*)
and (£(6),v(8),n(8)) denote solutions of (4.20) and (4.21), respectively.
Then (£*,v*,n*) is constructed from (£(6), #(6),n(@)) as follows.

(4.22) §* =€), v*=uv(6)/n(8), n*=2/n(8),

where n(8) > 0 from (4.19) and (4.21). The conditions Z;;l Ef <K
and n(E;;l 2 — K) = 0 are assured by (4.18). Therefore £(6) is an

optimal solution of problem Ps. i
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From (4.18), (4.19) and (4.21), an optimal solution £* of prob-

lem Ps; is given by

(4.23) &5

n
Maximize Z iy — K'
j=1
Pﬁ H n
subject to Z y; =0;
=1
OSyJ- S‘“‘, j = 1.2,...,1’1.

where

N:=1
4.24 K' =vVvK _—,
) R -1

Problem Pg is essentially the same as problem P3 and so we can

solve problem Pg by algorithm SLKP.

THEOREM 4.3, Assuming that the square root of a number can be
calculated in O(1) computational time, problem P4 can be solved in

O(n?logn) computational time.

PrROOF: It is clear that K' of (4.24) can be calculated in O(1) compu-
tational time. Once problem Py is transformed into problem Pg, it can

be solved in O(n?log n) computational time by algorithm SLKP. §
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4.4. Conclusion

We introduced a minimax model based on the confidence region
method for a stochastic linear knapsack problem with unknown distri-
bution parameters. In this model, unknown parameters are restricted
in the confidence region and an optimal decision is sought to optimize
the objective function by assuming the possible worst-case values of
such parameters within the confidence region. The proposed minimax
problem is transformed to the problem with known distribution param-
eters, which is then solved effectively by algorithm SLKP in at most
O(n?logn) computational time.

This parametric type algorithm is applicable to other nonlinear
programming problems, which have quadratic objective function or con-
straint. Such problems often occur in the E-V model and the P-model
of stochastic programming. In this sense, it is worthwhile to investigate
the case in which random variables are not independent each other,
Some generalization of this problem, which is related to a portfolio se-
lection problem as a probability maximizing model of a stochastic linear

knapsack problem, are discussed in the following chapters.
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Chapter 5.

A PROBABILITY MAXIMIZING MODEL
OF A STOCHASTIC
LINEAR KNAPSACK PROBLEM

5.1. Introduction
This chapter discusses a probability maximizing model of the sto-

chastic linear knapsack problem P;.

Maximize Pr (Z iy 2 d) ¢

i=1
P1 : n
subject to Z a;z; = b,
j=1
DR w3 12y, cuumy

where ¢ = (¢;) is assumed to be a normally distributed random vec-
tor, = (z;) is an allocation vector and a = (a;), v = (v;), b and d
are known coefficients. This problem finds an optimal solution which
maximizes the probability that an objective value exceeds a prescribed
goal value. Ishii and Nishida [I3] have considered the case in which
the random cost coefficients ¢, ¢cs,...,¢, are assumed to be mutually
independent. They derive an equivalent deterministic fractional prob-

lem with a single constraint and a lower and upper bounded allocation
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vector, and propose a solution algorithm which finds an optimal solu-
tion in at most O(n*) computational time by introducing two auxiliary
problems.

A portfolio selection problem is a mathematical formulation of a fi-
nance model to allocate a given amount of money among several invest-
ments for obtaining a large return under a small risk. Markowitz [M3]
formulates the portfolio selection problem as maximizing the expected
utility under uncertainty, where the portfolio is selected by taking into
account both risk and return on investment. When we invest a money
to some investments, we can obtain some return after a certain time
period. However, the amount of return on investment is uncertain and
the uncertainty of each investment is different from each other. There
are several mathematical models to predict the return on investment,
e.g., a capital asset pricing model (CAPM) and an arbitrage pricing
theory (APT), which provide the distribution of the rate of return on
investment. Therefore it necessitates the investigation of probabilistic
and statistical approaches for the portfolio selection problem.

We consider the one-period portfolio selection problem. Since the
return on investment is assumed to be a random variable, there are
two conflicting objectives that the expectation of total return should
be maximized and the variance of total return (i.e., risk) should be
minimized. An efficient frontier of admissible portfolios, where the
variance of total return for a fixed expected total return is minimized,
is obtained in the mean variance framework. Szego [S4] considers the

properties of an efficient frontier with one riskless asset.
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This chapter deals mainly with a probability maximizing model,
When the investor is aiming for total return in advance, he manages to
achieve his goal. Then, he wants to find the portfolio that maximizes
the probability of achieving his goal rather than one that maximizes
the total return.

A probability maximizing model of portfolio selection problem P,
with a normality assumption of return is equivalent to a fractional pro-
gramming problem with the squared root of a quadratic form in the
mean variance framework. Since the returns on investment are not con-
sidered to be mutually independent, it is necessary to investigate the
problem with correlated random coefficients, as a generalization of the
problem with the independent random cost coefficients. Section 5.2
starts with a probability maximizing model of the stochastic linear
knapsack problem as a main problem, and formulates an equivalent
problem that maximizes the ratio of excess return to standard devia-
tion. We introduce two auxiliary problems, one of which is a quadratic
programming problem with positive parameters R and ¢. An optimal-
ity condition that an optimal solution of the auxiliary problem is an
optimal solution of the main problem is then derived. Section 5.3 shows
that an optimal solution of the main problem is geometrically found on
the efficient frontier in the mean variance framework and that an opti-
mal parameter value R* uniquely exists. The relation between an EV
model and a probability maximizing model is also noted. Section 5.4

gives a summary of Chapter 5.
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5.2. A Probability Maximizing Model of a Stochas-
tic Linear Knapsack Problem

We consider the following probability maximizing model of a sto-
chastic linear knapsack problem.

n

Maximize Pr Zc,-;r, >dly
=1

subject to ZGJ-IJ- =b.

j=1
OS‘TJS‘YJ\ j:112='--1na

where ¢ = (¢;) is a random vector with an n-dimensional normal distri-
bution N(/, V). We assume that a = (aj), ¥ = (%;) and b are positive
and satisfy 3 7_, a;4; > b for the sake of feasibility of problem P;.
Moreover we assume at least one feasible solution x of problem P, sat-
isfies i’z > d, that is, Pr(c'z > d) > % This assumption is satisfied for
d < max{ji''z}. When Pr(c'z > d) < % for any feasible z, there is no
practical meaning, because it holds that Pr(c'z? > d) < Pr(c'z? > d)
for c'z! = ¢z? and (2')'Va! < (2?)'Vz?, which implies a large variance
is preferred to a small variance.

Then problem P, is equivalent to the following deterministic frac-

tional problem.

A, fe—d
aximize —,
P, : Va'Var
subject to a'z = b,
0<z<?H.

After the following variable transformations

- ~ 2 -~
a;I; ,ttjb 0’,‘_,‘5 J‘b
5'1 -=—J J‘ P = o B I — O m—
(5.1) Y; b i a 9= e L i Seen
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Table 5.1
Problem  Optimal solution Optimal value

P3 yt qn:
P4 y? 74
Pi(R) y'(R) Z(R)

problem P, is further transformed into

—d
Maximize a y, ;
Ps.: . yvy
subject to €'y =1,
0<y=<n~,
where i = (fi;), p = (), V= (G35), V = (0y;) and e = (1,1,..., 1)

with a suitable dimension.

We introduce two auxiliary problems P? and PY(R) with positive

parameters ¢ and R:

Maximize pu'y —qVy'Vy,
PY. subject to €'y =1,
0<y=<»1,

Maximize Rpu'y — %y'Vy,
PI(R) : subject to €'y =1,
0O<sy<~.

We shall denote an optimal solution and the optimal value of each

problem as described in Table 5.1.

Since problems P? and P?(R) are convex programming problems,

the following Kuhn-Tucker conditions KT? and KT?(R) for problems
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P? and P9( R) define their optimal solutions, respectively.

V A
q( y)} +“J+uj4_.vj+A=0‘ }=1;2Q°“$rl‘l

y'Vy
(KTQ) vy, =), uj(y}-—‘}j):ﬂ, j:l,?,...,n,

€'y=1, 05yjs73s uJ.!vj 20! j=1921---sn9

q(Vy); + Ruj+uj—v; +A=0, j=12,...,n,
(KTY(R)) wjy;=0, uj(y;—v;)=0, 31=12,...,nm,
Ef.yzl, OSyJSTJv 'u,j,'UjZU. j=1,2,-..,?1,

where A, uj, v, j = 1,2,...,n, are Lagrange multipliers.
The following lemmas show how problem Pj is related to the aux-

iliary problems P? and PY(R).

LEMMA 5.1. The optimal values of problems P3 and P? satisfy
Z2'<-d <= gq<g’,

(5.2) Z29=-d < q=¢",
2! > ~d = ¢>¢

PROOF: See Dinkelbach [D2]. &

LEMMA 5.2. (Ishii and Nishida [I3]) If R = /y?(R)'Vy4(R), then
y?(R) is an optimal solution y? of problem PY.

ProoOF: Let (y%,u?v? A?) and (y?(R),u?(R),v!(R), A (R)) denote
solutions of KT? and KTY9( R), respectively. Dividing the first equation
in KTY(R) by R = \/y9(R)'Vy9(R), then (y?,u?, v% A7) is constructed
from (y9(R),u?(R),v9(R),\Y(R)) as follows.
uA) )

A(R)
9 — a9 = 9 — 7 = 5
(5.3) g =9y*(R), u v R A R

Therefore, y( R) is an optimal solution of problem P?. |}
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LEMMA 5.3. (Ishii and Nishida [I3]) The y'(R) satisfyving

(5.4) qR = \/y'(R)'Vy'(R)

is an optimal solution y9 of problem P9.

PRrOOF: By the Kuhn-Tucker conditions KT'(R) and KTY(¢qR), we see
that (y*(R),qu'(R),qv'(R),q ' (R)) is a solution of KT%(¢R). There-
fore, from Lemma 5.2, the y'(R) satisfying (5.4) is an optimal solu-

tion y? of problem P%.

Lemma 5.1 and Lemma 5.3 assure that optimal solutions y'(R)
of problems P'(R) with positive R contain an optimal solution y* of
problem P3. Thus problem P3 can be solved by considering only prob-
lems P!(R) for positive R. We, therefore, denote P!(R), y'(R) and
Z'(R) with P(R), y(R) and Z(R). respectively, in the subsequent dis-
cussion.

For obtaining an optimal solution y* = y(R*) of problem Pj3, we

define function T(R) of R by
(5.5) T(R) = R{u'y(R) — d} — y(R)'Vy(R).

The following theorem shows the optimality condition for y(R).

THEOREM 5.4. Let R* be a solution of equation T(R) = 0. Then

y(R*) is an optimal solution of problem Pj.

PROOF: From Lemma 5.3, the y(R) satisfying (5.4) is an optimal solu-
tion of problem P(R). Then Lemma 5.1 implies that the y(R) satisfying
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both Z9 = —d and (5.4) is an optimal solution of problem Pj3. Since

Z% = —d and (5.4) are equivalent to
(5.6) R{u'y(R) —d} — y(R)'Vy(R) = 0,

the y( R*) satisfying T'(R*) = 0 is an optimal solution of problem Pj. |

Note that the optimal value is given by

VIR V(R

(5.7) q = R

In the next section, we discuss the efficient frontier in the mean variance

framework, and show the uniqueness of R*.

5.3. An Optimal Solution on the Efficient Frontier
Consider the region of admissible portfolios in the space of v and =,
where v = y'Vy is a variance and © = pu'y is a mean of the objective

value. The region of admissible portfolios is defined by
(5.8) S={(nm)yVy=v, p'y=m, ey=1,0<y <~}

Since we would prefer to minimize the variance as far as we get same
mean of the objective value, the efficient frontier in the space of v and 7

is given by

v=min{y'Vy|p'y =m, €'y =1, OSySW}}'
v

(59) B= {(V,Tl‘)

Let J; and Jy be subsets of {1,2,...,n} such that Jy N Jy = ¢

and Bj'i’ denote the efficient frontier of feasible region when y; = 0 for
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JEJL, yj=7;forj € Jyand 0 < y; < v, for j ¢ JpUJy. Then Bﬁ’

is an arc of parabola and B is composed of a sequence of such arcs of
parabolas Bj'i’ [S4]. B is a continuous curve which has two extremal
points @y = (var,mar) and Q= (Vi 71 ), where 7y and 7, give the
largest and the smallest means, respectively, and vy and v, are the

corresponding variances. Note that 7y and 7, are easily calculated

by solving linear programming problems as follows.
mm =max{u'yle'y = 1,0 <y <7},
(5.10)
mm = min{u'yle'y = 1,0 < y < v}.
Let B denote by

(), or my < 7w<m,
r f o STSm

(5.11) v = f(r) =< fi(x), for mi_; <7< m,

(| fr(m), for mp_y <7<,

as a sequence of parabolas f,, fa,. .., fi, where my = 7, and 7 = 7wy,
and K is the number of parabolas of which the efficient frontier B
consists. We define f'(xr) € af(x) = [f'(m — 0), f'(x + 0)] as the
subdifferential of f(7). Note that

(5.12) filmi =0) < fi (i +0), i=0,1,...,K,

from the convexity of S.

Now we show some illustrative examples of efficient frontier.

1 1 09 0.5
(Example 5.1) = E2 V=400 2 0 1%=1{ 05
3 0 0 3 0.8
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The efficient frontier B corresponding to these data is given by

¢ 3 12
52— 17w+ 15, for > <7< —,
— ‘
F1 2 18
(5.13) V= { -iv;n"—37r+ 3., for ITS_TI‘ST,
2 7 T
18 14
572 — 247 + 30, for — <7< —,
! 7 5
¢

which is composed of a sequence of arcs of Bil}, B b and Bf'l} as shown

in Figure 5.1. Then we have

3 12 18 1 .
iy = _2-1 anl = ?1 TR = ?1 g = ?. = 3,
, B , 1 5
(5.14) fi(m) = =2, fi(m) ==, Fime) = =, fi(ms) =4,
3 3 14
=2 e iaa S — 25 I~
Qu=(55h Qu=27) 8
3 ool 2 2/3
(Example 5.2) p=16], V=11 4 8],y=]2/3
8 9 8§ 26 2/3
The efficient frontier B corresponding to these data is given by
r%wz—2r+4, for 4 <nv< §,
22 34 43 20
(5.15) V= %ﬁz—?ﬂ‘wL?, for <wm< 3
3 20 22
~ %-:'rz—357r+ a7, for ?gng—s—,

which is composed of a sequence of arcs of B?:;}, Bf} and Bfl} as

shown in Figure 5.2, Then we have

20 7 A
?T[]=4,Tf1=5,7r2=?,?r3='§,1\=31
2 4 T4 25 38
(5.16) f'(mp) = 3’ f'(m) € [gaz], f'(m2) € [1_5'1 "3_]* f'(73) = 3
-4 136 22
Qm:(§,4), Qm=(—9"~‘§')- i
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m
3t ¢
T3 |- By,
T2 +
{1)
B,
2 =
m
To
1 i
¢
By
0 1 3 v

Figure 5.1. Efficient frontier for Example 5.1.

(]

A

(2)
B¢'

1

5 8 4 & & 7 & 9 1011 12 13 14 15 ¥

Figure 5.2. Efficient frontier for Example 5.2.
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Problem P(R) is rewritten in the space of v and 7 as

Plymy(R) MaJ’cimize Rr — E,
subject to (v,7) € B C S.
Let Q(R) = (v(R),n(R)) denote an optimal solution of problem
P, n(R). Since S is a closed bounded region surrounded by convex
parabolas, Q(R) is located on the efficient frontier B and the tangent

line of the efficient frontier at Q(R) tells us that
(5.17) f'(n(R)) = 2R.
Theorem 5.4 implies that the Q(R) satisfying
(5.18) R(m(R)—d)—v(R) =0,

is given by an optimal solution of problem P3. Since Q(R*) is an
optimal solution of problem P, »y(R*), it holds that f'(m(R*)) =2R*
and R*(n(R*)—d)—v(R*) =0.

Noting that v = f(7), we have that

2f(m(R*))
; d=n(R") — ——=.
1A W)= @)
LEMMA 5.5. The function of «,
_ .2
(5.20) gm)=m Fim)”

is a monotonically increasing function on [T, 7m|.

ProoOF: From (5.11), we have that

- 2ilm)
fi(m)’

oy = 2R

U Ve
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g(m) =
(5.21)

5
4
3l
ol
1
_0_74/“|4 5 6 TV

Figure 5.3. g(7) for Example 5.2

on mi—; < ® < m;. For a parabola f;(7) = a;T? — 2B;m + ¥i, 1t holds
that A7 — ay < 0 and a; > 0 because of v > 0. Then

-
5.99 ") = M >0
( ) gim) (aim — fi)?
and so g(7) is monotonically increasing on (7;_;,7;) for: =0,1,... K.

AMre=mn1=01:5; K, from (5.12),
g(m;) € [g(mi — 0),g(m +0)]

(5.23) = 2him) o 2fi(m)
bR =0)""" fl(m+0))°

where we define
(5.24) g(mo — 0) = —o0, g(rx +0) = o0

Therefore, g(7) is an increasing function on (7, 7x]. i
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Figure 5.3 illustrates the shape of g(7) for the data of Example 5.2.

It is found that

o 2f(mm)
(5.25) QR)=Qm for d=>my~— m
and

wl 2f(7m)
(5.26) QR) = Qu for d<mm— L.
Then, from (5.17), we have
(5.27) Q(R)=Qy forany R>Ry= —2
v —d
and
(5.28) Q(R)=Qm forany R<Rm= - f =

Lemma 5.5 implies that the n(R*) satisfying (5.21), as well as R*, is
unique, because Q(R) moves from Q(R,,) to Q(Rys) on the efficient

frontier as R increases from R,, to Rys.

THEOREM 5.6. The parameter value R = R* such that y(R*) is an

optimal solution of problem P; uniquely exists.

Note that, in the (v, 7)-space, the tangent line of efficient frontier
at the point, given by an optimal solution of problem P, »y(R*), crosses
the r-axis at the midpoint of d and n(R*) as shown in Figure 5.4.

Problem P(R) is the same to the EV model

Maximize pu'y —w-y'Vy,

EV: subject to €'y =1,
0<y<»9,
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midpoint of d and 7(R*)

.
ae®

(Bom)

u(}.’i’.") v

Figure 5.4. An optimal solution on the efficient frontier

which is maximized the expectation on which the variance is imposed
as a penalty with weight coefficient w = 511—? When we set a goal
value d and decide the portfolio which maximizes the probability that
attains the goal value, it can be found which value of weight coefficient
is imposed on the variance for this portfolio.

A solution algorithm for problem Pj is discussed in the next chap-
ter, where the variance covariance matrix of random cost coefficients

has special structures used in the portfolio selection problems.

5.4. Conclusion

We discuss a probability maximizing model of a stochastic linear
knapsack problem in this chapter. This problem is equivalent to a
deterministic fractional problem under the assumption of normally dis-

tributed random cost coefficients. We show the optimality condition
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for a positive parameter which is introduced in the auxiliary quadratic
problem. The positive parameter value satisfying the optimality condi-
tion is uniquely determined, which is also explained in the mean vari-
ance framework related to the efficient frontier of feasible region. Since
problem P(R) is the same to the EV model, we discussed a relationship
between a solution which maximizing the probability of achieving the
goal and a solution of the EV model, as well as a relationship between
the goal value d and the weight coefficient w.

This problem is effectively applied to one of portfolio selection
problems and it necessitates the development of efficient solution al-
gorithms for the problems with special structures of variances used in
portfolio selection problems, e.g., a block diagonal model and index
models, etc.. We discuss solution algorithms for such problems in the

next chapter.
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Chapter 6.

AN APPLICATION TO
PORTFOLIO SELECTION PROBLEMS

6.1. Introduction

Finance problems have recently become a hot field of operations
research. Portfolio theory gives us an optimal investment strategy or
an effective use of the funds taking into account the avoidance of risk,
where we can not avoid making a decision under uncertainty. Stochas-
tic programming models are necessary for investment analysis decision
making. This chapter gives solution algorithms for two types of portfo-
lio selection problems via the corresponding stochastic linear knapsack
problems. Note that the notation of problems and parameters in this
chapter is the same as those used in Chapter 5. As shown in Sec-
tion 5.2, when random cost coefficients have a normal distribution, the
probability maximizing model P, of a stochastic linear knapsack prob-
lem is transformed into the deterministic fractional problem P; and the
auxiliary problem P(R) with a positive parameter R is introduced.

To generalize the problem with independent random cost coeffi-
cients to the problem with correlated random cost coefficients, we in-

troduce in this chapter two types of models of random variables, one
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is a block diagonal model and the other is index models. In the block
diagonal model, the variance covariance matrix of random cost coeffi-
cients is block diagonal, where it is assumed that the investments are
classified into several groups such that the investments in the same
group are correlated each other but the investments in the different
groups are mutually independent.

Elton, Gruber and Padberg [E2, E3, E4] consider the problems
with special structures of variances of random cost coefficients, e.g., a
single index model, a multi index model and a constant correlation coef-
ficients model. They solve such problems by using a ranking procedure,
but the computational complexity is not mentioned clearly.

Section 6.2 discusses a generalized stochastic linear knapsack prob-
lem in which random cost coefficients have a block diagonal variance
covariance matrix. This problem is transformed into an equivalent frac-
tional problem , and then decomposed into subproblems corresponding
to the blocks. We propose a parametric algorithm by extending the
Zipkin's ranking method [Z2]. A portfolio selection problem is also
discussed as an example of this model.

In Section 6.3, we discuss a portfolio selection problem of a single
index model. A single index model is based on the CAPM (capital
asset pricing model) and represents the rate of return on investment
which is regressed to the market index by using many historical data
about the risk and the return on investment. A single index model
decomposes the risk on investment into the risk common to all invest-

ments caused by a market and the risk individual to each investment
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caused by other factors. In this problem, all investments are mutu-
ally correlated through the market index. By introducing a parameter
corresponding to the common market index, we can obtain an optimal
portfolio using the proposed efficient algorithm. The APT (arbitrage
pricing theory) provides a multi index model, where the rate of return
on investment is assumed to be determined by several common indices
besides the market index. An extension of the algorithm to the problem
of a multi index model is also investigated in Section 6.3.4. Section 6.4

gives a summary of Chapter 6.

6.2. A Block Diagonal Model

6.2.1. Decomposition into subproblems

We consider the case in which variance covariance matrix of ran-
dom cost coefficients is block diagonal. In this case, random cost coef-
ficients are classified into several groups with the mutually correlated
coefficients. It is assumed that there are m blocks and the k-th block
has 7 random coefficients, where Y 1" | 7 = n and each ry is suffi-
ciently small compared with n. We shall now cite the main problem P;
and its auxiliary problem P(R) of Section 5.2 again, but they are spe-

cialized to the problem setting of this section.

A 'y—d
Maximize Lf(~,
P3 . s ,y Y
subject to €'y =1,
y 20,

R 1
Minimize —Ryu'y + éy".’y,
!

subject to €'y =1,
y 20,

P(R):




where the mean u and the variance covariance matrix V are expresses

&8
(S A, |
0 4 .0

V=[] . A wd ama ¥
(6.1) : : *s :
0 1 SR

p=(p, p* .y p
with an ¢ X rx positive definite matrix V* = (afj) and an ry-vector
p* fork =1,2,...,m.

Let y* = (y{‘,y{f,...,yﬁk) denote decision variables in the k-th
block. Then problem P(R) is decomposed into m subproblems and we

obtain the k-th subproblem as follows:

T S W
Minimize —R(u*)'y* + =(yv*)'V*y*,

T O 2
P(R, wk) : subject to  e'y* = wy,
y* >0,
where wy is a nonnegative parameterwy such that
m
(6.2) Z Wi =1,
k=1

which denotes the amount of allocation given to the k-th block. Note
that problem P*( R, wg) has two nonnegative parameters R and wg. As
far as no confusion occurs, we abbreviate P¥( R, wy ) as P¥ and suppress
the superscript k on y*, u* and V*.

Now we consider problem P* for the k-th block. Since problem P*
is a convex programming problem, the following Kuhn-Tucker condi-

tions give an optimal solution of problem P*.

—Rui+ (Vy)i—t; +2=0, j=1,2,...,%%,
(63) ﬁ,y = Wk,

w;y; =0, v;20, uw; 20, 3)=12,...,7%.
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The matrix form of these constraints other than the complementary

condition is described by

(yl \
: Ry,
VE —Be e Yre o
(64) ( ) u - : 3
e 0 0 '] Ru,,
: Wi
Uy,
\ g }

where Ey is an ry X ry identity matrix. For a fixed wy, we can solve
(6.4) as a linear programming problem with complementary slackness
conditions that both u; and y; are not simultaneously brought into
basis. Since the rank of the matrix in (6.4) is ri + 1, there exists
an rx + 1 dimensional basic vector and the corresponding basic ma-
trix. The possible number of the basic vectors is 2"¢. Here we de-
note one of the basic vectors and the corresponding basic matrix by
(Y157 Yl U415 Ur,, Ak)" and By, respectively, with appropriate
arrangement of elements, if necessary. The basic solution is expressed

as

77 SRR, TR 7 ST WP T V=t = i =B;1(R,ul,...,R;t,.k,wk)',
(6.5)

Uy = U = - = U T Yhgr = 0 =Yy, = 0,

where 1 < [y < ry. Then an optimal solution of the k-th subprob-
lem P*(R,wy) is given as the following linear functions of nonnegative
parameters R and wy.

BER+BE, Lywe, i=1,2,...,0,

6.6 k R1 =
(6.6) vi (R wg) {0‘ d=dy + 1000578
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(6.7) u* (R, wx) = { (].‘rc i a:=1,2,...,l;..,
BiR+ b7 . Wiy t=l+1,...,7%,
(6.8) Ay =BE . RAGE L g,
where
(6.9) ﬁf:ibﬂ;pf, 1= 1,2 o ip 4 1,
j=1

and bfj, 1,7 =1,2,--- ,7x+1, denotes the (z, j)-th element of the inverse
matrix of By.

As mentioned above, the allocation w; to the k-th block deter-
mines the corresponding basic matrix. Conversely, by feasibility, the
basic matrix determines the existence range of the corresponding allo-

cation w; as stated in the next lemma.

LEMMA 6.1. For a basic matrix By, the corresponding set of alloca-

tion wy, if any, is a convex subset on R} = {w|w > 0}.

PROOF: Since optimal solutions y*(R, wy) and u*( R, wy) given by (6.6)
and (6.7) should be nonnegative so that a matrix By is basic, the allo-
cated value wy for a basic matrix By must belong to
Tk
(6.10) Q¥ (w) = [{w|BFR+ b, 41w > 0}
=1
Clearly, 2*(w) is a convex set on R} . I
Then we return to problem P(R). Problem P(R) is expressed by
using the values of objective functions of the subproblems as follows:
m
Minimize Z f.Z"‘(R1 Wk ),
k=1

m
subject to Zwk =1,

k=1
wp 2.0: k= 1,2, ...,
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where
iy k i o
(6.11) ZMR,wi) = —R(u*)y* (R, wi) + ;y*(R,-af;k)fv*y*(ﬁ,f_{;k)

is the optimal value of subproblem P*(R,wi). ZF(R.w) is a con-
vex function of w € [0,1]. We abbreviate Z¥(R,w;) as Z*(wy) and
y*(R,wy) as y*(wi) or y*. Possibly, Z¥(wy) has non-differentiable
points if the basic matrix is degenerate, and their number is at most 27,
Except for these non-differentiable points, let DZ*(w) denote a deriva-

tive of function Z¥(w).

LEMMA 6.2. The derivative of Z*(wy) is obtained from a Lagrange

multiplier A given by (6.8) as follows.
(6.12) DZX(w) = —Ax.
PROOF: From (6.3) and (6.8), we obtain that

(613)  DZMuwi) = (VAy¥(wi) - Riut)' <y ()
k

: d i
= (u* = Ape) —y* (wy)
dwy.
Ly
= _’\k Z bf‘rk+l
t=1
= —Ak.

! y .
Note that Y % | bf‘r;,+1 = 1, since bk.f'rl'l is an (rp+ 1,7 +1)-st element

of matrix B;,.Bk_]. i
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6.2.2. A ranking method and a solution algorithm

We first review the Zipkin's simple ranking method [Z2], which
treats a maximization problem with a continuously differentiable con-
vex objective function and a single linear constraint. Based on the
values of DZ*(0), k = 1,2,...,m, we can obtain the number of blocks
which have positive allocations. Strictly speaking, DZ*(0) denotes the
right derivative of Z*(w) at w = 0. The Kuhn-Tucker conditions for
problem P4 show that DZ*(wy), k = 1,2,...,m, have a real number M

satisfying

wp >0 = DZNwi)=M,
(6.14)
wp =0 = DZNwi)> M.

The positive wy appears in an optimal solution according to the values
of DZ*(0), k = 1,2,...,m. We arrange DZ¥(0) in increasing order.
Note that the order of DZ*(0) is independent of R, since DZ*(0) =

—B% 41 R. Let N denote the number of positive wg. Then we have

wi >0 for k=1,2..:N,
(6.15)
we. =0 for E=N%+1,...,m,

and M and wy, k =1,2,...,m, are given as functions of N from (6.2),
(6.8), (6.12) and (6.14). Therefore, N* is optimal, i.e., wi(N™*) = wy,
k=1,2,...,m, if N* satisfies

(6.16a) DZN(0) < M(N*),

(6.16b) DZN t(0) > M(N*).

Note that only (6.16a) applies if N* = m.
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We now extend the ranking method in order to treat an optimiza-
tion problem with a piecewise linear convex objective function. Let £F,
1 =1,2,...,pk, denote the non-differentiable points of DZ*(w), where
pk is their number which is at most 2™, At these points, we define

DZk(¢F) as the subdifferential of Z¥(w) at w = €¥, i = 1,2,...,px,

v W

that is,
(6.17) Dz*(e¥) = (D2 (¢4), D2k (¢4)],

where DZ* (¢¥) and DZ_’;'_(E!‘) are left and right derivatives of Z*(w) at
w = £, respectively. Note that DZ*(w) is strictly increasing, continu-
ous and piecewise linear from the convexity of Z*(w) and Lemma 6.2.

The optimality of solution y*(R,w) of problem P¥(R,w) can be
checked by using the following function T'(R).

(6.18) T(R) = R{u'y —d} —y'Vy
=R{Y_(uM)y* —d} - ) ")V
k=1 k=1
= {R(x*) - (V**)}y* — Rd
k=1
= Zwk/\k >
ke=1

In the ranking method, we solve the following equations for the blocks

with positive allocations.

(6.19) DZ¥wy)=M, k=1,2,...,N*,

that is,

(6.20) Ae=-M, k=12,...,N*.
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From (6.18), (6.20) and Theorem 5.4, the optimality condition is given
by

(6.21) M = —Rd,

and from (6.8) we obtain

28 k

Sefatlp ka1
(6.22) wr=1< b 14

0, k= IN¥ 1,y

Here it remains to check whether wy belongs to Q¥(w) or not. Since
all wy are also directly proportional to R, Lemma 6.1 implies that we
can check it without knowing the value of R.

Let {s1,2,...,5,} denote a set of all left and right derivatives,
DZ,’;({:‘) and DZE({:‘), it = 1.2 ....9% k= 1,2,:..,11, at the non-
differentiable points, where p is the number of different values of left

and right derivatives and p < Y ° | pk.

LEMMA 6.3. The order of all left and right derivatives s,, a« =1,2,...,
p, is independent of the value of R.

PROOF: Since at least one basic variable becomes zero for w = f,

from (6.6) and (6.7), £F is proportional to R and so is s,. Thus the

order of s,, @ = 1,2,...,p, is independent of R. |

We denote sa, ,1Say 45+« «sSay 4 the derivatives which are be-
tween DZ*(0) and DZ*+1(0), where p(k) is their number and p =
S i, p(k). We sort them as follows.
(8:28)) D2H(0) S sapy S5+ % %0y oy 2 DI, K =1,2,.. .o,
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where DZ™*1(0) denotes a sufficiently large number.

Now we show a solution algorithm to solve problem Pj.

Algorithm 6.1. (Block diagonal model)

Step 1. Calculate DZ*(wy), k =1,2,...,m.

Step 2. Let N — 1, a «— an;.

Step 3. Calculate wy, k = 1,2,...,m, by (6.22).

Step 4. If wy € Q¥(w), then let N* «— N and go to Step 7.

Step 5. If a = ay p(n), then let @ « a + 1 and return to Step 3.

Step 6. If N < m, then let N « N + 1, a « ay,; and return to
Step 4. Otherwise terminate by concluding that problem Py
has no solution.

Step 7. Normalizing wy to satisfy condition y ;" wi = 1, i.e.,

d_ﬂkr!‘l
- - R* k=1,2,...,N*,
(6.24)  wi=1q bf i1t

0, k= NY1.....9%,

where

N* k
* d_;jrg
(6.25) R*= {Z S } :

k=1 Tet+l,re+l
an optimal solution and the optimal value of problem Pj3 are
given by

BERS LB St i=T19 00k
(6.26) y!‘={ o il 19 -
0, ?-=Il:+ls”°srk1

fork=1.2 ...y, and

(6.27) - Vi(y* )'Vy‘1

= Rl
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respectively, and then terminate. i

The complexity of Algorithm 6.1 is dominated by the selection
of a basic matrix and the calculation of its inverse matrix in Step 1.
Therefore, in the worst case, it takes O(}_ 1, r32™) < O(n ‘max ri2™)
computational time. The complexity for the problem with mutually

correlated random cost coefficients is O(n®2"). Since

(6.28) 0 (Zriz“’-) <0 (H riz"*) < O(n*2"),
k=1 k=1

our algorithm gives a reasonable complexity when each ry is sufficiently

small compared with n.

6.2.3. A simple portfolio selection problem

Our algorithm is applied to the following simple portfolio selection
problem. We consider the case in which there are n infinitely divisible
investments with rates of returns r = (ry,r2,--- ,ry). It is assumed
that returns on investments are not independent, but they are corre-
lated in such a way that the variance covariance matrix of the rate
of return on investment is block diagonal. The investor would like to
know the proportion to be invested into each investment in order to
get a large return under a small risk. Let r denote the rate of return
on riskless asset, i.e., the variance of the rate of return on riskless asset
is zero. It is interpreted, in practice, as the riskless lending rate, e.g.,
bank deposits and saving bonds.

To achieve the above goal, we consider to find a solution that

maximizes the ratio of excess return [E1], i.e., expected rate of return
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minus riskless rate, to standard deviation under the constraint that a
total sum of the invested proportion becomes equal to 1 and a short
sale, which is a negative investment, is not allowed. Then the problem

is formulated as

Maximize u—
Pe 1 ; Va'Vz '
subject to €'z =1,
z 2 0,
This is in the same form as problem P, and the proposed algorithm
can be directly applied.

We consider the expected rate of return # against the standard
deviation . Let point A(c 4,7 4) in the space of o and 7 denote portfo-
lio A, which is obtained by solving problem P; with 04 = \/m
and 74 = r'z*, where z* is an optimal solution of problem P5. When
the investor invests all of his original fund to the riskless asset, this
portfolio B corresponds to point B(0,rg) in the space of o and 7. Let
X, where 0 € X < 1, denote the fraction of the original fund that
the investor places in portfolio A. The expected rate of return of the
combined portfolio with riskless asset and risky portfolio is given by
A — rpa

(6.29) F=(1=-X)rrp+XFa=rp+
TA

1

where 0 = Xo 4. As illustrated in Figure 6.1, (6.29) means that the
combined portfolio is expressed as a line segment AB in the space of o
and 7. The investor chooses a certain portfolio, i.e., a combination of
portfolio A and B, according to his risk preference. For example, a risk-

averse investor would place a small fraction of his fund on portfolio A,
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F
Table 6.1. Parameters of six assets
Asset Expected Standard Correlation coefficients
number return deviation #1  #2 #3 #4 #5 #6
#1 8(%) 4(%) I -5 0 0 B 0
#2 9 3 -05 1 0O 0 0 0
oA 0 #3 3 1 0 0 1 05 04 0
#4 6 2 0 0 05 1 08 0
Figure 6.1. The combined portfolio of A and B #5 8 5 0 0 o4k @s 1 0
while a risk-prone investor would place a large fraction of his fund on #6 5 1 0 0 0 0 0 1
portfolio A.
(Example 6.1) Consider a portfolio selection problem with six in-
vestments as given in Table 6.1. The rate of riskless asset is set to 4.5%. WS
This model consists of three blocks. The derivatives DZ'(w), DZ*(w) 1 9 1
(6.31) G=mR =5 =R

and DZ3(w) are given as follows, where the variables in the paren-

theses denote the corresponding basic variables, which have positive

Eithsatidio] Figure 6.2 illustrates the derivatives of objective functions of sub-

problems. The derivatives at w = 0 and w = £ are given by

9sw— 9 R 0<w<f, (W) 1
DZ'(0) = -

(6.30a) DZ'(w) = { 108 318, o a 1( 1) 429R

?w—ﬁ , w2>&, (yhy?) DZ (51) = _?R = fay,y
2 -

(6.32) DLAD) = ggR
Bw— 8 R, 0<w<E (ys) DZ*&) = —m R =sa,

! - 36 70 " 3 DZ3*0) = -5 R
(6.30b) DZ*(w) = 13 w — 13 R, & Sw<é&, (ya,ys) ng(fg) 8 —4R =sq,,

4 w— 6 Rs w 2 {%1 (y"l)

Corresponding to the above values of a, we have the following

(6.30¢) DZ*(w) = w— 5 R, (ys) results.
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(l) = (g 1!

DZ

DZ*(w) 1
wy = §R ¢ Q' (w)={w|0<w<El)
(6.33) 2
wy =10

There is no optimal solution.

(ii) o =g 4t

101
wy = T_OR € 2 (w) ={w|0<w <L &)

7 ‘
(6.34) L 50 R¢ Qz(“’) ={w|0<w< 612}

wy= 0

There is no optimal solution.

(1) a = a3 ,:

101
wy = R € Q' (w) = {w|0 < w < &)
23
(6.35) wy = = R€Q(w)={w]0<w<Ef)

w3 = % R e Q*(w) = {w|w > 0}

—-9R

9
In this case, we have R* = 20 from (6.25) and an optimal port-

o

Figure 6.2. Derivatives of objective functions of subproblems folio obtained from (6.26) is shown in Table 6.2. The expected return

is 7.47500% and the standard deviation of return is 1.15704%. The
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probability that the total return exceeds 4.5% is 99.49%.

Table 6.2. Optimal portfolio of Example 6.1
Allocation to block Optimal portfolio

wi = 101/160 y7 = 39/160
y3 = 62/160
ws = 23/160 yi=0
v} = 19/160
ys = 4/160
w} = 36/160 yt = 36/160

6.3. Index Models
6.3.1. A single index model and a multi index model

A capital asset pricing model (CAPM) introduced by Sharpe [S3]
explains the relation between risk and return on investment in a stock
market. The risk of investment is assumed to be linearly decomposed
into the risk common to all investments caused by a market and the risk
individual to each investment caused by other factors. This model is
called as a single index model, since it is expressed through the market

index only.
(6.36) C,’-—T‘f=(.ti+ﬁ,'(?‘m—f‘f)+e,', = 1.2 oooh.

where
¢;: the rate of return on investment 1.
rm: the rate of return on market portfolio, which is the portfolio

of all investments in the market. In the efficient market, r,,
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is assumed to have a normal distribution CalN(7,,,0%, ). The
distribution parameters should be estimated. Here we assume
to be faced with the situation that they have been already
estimated and we choose a suitable portfolio.

ry: the rate of return on riskless asset.

Bi: beta-value of investment 7, which is a measure of the respon-
siveness of investment ¢ to changes in the market index.

a;: alpha-value of investment i, which is the return on invest-
ment 2 that is independent of changes in the market index.

€;: a random noise of investment ¢ with a normal distribution
CalN(0,0?2,), which is independent of the market index.

Replacing a; + r¢(1 — 3;) by ay, (6.36) is simply rewritten by
(6.37) & = @i+ Bifm + &y 1 =120

The values of a;, 3; and ¢?; cannot be directly observed from historical
data and might change over time. When a;, 3, and o? are viewed
as constants through time, we can estimate them by using regression
analysis.

Because a single index model is sometimes too simple to explain
the practical stock market, a multi index model is introduced based
on an arbitrage pricing theory (APT). In the APT, the rate of return
on investment is explained by common indices besides the market in-
dex. A multi index model introduces extra indices in order to capture
additional information, which are incorporated into ¢; in a single in-
dex model. Then the rate of return on investment is expressed as the

following linear combination of indices Iy, I5, ..., I} .
(638) eci=a;i+Buli+Bul+--+PiLli+e6, 1=1,2,...,n,
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where I is the I-th index with a normal distribution CalN (I, o} ) which
is independent each other and f§;; is a measure of responsiveness of
investment ¢ to changes in the I-th index. It is also assumed that I; is
independent of e;.

When L = 1 and I; = r,,, a multi index model coincides with a
single index model. A multi index model can describe the dependency
on all indices, and has a higher explanatory power of risk and return
on investment than a single index model. However, it is important to
take notice of the multicolinearlity between indices and stability of the

coefficient estimates.

6.3.2. Formulation of the problem of a single index model
Let be n investments infinitely divisible. We consider the follow-
ing probability maximizing model of a stochastic linear knapsack prob-

lem P].

n
Maximize Pr E cjzy 2d}|,
i=1

n
subject to Z a;z; =b,
j=1
025 S W 3= 152000 400,

which is the same to the problem considered in Chapter 5 except that
¢ = (¢;) is a vector of the rate of return on investment expressed by a
single index model (6.37). After appropriate variable transformations,

we have an equivalent deterministic problem Pj3 and the auxiliary prob-
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lem P(R) as follows.

' —
Maximize & yf d,
Py : y yvy
& subject to €'y =1,
0<y<n,

Maximize Ru'y — %y'Vy.
P(R) :

subject to ey =1,
0<y=<~,

where
p = Elc = a+ Brn,
(6.39)
Vi Vi) = 8o 4 dinglo®s oty o5
Problem P(R) has a unique solution, which is the y-part of a solution

of the following Kuhn-Tucker conditions.

_R# + a?’n{ﬁjy) i ﬂ +diag(0’31:0§2s---,03n}‘ y+/\ - e+€1 _62 =0
(6.40) ey=1, 0<y<wy, 6,620
Elj(y}_‘h):o! EEjyjzov j=1.2,.-..ﬂ.
Introducing t = ,,(f'y) as a parameter, the solution of (6.40) can be
expressed with three parameters R, A and ¢ as follows.

(6.41)
&2; = max(0, —Rpu; + O'mﬂj't + A),
Yis if A< Af‘,
Ruj —ompBit — A y
(6.42) Y = Hj 02 B; : if A}‘ < X< AV,
ﬂ'ej J
0, if A>AY,
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where

b = a2+ Ry = ot
(6.43) U
Aj = Ru; — omfBit.

From Theorem 5.4, y( R*) is an optimal solution of problem Pj3, where
R* is a solution of T(R) = 0. The uniqueness of R* has been shown in

Section 5.3.

6.3.3. A solution algorithm

Recall that A}’ and Aj’, j = 1,2,...,n, are linear functions of R
and t. The R* that gives an optimal solution of problem Pj is unique
and is a solution of equation T(R) = 0. A procedure to decide R* by
an extended binary search will be discussed later in this subsection.
Here we consider a solution algorithm for a given R. Then A;-‘ and A;vj,
j =1,2,...,n, are linear functions of parameter t. They are n pairs of
parallel line segments in the space of t and A on interval (¢,,,t5) as

shown in Figure 6.3.

tm = min{o,B'yle'y =1,0< y <9},
(6.44)
tp = max{o,B'yle'y=1,0<y <~}
Note that the number of their intersection points is at most 2n(n—1) =

O(n?). We denote the different values of t at the intersection points as
(6.45) t <tz <2<ty

where N is their number. Note that, for any ¢t € [t,-,t.-.H], the order of

values of Af‘ and A;-}. 7 =1,2,...,n, is independent of the value of ¢.
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Figure 6.3. An illustrative example of t vs. A for n =3

When the value of ¢ is fixed, we can sort all AJJ[-‘ and A;", g =
1,2,...,n and determine the form of y;, j = 1,2,...,n, in (6.42) for
each . Now we decompose a set {1,2,...,n} into the following index

sets for each A.

J(A\) = {j|A < AT},
(6.46) L(A) = {FIAF < 2 < Al},
Js(A) = {j|r = AV}

Then we have

Vs 1€ Ji(A),
(6.47) y;(t) = Sz Z;"_ﬁ"t =
0, . j € ().
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Parameter A in (6.47) is determined from constraint e'y(t) = 1, that is,

Z 7j_1+ Z R,U.J' —;}mﬁjf

g
JELL(A) JEJ2(A) €J
3
2
o
jEJ2(A) Y

for t € [t;,ti41], which is found by using a binary search. It also satisfies

(6.48) A=

that o,,8'y(t) = t, so we have

' Rn“ _Umﬂ't_/\
(649) By(t)= > Bivi+ Y BH g i
JEJ1(A) JEJ2(A) €]
Bi Bi
2 o 2
i€J2(A) ¢! i€a(X) € 1
E oo M gl A ST

JEJi(X) Z o2 JEJ2(A) Z g L
€

5
iedix) = t€Ja(A) ¢!

>

i€J2 (A o
—Z &3}—62()1 —;i{-t.

2

oc.

JEJ2(A) Z i G5
Uo e
i€Jz(x) ¢

and the coefficient of t is

; (Bi — B;)?

ore. oo,
ieh(n) ¢ | B; igehi{n) 94

650) Y |Bi-—F 5= z > 0.
€T = R o =
i€S2(N) ¢! JEJ(N)

Therefore, #'y(t) is a piecewise linear and nonincreasing function of ¢
as illustrated in Figure 6.4. Let t* denote the value of ¢ such that

omB'y(t*) = t*. Then we have
omBly(t) <t = t*<t,

(6.51) ocablulty=Ff = *=13,
vau(t) >1 =% i
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Figure 6.4. An illustrative example of ¢ vs. 'y for n = 3
Now we propose an algorithm to obtain #* for a fixed R.

Algorithm 6.2.

Step 1. Calculate t,,, and ¢y and let % «— t,, and tV « t,,.

Step 2. Let t « (t* +tY)/2.

Step 3. Sort A_‘;-‘ and A_?, 1 =1,2,...,n, for fixed t.

Step 4. Obtain y;(t), 7 = 1,2,...,n, and A(t).

Step 5. Calculate t such that o, 3'y(t) = 1.

Step 6. If t and ¢ belong to the same interval, then terminate by con-
cluding that t* = £. Otherwise, if ¢ < ¢, let tY « ¢ and if
t >t let t© « t. Return to Step 2.

THEOREM 6.4. Algorithm 6.2 finds the t* such that o,,3'y(t*) = t* in

O(n®logn) computational time.

PROOF: First note that the form of y;(¢) in (6.47) is the same for all ¢

belongs to the same interval. Thus if # and ¢ belong to the same interval,
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f is equal to t*. When f < t, it holds that t* € [t%, ¢], since
(6.52) omB'y(t) < ompy(t) =1t <t
implies #* < t. When ¢ > ¢, it holds that t* € [t,t"], since
(6.53) omB'y(t) > omPyd) =t >t

implies t* > .

From Step 2 to Step 6 are iterated for all intervals of ¢ whose
number is O(n?) in the worst case. The computational complexity for
each step is as follows.

Step 1. O(nlogn) to calculate £, and ty;.

Step 2. O(1)

Step 3. O(nlogn) to sort O(n) A's.

Step 4. O(nlogn) to find A by binary search.

Step 5. O(n) to calculate 1.

Step 6. O(n) to find whether t and t belongs to the same interval or
not.

Therefore, Algorithm 6.2 finds #* in O(n? log n) computational time. §

Since t* and the corresponding A* satisfy linear equations €'y = 1

and o0,,8'y = t simultaneously, that is,

- 1
(6.54) om Y fT‘t‘«i- A" =
JE€T(At) € JEJ(A") €
1)
oI S e Rt
JEJa(X*) ¢ JEJL(A*)
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and
2 :
(655) (U?“ Z (fTJ+l)t‘+‘7m Z ;%"-—A' =
JES(A) ¢ JEJ(A) €
G, o A et i
62 m J J\
JEJ(A) € JEL(A®)

t* and A* are expressed as linear functions of R in the neighborhood of

the fixed R. Then we have y; as linear function of R as follows.

Vi J € i(A%),
H Umﬁ‘ * 1 - y "
(6.56) = ;}R e L =" J € Ja(A*),
] ej €)
0, J € J3(A*).
Note that
(5.57) N {R 0< ﬂ;R—gr—“;—i—lt'—sz\'S'n}
: o;. as; o
JEJ2(A*) €7 €J ej

expresses an interval and we denote it by [R!, R*]. The forms of y; in
(6.56) are the same for all R € [R', R"].
R* is determined so as to satisfy T(R) = 0. T(R) is given as

(658) T(R)=| Y  wv;—d|R-om D Bimt’

JIEJ1(A%) JEJL(A®)

e T A A B

JEJ1(A*) JE1(AY)
which is a linear function of R from taking into account (6.54) and
(6.55). Since T(R) is a continuous and piecewise linear function of R

such that

}llin}] T(R) < 0,
(6.59) i

Rhm T(R) > 0,
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R* is found by the following algorithm using an extended binary search.

Algorithm 6.3.

Step 1. Calculate R,, and Ry and let RL — R,, and RV «— Rp.

Step 2. Let R «— (RY + RY)/2.

Step 3. Apply Algorithm 6.2 with the current value of R.

Step 4. Obtain R', R" and R such that T(R) = 0.

Step 5. If R € [R!, R"], then terminate by concluding that R* = R.
Otherwise, if T(R) < 0, let R* « R" and if T(R) > 0, let
RY «— R!. Return to Step 2.

The computational complexity is dominated by the number of it-
eration from Step 2 to Step 5. Note that the number K of parabolas
in the efficient frontier (5.11) is the same to the number of intervals of
R defined by (6.57). Since it should be iterated K times in the worst

case, Algorithm 6.3 takes O(Kn?logn) computational time.

6.3.4. Extension to a multi index model

This section discusses how to extend Algorithm 6.2 to the problem
of the multi index model (6.38). The rate of return on investment ex-
pressed by a multi index model (6.38) is a normally distributed random
vector with

p=Elc] =a+pily + folo + - + BilL,
(6.60) V =V[c|=Bipio] + BaByos + -+ + BLBLoL
2

+ diag(o?,, 0%, 0%,).

Introducing L parameters t; = o4(fy), | = 1,2,...,L, the y-part of a
solution of the Kuhn-Tucker conditions for the auxiliary problem P(R)
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(S

is given by

[ Y55 if A< f-\JL*
L
Ruj — » oiBti— A
(6.61) ;= < J ; # e o
= if Al <A<AY,
(s
o if A>AY,
where

L
Ag‘ = _0'33‘73' + Ry — Zo'a‘ﬁjlth
(6.62) -

L
;\;7? = Ry; — Z aifiti.
=1

When we give the values of #;,15,...,¢,, we can sort f\;-* and f\j-“'.
J =1,2,...,n and determine the form of y;, y = 1,2,...,nin (6.61) for
each A. Parameter ) is determined from constraint e'y(,.t5,...,f1) =
1 with parameters #,,¢5,....1; in a manner analogous to (6.48). Let

1,13,...,t] denote the values of t;,1;,...,%; such that

(6.63) 1T e o, ) (N - ) PSSR )
Since o18y(t1,t2,...,t1), I = 1,2,..., L are piecewise linear and non-
increasing functions of #;,1,,...,%;, we have

aify(tita,..., i) <ty <= 1] <t

(6.64) Byt e, .- tr) =t <= 1 =4,
aiby(tiyta,..., kL) > < 1] >,

for [ =1,2,...,L. We can solve problem P(R) by Algorithm 6.2 using

a binary search for each t;. The L-dimensional space of t;,%5,...,1L is
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divided into several cells, in each of which the order of the values of f&f

and Af;f j =1,2,...,n, is uniquely determined. Since the number of
; L s L . ;

such cells is O(n?"), we require O(n? *!logn) computational time to

solve problem P(R) of a multi index model.

6.4. Conclusion

We discuss an application of a probability maximizing model of a
stochastic linear knapsack problem to portfolio selection problems.

The first problem considered in this chapter assumes that the
variance covariance matrix of random cost coefficients is block diag-
onal. This problem is decomposed into several subproblems, for which
the auxiliary quadratic problems are defined and solved parametrically.
Our algorithm finds an optimal solution effectively by using a ranking
method to merge subproblems. This problem is applied to the simple
portfolio selection problem, which finds a portfolio that maximizes the
ratio of excess return to standard deviation.

The second problem considered in this chapter assumes that the
random cost coefficient, i.e., the rate of return on investment, is ex-
pressed by index models. A single index model and a multi index
model are used to explain risk and return on investment in the stock
market. We mainly considered a single index model, which expresses
the rate of return on investment as a linear regression model of the
market index. By introducing a parameter corresponding to the mar-
ket index, we solve the auxiliary quadratic problem parametrically and

propose an efficient solution algorithm to find an optimal portfolio.
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The worst case complexity of the proposed algorithm to solve prob-
lem P, is O(Kn®logn) and the number K may be at most O(2"). How-
ever, when the distribution of g, 7;,..., 7k on the m-axis is uniform,
Algorithm 6.3 finds an optimal R* in O(n) iterations by using a binary
search. Moreover, when the distribution of t;,%5,...,tn on (f,,ta)
is uniform, Algorithm 6.2 finds an optimal t* in O(logn) iterations.
Therefore the average complexity is approximately O(n?(logn)?). The
problem of a multi index model can be solved by the procedure sim-
ilar to the problem of a single index model, but the computational
complexity becomes higher order polynomial.

In the future research, it would be necessary to investigate the
distribution of stock return, which is considered not to have exactly
normal distribution [N2]. The coefficients in index models are esti-
mated by means of regression analysis based on the historical data.
In case we rely on an estimator of unknown coefficients in the index
models, it is worthwhile to investigate the problem based on the con-
fidence region of estimates as discussed in the previous chapters from
the viewpoint of a game theoretic strategy. The average complexity of
the proposed algorithms applied to the practical finance data for the
problem of a single index model as well as a multi index model should

be investigated, too.
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Chapter 7.

A STOCHASTIC IMPROVEMENT
METHOD FOR
STOCHASTIC PROGRAMMING

7.1. Introduction

This chapter discusses a stochastic improvement method for sto-
chastic programming. Many optimization problems arisen in prac-
tice are formulated as stochastic programming problems. However,
in most of them, the parameters describing the problems are unknown
or known with uncertainty. Such problems necessitate statistical ap-
proaches to estimate the unknown parameters. Many studies of statis-
tical approaches for stochastic programming are proposed, for example,
a Baysian analysis [B8, J1], a minimax model [D4], a prediction of the
regions of an optimal solution and an optimal value [C3] and a confi-
dence region method [M7, M8J.

The mathematical models show the relationships that exist among
the system variables. We are interested in identifying the relationships
and in estimating the parameters of the relationships. Since many
models are assumed to have a structure expressed by a linear equation
or by a system of simultaneous equations, a multivariate regression

analysis is a useful statistical technique.
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In practical applications, it is desirable that the estimates should
be updated whenever we obtain new available information. When we
would like to improve the accuracy of estimates, we observe new avail-
able data and update the estimates of parameters of the relationships.
It is not, however, efficient to solve such a problem from scratch every
time the estimates are updated. It is desirable to update the optimiza-
tion problem as well as its optimal solution by modifying the previous
data. For such purpose, we propose a stochastic improvement method
for the linear programming problem that contains unknown coefficients
in the constraints, which are iteratively improved by using newly avail-
able data obtained one after another. The stochastic improvement
method solves the problem by an iterative algorithm alternating be-
tween the improvement phase of optimal solutions and the updating
phase of the estimates of unknown coefficients.

Section 7.2 provides a formulation of the linear programming prob-
lem considered in this paper and describes a procedure for updating the
estimates. A solution algorithm of the stochastic improvement method
is discussed in Section 7.3, which consists of the feasibility step for
obtaining a feasible point and the optimality step for obtaining an im-
proved point. We update the estimates of unknown coefficients as well
as solution by making use of an affine scaling method, whenever new
statistical data are delivered. Section 7.4 shows the consistency of the
estimated feasible region and proves that a point sequence generated
by the proposed algorithm converges to a point that gives the optimal
value with probability one. The results of the numerical experiments in

Section 7.5 illustrate the convergence of proposed algorithm. Finally,
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Section 7.6 gives a summary and discusses the direction of further re-

search.

7.2. Formulation of the Problem

We consider the following problem,

n
Minimize Z CjT 5,
B J :1
subject to Za,-j:rj +he t=1.2 ... m,
j=1
where both A = (a;;),i=1,2,...,m,j =1,2,....n,and b= (b;), i =
1,2,...,n, are fixed coefficients but known with uncertainty. The true
values of A and b are only given by estimation with perfect information.
We assume that problem P with the true values of coefficients has a
bounded feasible region. Then we aim to obtain an optimal solution
of problem P with the true values of coefficients after estimating them
using additional sample information in an adaptive way.
We consider the situation that, for given sample point x, the value
of E;‘zl a;;x 5+ b; is available for the observation y; including normally
distributed random error u;, i.e., y; = Z;’zl aijz; + b; + u;. Then the

multivariate regression model defined by (7.1) is useful to estimate the

unknown coefficients [M2].

(7.1) Y¥=x¥p+uv,
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where
1 1
.12 yan
N Y1 ym . ;
Y= 3 : » matrix of observations
N N
y] ym
2 G |
5 % a2t i ) )
X" = S L .. | : matrix of sample points
P & 1
[ @1 (1
B=| - e . matrix of parameters to be estimated
Ain (mn
b bm
T |
N ul e ul ‘
Y = gy y - matrix of errors
\u¥ ... Wl

We assume that XV has a full column rank and that (uf,uf,... uy)’
is normally distributed independent random errors with the mean zero
and the variance matrix £ = (0;;). These assumptions are essential for
normal distribution of the maximum likelihood estimator. The maxi-
mum likelihood estimator of regression parameter matrix B and vari-

ance covariance matrix ¥ of disturbance are given by
(7.2) B=1(4 8 = (X"yYX") XYy,
(13) S= %(yf*’)'(r — XN(XNY XN (XNY)Y N,

From E[UVN] =0 and
(7.4) B = ((XMyxM)T(XNY(XM)B +U)
4
=t +((XN)'XN)_1(XN)'UN,
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B is unbiased for B and is a linear function of U™, Therefore, B = (5i;)

1s a random matrix which has multivariate normal distribution with
E[B] =B
COV[E&;‘, Bl = a9l

where GV = (gff) = ((X™)'XN)™Y. Let vecB = (B,55,.--+5m)

denote the vector obtained by stacking the columns of B on top of one

(7.5)

another. We obtain that

718 vecB = (I@((XN)YXM)="(XNY) vecY' ",

VivecB] = (XM)(Z@I)'XN)™,

where ® denotes the Kronecker product, which is an (mk x nl) matrix

defined for an m x n matrix P = (p,;) and a k x [ matrix Q as follows.

puQ p12@Q ... paQ@
(7.7) P®Q= p2:Q PZ?Q P2?:1Q

Pm1Q@ Pm2Q@ ... Pma@

If each row of X* is independent of each other, we have V[vecﬁ] -0

as sample size N tends to infinity. Then B is consistent, that is, it
holds that

7.8 i B — =
(7.8) Jim Pr(||B - Bl <€) =1

for any positive e.
Noticing that B are normally distributed random variables, we
have the following estimated problem P:

Minimize c'z,

3 subject to Az +b <0,
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by replacing the unknown matrix B in problem P with the estimator B.
When we obtain k observations (z',y'), (z%,y?%),..., (z*,y*), we have
the estimates B* = (A¥, b*)’ of unknown coefficients B as the realiza-
tions of B and the following resultant deterministic linear programming
problem P*:

Minimize ¢’z

P
) subject to  Akz + b* < 0.

This chapter discusses a solution method of problem P through the
sequence of problems {P*} resulting from the sequential sample infor-
mation.

When we obtain a new observation y**! at the sample point z*¥*+1,

the estimate B* is updated to B**!,
LEMMA 7.1. Assume that G¥ = ((X*)'X*)~! exists. Then it holds

Gk.’rk+l {._L.k-f-l )le

k+1 __ o~k
(7—9) G =G" — 1% (;rk+1):kak+]'

PROOF: The proof is given by showing that G**!(G**')~! = I. Not-
ing that (G¥+1)~! = (G*)~! 4+ 2%+ (2**!) and G* is symmetric and

positive definite, we have

Gk+1(Gk+1)—l

G*.-rk"'i(.-rk"’l )!Gk

1 +(Ik+l)tc'kxk+l

kak+l($k+l )f ((:rk+l )'Gk;l.'k+11' = kak-i—t(;rk-}-l )f)
T (l.k+l ):sz.k+l

=(G* - J(GH)™! + 25+ (2 H1Y)

(7.10)
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where

Gl‘rk-i-l(:rk-i-l )l' ((Ik+l)lcl“rk+l‘[ gl Gkrk-l-l(.l,k-i'l )f)
k 1 3 - 5 N 5 . .
=(.‘I' + )fGka+]kak+l(Ik+l )r'—G*J’k-’.l(l"‘-‘-lJFG'L;IT‘+I(IA+I)'

k l k k 3 3 . . o 3 - g
=(:r E ).'G - +1G.(:rl+l($l+l )l‘ _(._rl+l )’GAJ.'*+IGA;I'*+I

( :r“'{' 1 )l‘

=0. 1§

THEOREM 7.2. When we obtain a new observation y**! = Ba*+1 4
u**1 at the sample point z*t! with a random disturbance ukt+1, the

estimate B is updated to B**' as follows.

le‘k'“(;r:""'l)'
1+ (2h 1) Ghght

(7.11) Bk-H — ( — ) (Bk +Gk1‘k+l(yk+l)')_
Proor: We have

Bk"'l =Gk+] (l'k-i-l )f}.‘k{kl
(7.12)

= e kak+l(rk+l)rgk
3 1 4 (2k+1)/Ghgh+
i Gkrk-l-l(g.kﬁ-l )I'

- 1+ (zk+1)yGhzk+

) ((_Yk)!yk L .rk+l{yk+1)l)

) (Bk 4 Gkal_&'+l(yl.-+l)!)

Notice that G* is calculated by (7.9) recursively. i

We consider point sequence {z*} which converges to a point that
gives the optimal value of problem P. At the starting time, the initial
estimates are calculated by more than n + 1 samples and an initial
point of the sequence is given arbitrarily, which is not necessary to be

feasible to the estimated problem because it is projected to the feasible
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region if not feasible. Each updated point z¥*! is calculated from A*,
b* and z*. Two types of steps are considered to get an improved point
in the stochastic improvement method. One is the feasibility step that
gives a point feasible to the updated feasible region, and the other is an
optimality step that gives an improved point. In the following sections,
we propose an algorithm that generates a point sequence {z*} and we

will show several properties.

7.3. A Stochastic Improvement Method
The improved point z**! is given by the following two types of
steps using the estimates A* and b* in problem P*. Now let D and D*

denote feasible regions of problems P and P* as follows:

(718) D= Y aye; 4550, §=12m
i=1
n

(7.14) D*=(z|) afz;+8 <0, i=12...,m
j=1

Note that D is the region with true values of coefficients and D* is an
estimated region of D with the estimates of coefficients.

First, we introduce the feasibility step that constructs from z*
a feasible point to the updated feasible region of problem P*. The
projection of z* to feasible region D* is the main operation in the
feasibility step. Let z}. denote the projected point of z*. For z* ¢ D*,

it is assured that z* satisfies the estimated constraints Az +b < 0 with

some probability, that is, Pr{z‘ix" +b< 0) > 0, since the estimators A
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and b are normally distributed random variables. So we can select the
values of A and b such that Az* + b < 0 from their confidence regions
under an appropriate significance level. For an infeasible point z* ¢
D*, we consider the following auxiliary problem P(py minimizing the
object function with respect to B = (A, b)".
Py Minimize ~ vec(B — B*)'V[vecB] 'vec(B — B*),

subject to Az* + b <0.
Problem P(zy has an optimal solution B* which gives the narrowest
confidence region of unknown coefficients B, that is, B* belongs to the
confidence region of B under the highest significance level. B* is also
viewed as an optimal solution of the following problem:

Maximize a,

B.a

o 2 subject to B € Sp(a),
Az* + b <0,

where Sg(a) denotes the confidence region of B under a significance
level a.

Since it is, however, too complicated to implement the selection of
both A* and b*, we set A = A¥ for the sake of simplicity and select
only b* so as to maximize the significance level of the confidence region
of b to which b* belongs. The resultant auxiliary problem minimizing
with respect to b is given as follows.

Minimize (b~ b* YV [B]= (b — b*),

Py : : o
subject to A*z* 4+ b <0,

where V[b] is a submatrix of V[vecB] corresponding to b. Then a
feasible point z§ is given by the following problem.
Minimize ||z — z*||,

Pg: : k k
subject to A%z 4+ b* < 0.
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Here we alter the feasible region D* into D* as follows, because the op-
timality step, which will be discussed below, requires a strictly interior

point of Dk,

(7.15) D“:{x|A;“m+?§:50 for i€l
A¥z +85 —v <0 for iel,

Atz b8 <0 for i¢IUTI'},

where
(7.16) I={i|Afz* + b5 >0, b # b},
(7.17) I' = {i|A¥z* + b% <0, A¥zh 4+ bF =0)

and v is a prescribed tolerance level. Then z5. is located in the interior
of Dk,

Next, we consider the optimality step that gives an improved
point. We utilize an affine scaling method [B2] for getting an improved
point **!. An interior point method for solving linear programming
starts from a strictly interior point and generates a point sequence
converging to an optimal solution through the interior of feasible re-
gion. The affine scaling variant of the Karmarkar’s algorithm is one of
the interior point methods, which solves the linear programming prob-
lem using an affine transformation. We consider the following iterative

scheme based on the affine scaling method.

(7.18) gt = 2k 4 atd,
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where
(7.19) Cl‘k = [(dk )!(Ak)l(Tk )2Akdk]_% 3
(7.20) d* = — ((44)(T*)24%) 7 o,
1 1 1
7.21) T* = di ( . .
W2 e\ Aok o ARE 8 AE T %)

Note that 2%, which is obtained in the feasibility step, is a strictly
interior point of D¥.

We repeat sampling, estimation and stochastic improvement by
the feasibility step and the optimality step, until the step size of im-
provement becomes less than a prescribed tolerance level v. Figure 7.1
shows the resulting algorithm SIM to solve problem P by the stochastic
improvement method.

When we can obtain Nj samples (z*+! yk+1) (pk+2 642y
(z*+ Nk y*k+Ne) all together at one iteration, the estimated problem P*
is updated to problem P¥*Me and the variance of estimator B with
k + N samples is smaller than that of estimator B with k + 1 sam-
ples. It is also desirable that the sample points are chosen indepen-
dently of each other for the consistency of estimators. Since, however,
the stochastic improvement method assumes that the sample point for
the next observation is not independently generated but is provided
by the #**! given by (7.18) based on the present sample (z*,y*), the
sample points are not completely independent. This dependency of
the sample points may slow down the speed that the variance of es-
timator converges to zero. When the infinitely many sample points

are restricted to a subspace of R", the estimator has no consistency.
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procedure SIM:
begin
Give initial samples XV and observations YV for N > n;
Let GV « ((XVYXN)~! and BY « GN(XN)'YY;
Set a tolerance level v;
Let k «— N and define initial point z**! arbitrarily;
repeat
begin
Let k «— k + 1;

Observe new data (z*,y*);
Gk_lxk(xk)'Gk_l

k k-1 _ .
Let G o G 1+(Ik)erthk ]

; Gk—lxk Ik)' ¥ g ;
Let B* (I— 1 +(xk);(§'k—1xk) (Bk L4 Gk lzk(yk) )i

if z* ¢ int D¥
then Feasibility step: Obtain z% and construct D*;
else Let 2% « z%;
Optimality step: Let 2%+ — 2% + a*d* by (7.18);
end

until |[a*d*|| < v;

end.

Figure 7.1. Algorithm SIM

However, since the estimate B* in (7.18)-(7.21) is one realization of
normally distributed random matrix B, that is, Pr(B = B*) = 0 for

any k, it is considered that the infinitely many sample points are re-
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stricted to a proper subspace of R™ with probability zero and this model

assures us of the consistency with probability one.

7.4. Consistency of the Estimated Region and Con-
vergence of Algorithm SIM

The estimated feasible region D* with the estimates of coefficients
converges to the true feasible region D with the true values of coeffi-
cients as sample size k becomes sufficiently large. From the consistency

of estimator B, the following theorem holds.

THEOREM 7.3. With probability one,

(7.22) lim D* = D.

k—oo

PRrROOF: It is sufficient to show that
(7.23) liflS;p DrcDc lim inf D*
with probability one.

If # € limsupy_. . D¥, then there exists a sequence {y*}rex —
such that y* € D¥ for all k € K, where K is an infinite subset of
{1,2,...}. Thus, A¥y* + b* < 0 for all k € K. The consistency of
estimators ensures that Az + b < 0 with probability one, and hence
@ € D with probability one. This proves limsup,_, .. D* C D.

If z ¢ liminfy_ . D*, then A*z 4+ b* £ 0 for k sufficiently large.
The consistency of estimators ensures that Az + b £ 0 with proba-
bility one, and hence z ¢ D with probability one. This proves D C
liminfi_.. D*. §
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To measure the distance between the estimated feasible region D*
and the true feasible region D, we consider the Hausdorff distance.

7.24 8(D*, D) = max( max min ||z — y||,max min ||z — y||).
(7:24)  8(D*, D) = max(max min o — y||,max min |z - y])

where ||-|| denotes the Euclidean norm. From Theorem 7.3, for any
positive €, there exist a number n; and a region D}, with probability

one, such that

(7.25) §(D,D}) < ¢

and

(7.26) bepi=Jo*
k=n,

Moreover there also exist a number n, and a region D[, with proba-

bility one, such that

(7.27) 8(D,D]) < e

and

(7.28) ba:p; = (] DA
k=n3

Let 2 and ] denote optimal solutions of problems min{c'z |z € D}}
and min{c'z |z € D}, respectively. The following theorem shows the
convergence of algorithm SIM to a point that gives the optimal value

of problem P with probability one.
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THEOREM 7.4. Let z* denote an optimal solution of problem P with
the true value of coefficients. Then |¢'z* — ¢'z*| — 0 as k — oo with

probability one.

PROOF: For any positive €, from D* C D} and limj D* = D with
probability one, we obtain ¢'z} < ¢'z* for k sufficiently large. Note
that the sequence of objective values {¢'z*} of problem P* at z = z*
has an accumulation point ji.

If i < c'z7, then ¢'z% < 'z for k sufficiently large. Because
§(D},D;) < 2¢ holds with probability one, it is obvious that |¢'z} —
cz;| =+ 0ase— 0. Fromc'z} < dz* <z and dz} < dz* < a7,
it is shown that |¢'z* — ¢2*| — 0 with probability one as k — oo.

If dz7 < ji, then 'z < c'z* for k sufficiently large. However,
from D C D¥ and limg_., D¥ = D with probability one, we obtain
c'z7 > c'z* for k sufficiently large. Therefore, limg .o 2k = 27 and
cdz; = cz*ase— 0. 1

Since B¥ — B as k — oo, the algorithm SIM generates a point
sequence {z*} which has an accumulation point #. Then Theorem 7.4

implies that
(7.29) & € argmin{c'z|Az + b < 0}.

The stochastic improvement method solves problem P by alternating
between the feasibility step and the optimality step. If we apply only
the optimality step in problem P* without updating the estimates,
the sequence generated by the stochastic improvement method may

converge to an optimal solution of the estimated problem P*. Since the
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sequence of problems {P*} converges to problem P as sample size tends
to infinity, it is meaningful to apply the optimality steps several times
at one iteration, as it may obtain a point close to an optimal solution of
the estimated problem P* at each iteration. Moreover, if we can obtain
random samples besides the sample point z*, the convergence speed
of §(D*, D) with random samples is faster than the convergence speed
of §(D*, D), obtained by using the proposed algorithm, since random

samples assure the consistency of estimator B.

7.5. Computational Results

We have conducted numerical experiments with the proposed al-
gorithm for the test problem. The unknown coefficients in A and b
are chosen at random from the sample space uniformly distributed
on {0,1,...,49} and {—50,—51,...,—99}, respectively. The objective
function is ¢’z = xy + 23 + -+ + x,. Let an optimal solution of the
problem with the true values of coefficients be previously calculated and
the existence ascertained. Let the observations of Az* + b include the
random error which has an independent normal distribution A/(0, 5)

We have solved the problem, where m = 40 and n = 20, twenty
times by applying the proposed algorithm with v = 107¢. Figure 7.2
shows the average difference between ¢'z* and ¢'z*, which implies that
the convergence mainly depends on the affine scaling method for &
less than about 60 and, after that, z* is considered to be close to a
point that gives an optimal value of problem P* and the convergence

mainly depends on the accuracy of estimates. The convergence speed
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Figure 7.2. The average difference between ¢'z* and ¢'z*.

for k sufficiently large is about O(k~°#). An optimal solution with
a tolerance level v necessitates the estimates with an accuracy v, i.e.,
|B — B¥|| < v. Therefore, when the affine scaling method (optimality
step) gives a point sufficiently close to an optimal solution of the es-
timated problem, the number of iterations of the proposed algorithm

mainly depends upon the consistency of the estimators.

7.6. Conclusion

We have introduced in this chapter a new stochastic approach
based on the stochastic improvement method for a stochastic linear
programming problem. This is a new statistical approach to stochastic
programming. As an example of this approach, the linear programming
problem with linear constraints that contain unknown coefficients is

considered. The unknown coefficients are estimated by means of a
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multivariate regression analysis based on the observations with random
noise.

In the confidence region method discussed in Chapter 2 through
Chapter 4, we estimate the unknown coefficients by their confidence
regions under a certain significance level. The resulting deterministic
problems are solved by using several solution procedures proposed in
the previous chapters. If we receive new statistical data for improving
the accuracy of the estimates of unknown coefficients, we must recon-
struct the confidence region and solve the resulting new problem.

Contrary to this, in the stochastic improvement method, we can
update the estimates of unknown coefficients whenever we receive new
statistical data, and then improve the current solution in an adaptive
way. The point sequence {z;} generated by the algorithm SIM con-
verges to a point that gives the optimal value of problem P with the
true values of coefficients with probability one, which is proven from the
fact that the consistency of maximum likelihood estimator of unknown
coefficients assures that the distance between the true feasible region
and the estimated feasible region converges to zero with probability one
as sample size tends to infinity. The stochastic improvement consists of
the feasibility step that obtains a point feasible to the updated feasible
region by projecting an infeasible point to the feasible region and the
optimality step that obtains an improved point by applying the affine
scaling method. The proposed algorithm alternates between these two
steps.

The algorithm SIM utilizes only the mean of estimator of unknown

coefficients. Therefore, it is a subject of further research to develop a
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model and a solution algorithm that makes use of higher moments of
estimators, e.g., variance. This will enable us to estimate the confi-
dence region of the constraints that contain unknown coefficients with
an appropriate significance level, which is also viewed as the chance
constraint Pr( Az + b < 0) > a with a significance level a. It is neces-
sary and worthwhile to investigate the stochastic improvement method
for the estimated problem by the confidence region, which is a gener-

alization of our proposed method.
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Chapter 8.

CONCLUSION

In this dissertation, we have discussed statistical approaches for
stochastic programming. Various algorithms have been proposed for
several types of stochastic programming problems. Here we summarize
the obtained results and discuss some directions of future research.

In Chapter 2 through Chapter 4, we have proposed algorithms
based on the confidence region method for stochastic linear program-
ming problems. The unknown coefficients that describe the problem
are estimated from available information and then their confidence re-
gions are derived under a given significance level. The confidence re-
gion method provides a minimax solution that optimizes the objective
function by assuming the worst case behavior of parameters in their
confidence regions. In other words, a minimax solution by the confi-
dence region method minimizes the maximal possible damage in deci-
sion making,.

Chapter 2 has discussed the confidence region method for two types

of stochastic linear programming problems, which are dual each other
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but have different stochasticity. The first problem, which has a nor-
mally distributed random right-hand side with unknown distribution
parameters, has been formulated as a minimax model with a quadratic
recourse. An optimal solution of the problem with true parameters
is obtained from the asymptotic optimal solution of the quadratic re-
course model with sufficiently large sample size.

Chapter 3 has discussed the stochastic linear programming prob-
lem with estimated constraints. When the unknown coefficients in the
linear constraints are estimated by means of multiple regression anal-
ysis, the confidence regions of linear constraints form the intersection
of reverse convex regions. We have proposed solution algorithms that
use a cutting plane method for reverse convex programming. We have
shown the finite convergence of the cutting plane algorithm for the lin-
ear programming problem with one unknown linear constraint and the
convergence of the modified cutting plane algorithm to an optimal so-
lution for the linear programming problem with several unknown linear
constraints.

Chapter 4 has discussed the confidence region method for the P-
model of the stochastic linear knapsack problem that contains unknown
distribution parameters. We have proposed a polynomial time algo-
rithm by reducing it to the problem with known distribution parame-
ters.

In the practical decision making under uncertainty, it is necessary
and useful to reduce uncertainty by making use of statistical infor-
mation. In this sense, the confidence region method is an interesting

approach to stochastic programming. It is important for us to develop
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confidence region methods for other types of stochastic programming
problems.

Chapter 5 and Chapter 6 have dealt with a probability maximizing
model of the stochastic linear knapsack problem and its application to
a portfolio selection problem. In Chapter 5, we have discussed a proba-
bility maximizing model of the stochastic linear knapsack problem with
normally distributed random cost coefficients. The optimality condi-
tion was derived for an optimal solution of the introduced auxiliary
problem. The relationship between an optimal solution and an effi-
cient frontier of the feasible region was clarified in the mean variance
framework, as a result of the uniqueness of optimal parameter value
introduced in the auxiliary problem.

Chapter 6 has developed efficient algorithms for the stochastic lin-
ear knapsack problem, which is found in the portfolio selection prob-
lems. The block diagonal model has been solved by decomposing it
into subproblems and merging them by ranking method. The problem
of index models, which are based on the CAPM or the APT, has been
solved in polynomial time by introducing the parameters corresponding
to the indices.

Since the stock market deals with more than 1000 investments,
it necessitates the development of more efficient algorithms to get an
optimal portfolio for the problem of multi index model. As it is in gen-
eral difficult to predict with certainty the rate of return on investment,
estimating the rate of return on investment by the confidence region
under a given significance level is interesting. Moreover, since there are

different models of portfolio selection problems, e.g. E-V model and
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P-model, it is worthwhile to clarify their relation to the probability
maximizing model.

Chapter 7 has discussed a stochastic improvement method for sto-
chastic linear programming, which improves alternately the estimates
of unknown parameters and the current solution of the estimated prob-
lem. We have proposed a solution algorithm, which alternates between
the feasibility step and the optimality step. The point sequence gen-
erated by the proposed algorithm converges to a point that gives the
optimal value with probability one. We consider that a future research
direction of the stochastic improvement method is the development of
a model and its solution algorithm that make use of higher moments
of estimator, thereby enabling us to deal with the confidence region
of unknown constraints. The stochastic improvement method may be
developed in order to solve the stochastic model without transforming
into the equivalent deterministic model. It is also interesting to apply
the stochastic improvement method to the problem with ever-changing
data like time series data.

Many of the real life problems have to face with uncertainty, for
which prediction or estimation has to be done from enormous statistical
data. It is therefore important to investigate statistical approaches for
the decision problems under uncertainty. The author hopes that the
works contained in this dissertation will contribute to the development

of statistical approaches for stochastic programming.
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