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Preface 

l\lany optimization probl<'ms arisen in pradical decision making 

are formulated in the framrwork of mathrmatical programming. In 

the conventional deterministic models of math<'matical programming, 

it is assumed that we are giv<'n precise information about the objec­

tive function and the constraints. However, wh<>n we mak<' a decision 

in practice, it is necessary to take various constraints and assump­

tions as well as uncertainty into consideration. Since we seldom know 

such information for certain, we have to make a decision under un­

certainty. Stochastic programming is a fiE>ld of mathematical methods 

that deals with the optimization problems und<'r uncertainty expressed 

by stochastic fluctuation. Optimal decisions an'' to be made on the 

basis of certain criteria, which tak<' into account not only optimization 

of objectiv<' but also stability of an optimal d<'cision against stochastic 

fluctuation. The application areas of stochastic programming include 

many fields, e.g., production, inventory, agriculture, financ<' and mar­

keting, etc., all of \\"hich involv<' inevitable uncertainty in formulating 

the problem and estimating tlw component of the structur<'d model 

based on given information. 

The main theme of this dissertation is to explore statistical ap­

proaches in stochastic programming. There are three types of uncer-



t ainty that stochastic programming deals with; the first type of uncer­

tainty com<"s from the random ''ariables with known probability dis­

tribution, the second type of uncertainty also comes from the random 

variables but with unknown probability distribution, and the third type 

of uncertainty comes from the codfkients that arc unknown or can not 

b<' known for certain. It is important in cas<' of the second and third 

uncertainties to estimate or to predict the unknown distribution and 

the uncertain coefficients from given information by using statistical 

techniques. Then the estimates of unknown parameters should be in­

corporated into the optimization problem together with a significance 

level of the estimation. In this sense, stochastic programming requires 

statistical tcdmiqu<'s to estimate the unknown param<'l<'rs with \111 

specified uncertainty. The role of statistical techniques is as essential 

as that of optimization techniques. 

This dissertation bf'gins with the confid<'nce regwn method for 

stochastic programming. It provides a game theoretic minimax model. 

The constraint forc<"s the unknown coefficients to exist in their confi­

dence regions estimated under a certain significance level. A minimax 

solution is then constructed by optimizing the objective function under 

the assumption that thC' unknown parameters take the worst-case val­

ues among the estimated confiden<'e region. As an important special 

case of this model, we consider two typical stochastic linear program­

ming problf'ms. One has a random right-hand side which arc normally 

distributed with unknown distribution parameters, and thr other has 

unknown rost coefficiC'nts which ar(> estimated in terms of the confidence 

region by means of linear regression analysis. The former problem docs 
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not become a convex programming problem but can be solved by de­

composing it systematically into se,·eral cases. The> later problem is 

solved. by proposed algorithm, which alternately solws two pwhl<"ms. 

one is solved for making an optimal dC'c·ision and t hf' other is sol v<'d for 

computing th<> realizabl<> worst-case value~ of the unknown co<'fficicnts. 

Next, this dissertation investigates the minimax model of th<' confi­

dence region nH'thod for stochastic linear programming problc•ms that 

contain unknov-:n parameters in the <'<>C'fficients matrix. Th<· litwar 

constraints with unknown coefficients, which arc l'<'stricted to the con­

fidence regions, form reverse convex constraints. This type of linear 

programming problem is a r<'''erse com·<•x programming problem. which 

may have a disjunctive' feasible region. \VC' deriv<' an efficient cutting 

plane algorithm that gin's an optimal solution in a finite number of 

itC'rations, assuming that only one linear constraint has unknown co­

effici<'nts. ThC' ex t<'nsion to the problc'm w her<' more• than m H' linear 

coustraint ha~ unknown codficients is also mentiom•cl. 

One of the typical problems, for which the minimax model due to 

th<' confidence' region method can h<' eff<'ctively solved, is a g<'n<'ralized 

P-model of the stochastic linear knapsack probl<'lll that contains Wl­

known distribution parameters. v\'e propose a solution algorithm for 

th<· problem and show that a minimax solution is found in polynomial 

time. 

Finance problem has recently b<'come a hot field of operations re­

search. As an important application of stochastic programming includ­

ing the parameter estimation, a portfolio ~election problem is discussed 

in this dissertation. A portfolio selection probl<"m give's the investor an 

Jll 



optimal investment strategy to rcce1ve a large return under a small 

risk. The rate of return on investment is predicted from the historical 

data based on the market model. A single indcx model is the simplest 

market model among portfolio selection problems, but has been most 

frequently uscd in practice. The coefficients of a single index modcl 

arc estimated by means of regression analysis. We formulate the port­

folio selection problem as a stochastic linear knapsack programming 

problem. The probability maximizing model of stochastic linear knap­

sack problem is derived and we propose efficient algorithms to solve the 

problems with several types of random variablcs, e.g., block diagonally 

correlated random variables, a single index model and a multi index 

model. 

Finally, this dissertation inv<•stigates a stochastic improvement 

method. Since, in the confidence region method, we solve the prob 

lC'm that is built by using the estimates obtainrd from the currently 

available information, we should rebuild the problem wlwncver new 

information b<'comes available. \Yhile. in thc stochastic improvement 

mC'thod, we update thc estimates of unknown parameters as well as the 

solution whenever new statistical data are delivered. Vve believe that 

this statistical approach is important in stochastic programming. 

The statistical approaches proposed in this dissertation for stochas­

tic programming extend the territory of mathematical programming. 

\Ve hope for the de\·elopment of th<' statistical approaches for stochas­

tic programming to a dynamic technique and/or a sequential technique 

like a stochastic approximation procedure. 

IV 
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Chapter 1. 

INTRODUCTION 

1.1. Purpose of the Dissertation and Historical 

Background 

Statistical approaches in stochastic programming are discussed in 

this dissertation. Stochastic programming has been developed as prob­

abilistic generalization of mathematical programming and has become 

an important field of mathematical programming from the view point of 

theory as well as practice. For many problems encountered in practice, 

optimal decisions are usually made under some uncertainties, because 

practical problems are subject to stochastic fluctuation and necessary 

information for decision making are not always available for certain. In 

most of practical cases, the stochastic fluctuation has some probability 

distributions, but the exact forms of distributions are not available. 

Therefore, it is important to identify tlw distribution from historical 

and/or experimental obscrvations. The optimization problems with 

unknown or uncertain parameters necessitate statistical approaches to 

evaluate them. 

T he main purpose of this dissertation is to provide a new class of 

statistical approaches in stochastic programming and to consider some 
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related applications. Some methods to be characterized as statistical 

approaches have recently been proposed [C3, D4]. In these methods, 

model formulation is affected by not only the optimization techniques 

to be solved but also how to treat th<' statistical data affect the model 

building. Many statisti\al methods havE' been studied [M2, R2] to 

process the statistical data. For exampl<', a linear regression analysis is 

one of the most useful methods for estimating the unknown parameters 

of linear models and the r<'sults of analysis have desirable properties to 

be incorporated into optimization problems. 

This dissertation focuses on a confidence region method and a sto­

chastic improvement method, both of which are important statistical 

approaches in stochastic programming. The confidence region method 

provides a game theoretic minimax problem, which gives a minimax so 

lution under the assumption that unknown parameters take the worst­

case behavior among the confidence region under a certain significance 

leYel. The stochastic improvement method gives a point sequence that 

converges to an optimal solution of the stochastic programming prob­

lem and is improved when the unknown parameters in the problem 

are updated as a result of additional statistical data. As a typical ex 

ample of stochastic programming including parameter estimation, we 

consider a stochastic linear knapsack problem with random cost co­

efficients, which arises as a mat hem a tical formulation of a portfolio 

selection problem. In a portfolio selection problem, the rate of re­

turn on investment is viewed as a random variable and is expressed 

as a linC'ar function of some indices based on the market model. This 

dissertation propose's solution algorithms for several types of portfolio 
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selection problems fonnulated as a probability maximizing model of a 

stochastic linear knapsack problem. 

It is also emphasized here that thes<' statistical approaches for 

stochastic programming with unknown paranwtf'rS can bc> applif'd to 

many other practical optimi1mtion problems. 

1.2. Brief Review of Stochastic Programming 

This s<'ction reviews th<' development of stochastic programming 

related to the subjects of this dissertation. Stochastic programming 

deals with the optimization problem that invoh·es stochastic fluctua­

tions. Application areas of ~tochastic programming have· been widen 

to a great extent, e.g., agriculture [Fl, Nl], water storage (P2], trans­

portation [Ql], inventory [D5], finance and marketing [D5, 113, S1], 

production, engineering and others. 

In 1941, Tintner (T2] made distinction l><'tween subjective• risk and 

subjective uncertainty. The former implic•s the· random variabl<' which 

has a known probability distribution of anticipation, while• th<' latter 

implies the random Yariable which has only a priori probability of the 

probability distributions themselves. Subjective risk led to the main 

body of stochastic programming, and recently subjective uncertainty 

has been treated in stochastic programming by statistical approach. 

The epoch making paper by Dantzig [D1} in 1955 is motivated 

by the recognition that a method for the classical linear programs is 

not appropriate to formulate the problems in many practical situations. 

Since the quantities of activiti<'s in practical problems havc> uncertainty, 
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the classical programming models based on the fixed kuown data should 

be extended to the stochastic programming modds. Thcr<' ar<' two 

situations in stochastic programming. which arc' call<'d the .. wait-and­

sec" situation and the "here-and-now'' situation according to :\Iadansky 

(t\11). Tlw form<'r situation requires to wait until an obsernttion on the 

random variable is actually made and then to soh·<' tlw nonstochastic 

problem. In contrast to this, the latter situation requires to solve th<' 

problem before observing the realization of tl1<' random variable. This 

diss<'rtation belongs to the "here-and-now" situation. 

Giv<' the known probability space (n, A, P), where n is a set of 

possible environments, A is a set of possible <'vents and P is a prob­

ability measure. \Ve consider the following optimization problem on 

(Q,A, P): 

( 1.1) 
Minimize 1(w) = go(x,w). 
subject to 9i(x,w) ~ 0, i = 1, 2, · · · , m, 

X EX C Rn, 

where X is a given subset of Rn and g, : Rn X n - (-oo, +oo), 

i = 0, 1, ... , m are real-valued random functions. The environment 

variable w is an element of n, which is introduced to determine the en­

vironment of the optimization problem prescribed under uncertainty. 

The "wait-and-see" situation leads to the distribution problem to 

be described as follows. When the environment is complet<'ly known 

before we solve the problem, we can solve the deterministic problem by 

assigning the known values to the variables w. However, different envi­

ronments w 1 and w2 may give different optimal decisions x 1 = x*(w1 ) 

and x2 = :r*(w2 ), respectively, and we want to know the behavior of 
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an optimal decision under all possible values of the environment vari­

ables. Typical questions in the wait-and-see situation arc: " What is 

the exp<'ctation or 95% percentile of the optimal value'?", "\\'hat is the 

distribution of this optimal value?'' and so on. These problems are 

called distribution problems. Due to the difficulty of an analysis of 

these problems for general stochastic programming problems, the fol­

lowing stochastic linear programming problem ( 1.2) has bern studied 

intensively as a special case of stochastic programming. 

( 1.2) 

Minimize 
subject to 

1 = c(w)'x, 
A(w)x = b(w), 
X 2::_ 0. 

When tlw optimal basis does not change for all w E n, the distribution 

of the optima value 1 has been considered by Babbar (B1) and Wagn<'r 

[\V1]. Bereanu (B6) derives the cumulative function and the mean value 

of the optimal value, when all coefficients are stochastic. Kall surveys 

the distribution problem for stochastic linear programming in his book 

[Kl). 

In th<' "here-and-now" situation, there are many probabilistic clef 

initions of feasibility; x E X satisfies the constraints of problem (1.1) 

with a certain significance level a E ( 0, 1): 

( 1.3) Pr{wlgi(:r, w) ~ 0, i = 1, 2, ... , m} 2:: a, 

or in the averagr: 

( 1.4) E{g,{x,w)} ~ 0, i = 1,2, ... ,711, 

and ot h<'rs. Similar definitions are also applied to optimality. Many 

concrete fom1t1lations of stochastic programming may be reduced to 
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the general version of the stochastic programming problem over the 

probability space (n, A , P): 

( 1.5) 

where 

{1.6) 

Minimize Fo(:r) = E{/o(;r,w)}, 

= j fo(.r,w)P(dw), 

subject to F,(.r) = E{j,(.r,w)}, 

= j j,(.r,w)P(dw) ~ 0, 1 = 1.2 .... ,m, 

X EX c R 11
' 

fo :Rn X n ~ R u { -oo, +oo}' 

J, :R11 X n ~ R, i = 1.2, ... ,m, 

and the expectation operator E is assumed to be well-defined for e\'­

ery .r E X. The functions /i, i = 0, 1, ... , m, COIT<'spond to 9i, 

i = 0, 1, ... ,m, respecti\'ely in (1.1), and are introduced to express 

the several probabilistic definitions of feasibil ity and optimality, which 

are to be noted later. 

Beale [B3) and Dantzig [D1] independently considered the two­

stage problem in 1955. This is categorized as the ''here-and-now" sit­

uation. In the first stage, we han' to make a decision before the real­

izations of random variables take place. Since several constraints may 

be ,·iolatC'd by the realized \'alues of random \'ariables, an adjustment 

of the violated constraints is made in the second stage. In th<' case 

of stochastic problem ( 1.1 ), the cost requirrd for an adjustment of the 

violat<'d constraints is considered to be proportional to the amount of 

violation. The adjustment cost is added to the objectivr function as a 

penalty, that is, 

m 

( 1. 7) fo(.r.,w) = 9o(.r,w) + L q, · max[O.g,{l',w)), 
t=l 
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whrre q,, i = 1, 2, · · · . m, are positive w<'ight corffkients. 

For stochastic linear programming problem (1.2), 13<'al<' [B3] and 

Dru1tzig [D1] formulatr the two-stage problem: 

( 1.8) 

Minimir.c c'x + E(minq'y), 
y 

subject to A.r + y = b(w ), 
:r 2: 0, y 2: 0, 

where only b is assumed to be stochastic. The deterministic conv<'X 

problem equi,·alent to ( 1.8) is deriv<>d by Wch [\\'3]. E\'crett aud 

Ziemba [EG) <md Walkup and \:Vets [W2] consider more P,<'n<'ral prob­

lem: 

( 1.9) 

where 

(1.10) 

Minimize 
subject to 

C
1
1' + E[Q(.r,w )], 

:r 2: 0, 

Q(.r,w) = min{q(w)'y I H'(w)y = b(w)- A(w).r, y 2: 0}. 
!IE R1 

This problem is characterize><! as "stochastic programming with re­

course" by \\'alkup and \\7ets. \Ve call the vc>rtor y E R 1 and the 

matrix l-F E R 71 x R1 a recourse variable and a r<'course matrix, respec­

tively. The recourse action y is chosen so as to minimize the penalty 

cost with respect to a decision variable :r and a r<'aliz<'d environment w. 

An optimal decision should minimize the total costs, which are the sum 

of the net cost c' x and the cxpcctation of the cost for an adjustrncnt 

of violation E[Q(x,w)J. \\7hen q and tr are nonstochastic, (1.9) is said 

to he a fix<'d recourse probl<'m. When {yiWy = z, y 2: 0} ¥= </> for 

all z E R 11
, ll ' is said to be a complete recourse matrix. 
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The simple r<>course problem giYen as follows is sun·cyed by Ziemba 

[Z1] and Wets [W4]. 

(1.11) 

where 

( 1.12) 

t>. Iinimize c' .r + E[ min (p' y+ + q'y- )]. 
y+,y-

subject to A(w):r + y+- y- = b(w), 
:c,y+,y- 2:0. 

y+ = max[O, -A(w).r + b(w)], 

y- = max[O,A(w).~- b(w)]. 

The above two-stage recourse problems do not take into account the 

concept of time. However, the multi-stage recourse problems arisen 

in dynamic models are also consider<'d. The £-shaped method for the 

two-stage stochastic linear problems given by \'an Slyke and \Yets [\'2] 

is extended to the multi-stage recourse probl<?ms by Birge [BG]. The 

£-shaped method is an outer linearization decomposition approach for 

the L-shap<.>d lin<'cu· programs which are aris<'n in stochastic lincru· pro­

gramming with recourse. 

Charncs and Cooper [C1] introduce "chance constraints", which 

is an extension of the notion of constraints from the vi<'w point of the 

"here-and-now" situation. It is different from the two-stag<' probl<.>m in 

the manner of treatment of the violation of stochastic constraints. In 

the two-stage problem, the constraints should be always satisfied and 

therefore the amount of violation incurred in the first stage is adjusted 

in the second stage. On the other hand, it is not always required to 

satisfy the constraints for the chance constrained approach. The con­

straints should bc satisfied with a given probability, that is, the chance 
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constraints watch only the probability that the constraints are violated, 

rather than the amount of violation. For stochastic problem ( 1.1 ), the 

chance constraints are giYen by 

( 1.13) Pr(w I 9t(:c,w) ~ 0) 2: <l'f, l = 1, 2, ... , m, 

or 

(1.14) Pr(w I 9t(x,w) ~ 0, l = 1, 2 .... , m) 2: a, 

in the form of joint probability, wher<.> a, a 1 , ... , C\'m E (0, 1) are the 

satisficing levels of chance constraints, which are given in advance. In 

th<.> formulation of (1.5), we have that (1.13) and (1.14) are expressed 

as 

(1.15) { 
a- 1 

J, ( .r, w) = (\ 
if 9i(x,w) ~ 0 

ot herwisc, 

fori = 1, 2, ... , m, and 

(1.16) { 

Q -1 
ft(:r.w) = a 

respectively. 

if 9t(x,w)~O. 1=1,2,··· ,m 

oth<.>rwise, 

The chance constraints can be transformed into the equivalent d<>­

terministic constraints. However, the transformation is usually difficult 

and the resulting nonlinear constraints are intra<"table in the sense of 

computation. Even if the original constraints are defined by linear 

functions, it is not easy to carry out the transformation to the deter­

ministic problem unless the random variable has a certain special type 

of distribution like normal. Prekopa [P1] applies a logarithmic concave 

9 



probability m<>asure to stochastic programming and shows that the fea­

sible r<'gion of chance constraints is c01wex if the distribution is given 

by th<' logarithmic concave probability measure. 

The stochastic objective function of the stochastic programming 

problem is handled by its certainty equivalent in the framework of de­

terministic models. For the following stochastic lin<'ar programming 

problem, 

(1.17) 
Minimize 
subject to 

c(w )'x, 
A(w).-z: ~ b(w), 
X~ 0. 

Tht"r<' arc four types of certainty equivalent F(.r ). 

(i) E-mod<'l [C2]: 

(1.18) F(x) = E[c(w)'.r]. 

The E-modcl minimizes the expectation of the obj<'ctive value. 

This is a classical model that can handle the random cost coeffi­

cients [D 1]. However, it is argued that the consideration on the 

variance may also be necessary, since it may not be dC'sirable to 

optimize the <'Xpected value when its variance is very large. This 

consid<'ration leads to the next model. 

(ii) V-model [C2]: 

(1.19) F(.r) = F[c(w)'.1·]. 

The V model minimizes the variance of the objective' value. It 

is also possible to consider both expectation and varianc<'. The 
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EV-model has an objective function incorporating two conflicting 

objectives, such as 

( 1.20) 
E[c(w)'x] 
V[c(w)'x]' 

E[c(w)'x]- p· 1'[c(w)'.r] 

and so on, where pis a positive weight coefficient on the variance. 

(iii) Probability maximizing model [C2]: 

(1.21) F(x) = Pr(c(w)'x ~f). 

The probability maximizing model maximizes tl1<' probability that 

c(w )' :r does not exceed a given goal value f. If the joint distribu­

tion of the components Ci(w) of c is normal with th<' m<'rul 11 and 

the variance covariance matrix V, the probability of c( w )
1 
r not 

exceeding f is 

(1.22) 
I f- IL'.r 

Pr(c(w) x ~f)= 4>( ~ ), 
vx'Yl· 

where 4>(-) is the distribution function of N(O, 1 }, 1.c., standard 

normal distribution with the mean 0 and the varianc<' 1. It is 

known that the maximization of this probability is equivalent to 

the maximization of the fractional function (f- JL
1x)/v.r'V:r;. 

(iv) P-modcl [K3]: 

(1.23) F(x) = j, Pr(c(w)'x ~f)= l'V. 

Kataoka [K3] considers to minimize f subject to Pr(c(w)':r ~f)= 

n for fixed n. Assuming again that c has the normal distribution, 

the chanc<' constraint is transformed into 

( 1.24} 

11 



where K = q>- 1(a) If > ~ th r.· 0 d · ~ · a 
2

' en J\.~ > an f IS convex. Ishii. 

Nishida and Nanbu [15] generalize the P-modcl into the following 

model by considering the satisficing level a as a decision variabl<> 
' 

too. 

(1.25) 

Minimize 
subject to 

f- AO, 
Pr(c(w)'x ~f)= a, 
A(w).r:::; b(w), 
X~ 0, 

where A is a positive weight coefficient on o. 

In the probability maximizing model, the goal value that a decision 

maker wants to attain is specified in advance and the probability that 

his goal value is attained is maximized. On the other hand, in th<> 

P-model, the probability that a decision maker's objective is attained 

is fixed and then his goal value is minimized. 

Stochastic programming is closely connected with a game theory 

[S2] and an information theory [Rl]. A game theoretic situation nat­

urally arises in applying stochastic programming. A two-person zero 

sum stochastic game can be constructed with problem (1.2). Player 1 

is the decision maker who chooses a strategy vector :r E ... vt where 

M is a subset of R+. Player 2 is nature, i.<> .. stochastic fluctuation 
' 

who chooses a strategy vector z E .N, where z = (A(w),b(w),c(w)) 

and .N is a subset corresponding to the feasible r<'gion of variation in 

{(A(w),b(w),c(w));w En} which is given iu advance. The game IS 

denoted by G = ( M, .N; g) with the following payoff function g: 

rn 

(1.26) g(x,z) = c(w)'x + LP• · max[O,A1(w)'.r- b1(w)]. 
i=l 
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The mixed strategies of the two players are denoted by F and H, r<'­

spectively, where F is a s<'t of distributions F,. of v<>ctor .r and H is a 

set of distributions H: of vector z . By the minimax principle, th<-' value 

of game is given by 

( 1.27) r..Iaximizc r..Iini mize j g( u. l' )dFr( 11 )d H: ( 11) 
FrEf II Ell .\Ax.\' 

= { g( u, v )dF;( u)dH;( u) 
JMx /11 

for the optimum strategies F; E F and H; E if ~ H, where if is 

a subset of H representing the restriction on the choice of the pure 

strategies of two players. 

The statistical approach in stochastic programming is related to an 

information theory. If several parameters describing a model of math­

ematical programming ar<' unknown, we are faced with the problem of 

estimating such parameters based on limited information and with the 

problem of updating them when additional information becomes avail­

able. The unknown parameters may have a priori distribution, and 

the observations provide posterior information. The values of informa­

tion in this context, which is first considered by Raiffa and Schlaifer 

[Rl), are introduced by Bracken and Soland [B8}, to stochastic pro 

gramming. They consider two types of values of information, i.e., the 

expected value of perfect information (EVPI) and the expected value 

of sample information (EVSI). The additional sample information re­

duces the uncertainty of the parameters, while the perfect information 

gives the complete knowledge of the parameters. The EVPI is consid­

ered as the upper bound of the value of information, representing what 

13 



would bc paid for the perfect information. The EVSI is used to decide 

whcther one more sampling of information is valuable or not, compar­

ing it with thc sampling cost. The EVSI approaches to th<' EVPI as 

sample size incrcascs and the optimal sample size n • is dccided by 

( 1.28) n* = rnin[ni(EVSI)n - '"'( · n ~ 0), 

where '"'f is the sampling cost for one observation [J1] and (EVSI) 11 1s 

the EVSI with n samples. 

Anothcr statistical approach is a game theoretic mmuna.x one. 

Consider thc cas<' in which the distribution of some stochastic com­

pon<'nts is not known for certain, that is, the distribution parameters 

arc unknown or it is only known that the distribution belongs to a 

certain class. The minimax approach defines an optimal decision un­

der the most pessimistic situation, and then the resulting problem is 

fonnulated as follows. 

( 1.29) Maximize Minimize EF[fo(.r,w)- if>(.r.w)]. 
rEX FEJ 

where F is a probability distribution of stochastic components, J is a 

given class of distributions, X is a nonempty closed subset of R 11 and 

<P(x,w) is a penalty cost required to adjust the infeasibility with dis­

tribution F in class J. This problem is considered by Dupacova [D4). 

When the unknown distribution parameters() of the stochastic compo­

nents are estimated and their confidence region Sa are obtained with 

a significance level a, the possible distribution F in problem (1.29) 

is restricted to F E Jo ~ J. where Jo = J( ·I() E S0 ). Stability of 
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the optimal solutions of stochastic linear programming problems for­

mulated along this line is studied by Dupacova [D3] for the simplt> 

recourse prohlt>m with a random right-hand side. 

vVhen stochastic components appear as statistical time series data 

in stochastic linear programming and the current components arc pre­

dicted using the previous observations, Cipra (C3] has discussed the 

statistical approach in terms of prediction regions. Then the linear 

programming problem with a random right-hand side is solved using 

the method of parametric programming. He defines an a-optimal de­

cision and gives tlw ( 1 - a )-prediction interval of objective value, in 

which the value of objective function located with probability at least 

1- a, and the ellipsoidal (1- a)-prediction region of optimal solution, 

in which the optimal solution located with probability at least 1- a. 

Th<> statistical approach in stochastic programming is useful and 

important for the cases in which we would like to use the available 

information to make an optimal decision for the problem under un­

ccrtainty and for the problem involving stochastic componcnts with 

statistical properties, e.g., the estimator based on regression analysis 

and statistical time series data. 

1.3. Outline of the Dissertation 

This dissertation consists of eight chapters, all of which are con­

cerned with statistical approach for the stochastic programming prob-

lems. 
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In Chapter 2, the confidence region method is considered for two 

types of stochastic linear programming problems. The unknown param­

eters in the problem are restricted to their confidence regions. The con­

fidence region method gives a game theoretic minimax solution which 

optimizes the objective function under the assumption that the pa­

rameters may take the worst-case values in their confidence regions 

under a given significance level. First, we consider the stochastic lin­

ear programming problem which has a normally distributed random 

right-hand side that contains unknown distribution parameters. The 

confidence region are estimated from the information of sample data. 

An solution algorithm is given for this minimax problem due to the 

confidence region method. It is also discussed how an optimal solu­

tion behaves as the number of obtained samples increases. Next the 

stochastic linear programming problem that contains unknown cost 

coefficients is considered. The unknown cost coefficients are estimated 

that they locate on the ellipsoidal confidence region under a certain 

significance level. A proposed algorithm finds an optimal solution after 

a finite number of iterations by solving alternately two problems, one is 

to find an optimal decision and the other is to determine the realizable 

worst-case values of the unknown cost coefficients. 

Chapter 3 discusses the confidence region method for the stochas­

tic linear programming problem with a random coefficients matrix. The 

linear constraint whose unknown parameters are restricted to the confi­

dence region forms the reverse convex feasible region. A Tuy's cutting 

plane method (H3,Tl] is known as an effective procedure for reverse 

convex programming, but its finite convergence is not proved. This 
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dissertation gives a cutting plane algorithm for the problem that only 

one constraint has unknown parameters. It is a modification of the 

Tuy's algorithm, but finds an optimal solution after a finite number of 

iterations. The possibility of expansion of this algorithm to the problem 

that several constraints have unknown parameters is also discussed. 

Chapter 4 treats the confidence region method for a generalized P ­

model of the stochastic linear knapsack problem. The cost coefficients 

are assumed to be normally distributed random variables with unknown 

means and variances, which are to be estimated by their confidence 

reg10ns. It is shown that this problem can be transfornwd into the 

problem with a known distribution. A proposed algorithm finds an 

optimal solution in polynomial computational time. 

Chapter 5 and Chapter 6 discuss a portfolio selection problem as 

an application of the stochastic linear knapsack problem. The portfolio 

selection probl<:>m is a mathematical finance problem that consider an 

optimal allocation of a given amount of money among several invest­

ments in order to receive a big return under a small risk. A probabil­

ity maximizing model of the stochastic linear knapsack problem with 

random cost coefficients is considered in Chapter 5. This problem is 

transformed into the equivalent deterministic quadratic programming 

problem by introducing two positive parameters. An optimal portfolio 

on the efficient frontier is discussed in the mean variance framework, 

and several properties of an optimal portfolio are shown as the prepa­

ration for the next chapter. 

Chapter 6 discusses two types of the portfolio selection problems. 

First this dissertation considers the case in which the variance covari-, 

ance matrix of random cost coefficients is block diagonal. The problem 
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is decomposed into subproblems corresponding to the blocks and an 

optimal allocation to each block is determined according to the gen­

eralized Zipkin's (Z2] ranking properties. A proposed algorithm finds 

an optimal solution in reasonable computational time. Next, this dis­

sertation considers the case in which the random cost coefficients are 

expressed by the index models. In a single index model of a portfolio 

selection problem, the rate of return on investment is expressed as a 

linear function of the common index, where information on the correla­

tion between possible investments arc condensed to a linear regression 

model with one explanation factor. The coefficients in a linear regres­

sion model need be estimated from historical data. This dissertation 

gives an effective algorithm to find an optimal portfolio for the prob­

lem of a single index model. A multi index model introduces other 

common indices for capturing additional information. A modified al­

gorithm is also developed to solve the problem of a multi index model 

by introducing several parameters corresponding to the indices. 

Chapter 7 discusses a stochastic improvement method for the linear 

programming problem that the linear constraints have unknown coef­

ficients. The unknown coefficients are estimated using a multi-variate 

regression analysis. Upon receiving new statistical data, this method 

improves the solution in real time by making use of a descent method 

in an adaptive way. It is shown that this iteration of improvements 

finds an optimal solution with probability one, based on the fact that 

the consistency of the estimator assures that the estimated problem 

converges to the problem with true parameters with probability one. 

18 

Finally, Chapter 8 summarizes the re:-;ults obtained in this disser­

tation and discusses further directions of developments for statistical 

approaches in stochastic programming. 
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Chapter 2. 

A CONFIDENCE REGION METHOD 
FOR STOCHASTIC 

LINEAR PROGRAMMING 

2.1. Introduction 

This chapter discusses the confidence region method for two typ<>s 

of stochastic linear programming problems that contain unknown pa­

rameters. One is the problem with a random right-hand side and the 

other is the problem with a random objective function. In both cases, 

random components are induced by noisy observations for estimation 

of the unknown parameters. The confidence region method gives a 

game theoretic minimax solution, where the unknown parameters arc 

restricted to their confidence regions and a minimax solution optimizes 

the objective function considering the worst-case behavior of parame­

ters with a given significance level. 

Consider the following stochastic optimi;,ation problem on thC' 

probability space (n, A, P): 

Maximize E{fo(x,w)}, 
SP: subject to E{f,(x,w)} ~ 0, 1 = 1. 2, ... , m, 

:r E X c Rn , w E n, 
where X is a subset of Rn and /o, /i, i = 1, 2, ... , m, are extended 

real-valued functions. Let ~ denote a class of distribution and let the 
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parameters () of distribution F E ~ be unknown. Then a mmtmax 

model due to the confidence region method is formulated as 

(2.1) EF(Jo(x,w)- </>(x,w)] Maximize Minimize 
xEX FE~o~~ 

where </>(x,w) is a penalty cost for adjusting the infeasibility. Given 

the confidence region SCk of unknown parameters 0, the probability 

distribution F of stochastic components is restricted to the subclass ~0 

of~ defined as follows. 

(2.2) 

In practice, for example, sizes of industrial products are normally dis­

tributed but the mean and the variance are unknown, and their life­

times are exponentially distributed but the mean is unknown. In the 

confidence region method, these unknown parameters are estimated 

and their confidence regions are obtained from observed data. This 

approach is also applicable when we need to get a desirable precision 

of estimates by additional information. 

\Ve consider the following stochastic linear programming problem. 

LP: 

n 

Maximize L CjXj, 

j=l 
n 

subject to L ai;Xj = b,, i = 1, 2, ... , m, 
;=I 
Xj;:::: 0, j = 1,2, ... ,n. 

Section 2.2 through Section 2.5 discuss the case where only b,, i = 
1, 2, ... , m, are random variables which have a certain class of distri­

bution with unknown parameters. Section 2.2 formulates the problem 
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as a recourse problem in case that b,, i = 1, 2, ... , m, are normally 

distributed random variables. The details of solution method is de­

scribed in Section 2.3. Section 2.4 clarifies asymptotic properties of the> 

problem when sample size tends to infinity. An illustrative example is 

given in Section 2.5. The dual of this problem has random variables 

in the objective function, that is, bi, i = 1, 2, ... , m, are known but c1 , 

j = 1, 2, ... , n, are unknown. Section 2.6 formulates the problem as a 

minimax model, when the unknown coefficients are observed including 

random noise. Section 2.7 describes the details of solution algorithm 

and an illustrative example. F inally, Section 2.8 gives a summary of 

Chapter 2. 

2.2. Stochastic Linear Programming with an Esti­

mated Right-hand Side 
First, we consider the following stochastic linear programmmg 

problem P 1 : 

n 

Maximize L c1 x 1 , 

J=l 
n 

subject to L aijXj = bi, i = 1, 2, .. . , m, 
j=l 
xi;:::: 0, j = 1,2, ... ,n, 

where aij and Cj for i = 1, 2, ... , m, j = 1, 2, ... , n, are known but 

b,, i = 1, 2, ... , m, are random variables which have the distribution 

function F( . ; 0) with unknown parameters 0. Let A, denote the i-th 

row of matrix A = (a,1). Now we assume that A= (At, A2, ... , Am)' 

has a full column rank. 
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Consider the following two-stage problem P2 with a "quadratic'' 

recourse. 

where w., i = 1, 2, ... , m denote positive weight on the i-th constraint 

Aix = b,, respectively. The quadratic recourse in this model is more 

tractable than the corresponding simple recourse ( 1.11) and reflects the 

situation in which the constraint infeasibility has a critical meaning, 

since the quadratic recourse is greater than simple recourse when y; is 

large. Problem P2 is equivalent to the following problem P3 : 

Maximize 
x>O 

n 

L CJX) 

J=l 

-J· · ·! t w,(A,x- t, )2dF(t1, ... , tm; 0), 
t=l 

Now unknown parameters 0 are restricted to the confidence re­

gion Scr with a given significance level a, and we propose the following 

minimax problem P 4 due to the confidence region method: 

Maximize Minimize 
x~O BESn 

L = t CjX1 - J· ··!f. w,(A,x- t,)
2 

x 
]=1 t=l 

dF(tJ, ... , fm; 0), 

Namely, we minimize the objective function added the penalty cost, 

asswning that the parameters 0 take the worst-case values in the con­

fidence region S0 . This model reflects the situation in which we should 

make a decision to minimize the maximal possible damage, if the values 

of parameters 0 are not known perfectly. 
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We mainly consider the case of a class of normal distributions. Let 

b,, i = 1, 2, ... , m, be normally and independently distributed random 

variables with unknown distribution parameters 0 = (11, u 2 
). To con­

struct the confidence region Scr of distribution parameters, we define 

the following notations. 

Jl,: mean of b,, i = 1, 2, ... , m 

u[: variance of b;, i = 1,2, ... ,m 

f1 1 : sample mean of b" i = 1, 2, ... , m 

s[: sample variance of bi, i = 1, 2, ... , m 

N: sample size 

a, {3: significance level (%) 

F
0

(m,n): a percentile of an F-distribution with (m,n) degrees of 

freedom 

x~(n): f3 percentile of a y 2-distribution with n degrees offrcedom 

~(. ): the distribution function of an m-dimensional standard 

normal distribution 

T he confidence region of mean f1 1 , i = 1, 2, ... , m, is obtained from 

the fact that the Hotelling statistics 

(2.3) 
F = N(N -m) ~ (Jl, -11,? 

m(N -1) ~ s~ 

has an F-distribution with (m, N- m) degrees of freedom. Then, under 

a significance level a, the confidence region of p.,, i = 1, 2, ... , m, is 

given by 

(2.4) L
m (J-Li- jji)2 < m(N - 1) _..:....___--'-Fcr(m, N- m). 

s2 N(N-m) 
t=J I 
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Note that the confidence region of J.li, i = 1, 2, ... , m, is an ellipsoidal 

regton. 

Due to the difficulty of solving the maximizing problem with re­

spect to the variance in problem P 4 , we relax the confidence region of 

variances as a collection of the confidence interval of each variance as­

suming that random variables are mutually independent, instead of the 

confidence region of variance covariance matrix. They are constructed 

from the fact that the statistics 

(2.5) 

has a x2-distribution with (JV- 1) degrees of freedom. Then the con­

fidence interval of each ul is given by 

(JV- 1)s~ 2 (!V- 1)s~ . 
(2 6) < <J· < • - 1 2 m 

· x~(N- 1) - ' - xi_13(JV- 1)' ·- ' ' .. ·' ' 

1 ..L 
where fJ = -

2 
am . Note that the confidence region of u~ i = 1 2 m tl I l' " l I 

is a rectangular region. 

From (2.4) and (2.6), the confidence region Sa of() is given by 

( ) 
_ { 2 ~ (J.Li- Pi)2 m(JV- 1) 

2.7 Sa - (J.L, 0" ) ~ s~ ~ !V(!V _ m) Fa(m, N- m), 

(N- 1)s~ < u~ < (JV- 1)s~ . _ } 
x~(JV -1)- '- xi-p(JV -1)' z -1,2, . .. ,m . 

The minimizing part of problem P 4 with respect to theta is given by 

(2.8) ;_:~. ;_+= t Wj (t aijX j - ti ) 

2 

dcp(t1 1 ••• 1 tm; J.L, u 2
) 

= t=l J=l 

= f Wi { (t aii x j - J.li) 
2 

+ ul } , 
t=l }=1 
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and then we obtain the following minimax problem. 

Maximize Minimize 
x;:::o (t~,u2 )ES., 

Ps : 

n 

~c ·x· 
~ J J 
j=l 

-t Wi { (t aijXj- /-li) 
2 

+ u;} · 
t= l J=l 

The minimizing part with respect to () of problem P5 is decomposed 

into the following two problems. 

PI. 5 . 

P"· 5 . 

where 

(2.9) 

Maximize 
0' 

subject to 

Maximize 
~ 

subject to 

m 

Lt = L wwl, 
i=l 

(JV - 1)s~ 2 (JV- 1)s~ . 
2 

< O" · < 
2 

( ) , z = 1, 2, ... , m, 
x

13
(JV -1) - ' - X1 -p lV -1 

L2 = t Wi (t aijXj- J.li) 
2

' 

i=l j=l 

m ( - )2 
~ J.li - J.li < ]{ 
L..-t 2 - , 

S· 
i=l I 

, m(JV- 1) 
R = )Fa(m,!V -m). 

JV(JV- m 

P roblem P~ represents the maximization with respect to variances, and 

problem P~ represents the maximization with respect to means. Since 

the maximum of problem P~ is independent of a decision variable x 

and problem P 4 is a minimization problem with respect to x, we may 

regard L
1 

as a constant in problem P 4 . Hence it is sufficient to consider 

only problem P~. 
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2.3. A Solution Method 

Here we will show several properties that are useful to solve prob­

lem P 4 induced from problem P 1 • 

LEMMA 2.1. The maximum of L2 in problem Pd is attained on the 

boundary of feasible region, and the sign of (J.Li - J.L,) is opposite to 

tllat of(Aix- Jt,), where tti is an optimal solution of problem P~. 

PROOF: It is easily shown that L2 is a convex function of Jl,, i 

1, 2, ... , nL Therefore the first part of Lemma 2.1 is clear. L2 is maxi­

mized when it holds 

(Jli-Jl,)2 = K ,2, (2.10) 
82 

i = 1,2, ... ,rn, 
I 

that is, 

(2.11) J.Li = J.Li ± s.J{i, i = 1, 2, ... , m, 
m 

where K, ~ 0 and L x; = K. Since (A,x- J.Li )2 = (A,x- Jl, =fs,K, )2 
l 

t=l 
the maximand JLi of L 2 is given as follows. 

• { ~· - s.I\, if Aix - jl, > 0, 
(2.12) /L , = J.L, if AjX- j.L, = 0, 

J.L, + s.J(i if Aix - Jli < 0, 

fori = 1, 2, ... , m. This proves the second part of Lemma 2.1. 1 

By variable transformations Zi = (J.Li - Jli )2 
/ s;, i = 1, 2, ... , m, 

problem P~ is transformed into the following problem. 
m n1 

Max~mizc L2 = L w,s;zi + 2 2:: w,si(A,:r - ft, )JZ:" 
t=l t=l 

m 

+ L wi(A,x- p,)2
, 

t=l 
m 

subject to L z, ~ 1\, 
t=l 
z, ~ 0, i = 1, 2, ... , m. 
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The Kuhn-Tucker condition for problem P6 is given by 

i = 1, 2, ... , nl, 

{2.13) 1n L z, = 1\, (iz, = 0, (., z, ~ 0, i = 1, 2, ... , m, 

where ,A and (,, i = 1, 2, ... , m, are Lagrange multipliers. From Lem­

ma 2.1, wh<'n A,x - J.Li = 0, we obtain Zi = 0 and(, = w,s; A. While, 

when A,x - Jl, =/= 0, we obtain 

(2.14) i = 1, 2, ... , 7H1 

and Lagrange multiplier -A satisfies 

(2.15) 
m 2 2(A - )2 

L Wj Sj jX- Jli 
~~~--~~=1\. 

. (A- wisl)2 
t=l 

Let ,A • denote the largest solution of equation ( 2.15). Then the following 

lemma shows that the optimand zi, i = 1,2, ... , m, arc given by 

• w~ sHA,x - Jii)2 

(2.16) z . = i=1,2, ... ,nL 
t (_A*- w;sn2 

L EMMA 2.2. Tlle objective function L2 is maximized wllen A in (2.14) 

is tlle largest solution of equation (2.15). 

PROOF: Substituting (2.14) into L2, we denote L2 with L2(-A) as func-

(2.17) 

Let ,A
1 

and -A2(> -A 1 ) be two solutions of equation {2.15). Then 

m 2 

(2.18) L w,(A,x- {l,? (A
1 

:i:i,s;)2 = 
t=l 
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Therefore, 

(2.19) 

Using (2.17) and (2.19), it is obtained that 

Hence the largest solution of equation (2.15) gives the maximum of 

L2( >.). I 

A lower bound of).* is given by the following lemma. 

LEMMA 2.3. It holds that 

(2.21) 

where 

(2.22) 

>. * > >.o = max Wi.S
2
1· , 

iE/ 

I = { i I A1x- J.l• f. 0, i = 1, 2, . . . , m} 

and).* is the largest solution of equation (2.15). 

P ROOF: Related to (2.15), we define 

(2.23) 

30 

Since 

(2.24) 

lim G(A) = +oo > 0, 
A-Ao+O 

lim G(A) = -I\ < 0, 
A-+oo 

and 

(2.25) 

just one solution of equation (2.15) exists in an interval (>.0 ,oo). So it 

is the largest solution of equation (2.15). I 

The optimal value L2 of problem P~ is given by 

(2.26) 

where it should be satisfied that 

(2.27) 
m 2 2(A - )2 
"' W 1 S 1 iX - J.li 

L (>. _ w·s2)2 = J{, 
i=l t I 

and 

(2.28) 

P roblem P~ can also be solved by using a duality theorem of non­

linear programming [17) as shown below. We have that 

(2.29) 
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Then, for .-\ > .-\0 , the maximum of L(p, .-\) is attained at J.l 1 

i = 1,2, ... ,m, where 

( 2
.
30

) A Aj,L1 - w,s; A 1x 
Jla = \ 2 ' 

1\- WzSI 
i = 1,2, ... ,m, 

and 

(2.31) L(jt., .-\) = .,\J( + t .Xw,(Aix- P.i)2 
i=l A- WjS~ 

From dL([.t., .X)jd.X = 0, we obtain that 

(2.32) 

and 

(2.33) m ( .,\ )2 
L([.t., .X)= L W 1(A1X- [J. 1 )

2 
.,\ _ 2 

•=l w,s, 

Therefore, (2.26)-(2.28) are derived from (2.32), (2.33) and Lemma 2.3. 

On the other hand, the optimal value L; of problem P~ is given 

by 

m (N 1) 2 
L * _ ~ - WaSj 
I-~ 2 I 

i=J >,. 1 _ 13(N- 1) 
(2.34) 

Then the objective function of problem P 5 is given by 
n 

(2.35) L = L CJXj - L;- L2(A*), 
J=l 

and it should be maximized with respect to x. Since LT is independent 

of a decision variable x, we neglect L;. Problem P5 is rewritten as 

follows. 

n m ( A )2 
L = L c1 x1 - L Wa(Aax- P.a)2 

.,\ _ w 
82 

, 

]=I t=l 1 
I 

Maximize 
r,>. 

m 2 2(A )2 
~ w, sl ,x - Jla - }' 
~ 2 2 - \ , 
i=l (A-WiSi) 

subject to 

.X> .X0 . 

Note that >-.o =max W 1 s; depends on a decision variable x. 
aEJ 
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3 
LEMMA 2.4. Problem P 7 is a convex programming problem if.-\~ 2-Xo. 

PROOF: It is sufficient to show that the Hessian matrix of the objective 

function is negative semi-definite for .X ~ ~.Xo. The elements of Hessian 

matrix H = ( h,
1 

), i, j = 1, 2, ... , n + 1, are given as follows. 

(2.36a) 

i,j = 1,2, ... ,n, 

(2.36b) 

Then the matrix H is expressed as the sum of the following two matri-

ces. 

(2.37) H=-(u v)'(u v)-( 0 ~ ) 
0 ... 0 ~ ' 

where 

(2.38) 
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3 
Since d is nonnegative for A ~ Z Ao, - H is expressed as the sum of two 

positive semi-definite matrices. Therefore, the Hessian matrix of the 

objrctive function of problem P7 is positive semi-definite. 1 

Decause the valur of A depends on x, we should consider several 

cases according to the value of A. vVe define 

(2.39) 

3 
Case A. A ~ zAmax: 

Since it is clear that Ao ~ Amax, problem P1 is a convex program­

ming problem from Lemma 2.4. Then we can use an appropriatr 

solution method for a constrained nonlin<'ar convex programming 

problem, e.g., the steepest descent method. 1 
3 

Case B. Ao <A< 2Amax: 

For fixed A, L is a convex function of x. Then we obtain optimal 

solution x*(A) as a function of A and choose the A* so as to min­

imize x*(A). But we must divide A into the following intervals, 

because the constraints differ on these intervals. For the sake of 

convenience, we arrange w,s~, i = 1, 2, ... , m, in increasing order, 

together with the corresponding constraints. By definition of A, 

we have 

(2.40) Aix # J.Li, i = 1,2, ... ,m, 

and 

(2.41) { 
A.x ~~~~ ~: 1,2, ... ,p, 

A,x -J.L 1 , 1 -p+ 1, ... ,m, 

34 

for 1 ~ p < m. Thus p denotes the largrst index such that A • .r # 

FLi. For Ao = wps~, 1 ~ p < m, the first constraint of problem P1 

is changed to 

(2.42) 

and equality constraints Aix = fli, i = p + 1, ... , m, are added. 

Then the constraints of problem P 7 for each p arc shown as follows. 

(i) p < m- n: 

Since rankA = n, the constraints (2.41) arc infeasible. 

(ii) rn- n ~ p < m: 

P 2 2(A )2 
""' w. s. ,.r - /Lt = 1\, 
~ (A- w,s2 ) 2 
t=l I 

(2.43) A,x=fli, i=p+1, ... ,m, 

Xj ~ 0, j = 1, 2, ... , n, 

(iii) p = rn: 

(2.44) x · > 0 J- , j=1,2, ... ,n, 

2 3 
WmSm <A< ZAmax· 

\Ve need to obtain optimal solutions for all p. Choosing the best 

solution among them, we get a global optimal solution. I 

The following lemma shows the existence of the global optimal 

solution. 
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LEMMA 2.5. The objective function L of problem P 7 is bounded. 

PROOF: Assume that an optimal solution is unbound<'Cl. Since the 

denominator of the first constraint of (2.43) or (2.44) is bounded, its 

left-hand side must be unbounded. This contradicts th<' boundcdness 

of K. I 

We define problem P 7 (>.), which is minimized with respect to x, 

as problem P7 for a fixed A. Then thr following lemma shows that an 

optimal solution of problem P7 (A) is continuous with resp<'ct to A. 

LEMMA 2.6. An optimal solution of problem P7 (A) is continuous with 

respect to A. 

PROOF: Let x 1 and x 2 denote optimal solutions of problems P1(>. 1 ) 

and P1(..\2), respectively. It is easily shown that L(.r 1 ) --. L(.x· 2 ) as 

A1 --. .A2 and that problem P 7 (A) has a unique solution. Therefore, an 

optimal solution has the continuity with respect to A. I 

Consequently, we can find an approximate optimal solution of 

problem P 7 by choosing the best solution among the optimal solu­

tions of problem P1(A) obtained for discretized values of A between Ao 
3 

and 2Amax in cases B. (ii) and B. (iii). Note that problem P7 is a 

normal distribution model of problem P 4 , which is a minimax model 

due to the confidence region method for problem P 1 . 

2.4. Asymptotic Properties 

We discuss here how the problem behaves when sample size be­

comes sufficiently large. Sinre a sample mean ru1d a sample variance 
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are consistent estimators for the mean and the variance of a normal dis­

tribution, the estimates of unknown parameters tend to the true values, 

if the number of independent samples tends to infinity. With tru<' dis­

tribution parameters, simple quadratic recourse probl<'m P 2 b<'romes 

the following problem. 

Pa : Maximize 
r~O 

n m 

I: CjXj- I: {wi(A 11'- JJ.d2 + tu,u?}, 
j=l 1=1 

Here we show that problem P8 is obtained from our proposed problem 

when sufficiently large number of samples are available. 

LEMMA 2.7. Let F 0 (A1, N) and \~(.V) denote a perc<'ntiles of ;m F­

distribution witl1 (111, N) degrees of freedom and a x2 -distributio11 with 

N degrees of freedom, respectively. Then 

(2.45) 1
. x;(N) 

1 tm N =, 
N-oo 

(2.46) lim Fo(M, N) = 0. 
N-oo N 

PROOf: As in [Tl], using the Cornish-Fisher expansion, we have 

(2.47) 

where u 0 is an a percentilt' of a standard normal distribution. Since 

Itt a I < oo for 0 < a < 1, ( 2.45) is derived. 

T he following relation holds between a percentiles of an F-distribu­

tion and a x2 -distribution. 

(2.48) !II Fa(Jf, oo) = \~(.M). 

Since Fa(111,oo) is finite, we obtain lim FC't(M,N)/N = 0. I 
N-oo 
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THEOREM 2.8. Problem Ps is obtained from problem P 5 as sample 

size tends to infinity. 

PROOF: From Lemma 2.7, optimal solutions of problems P~ and P~ 

t dt 2 ·-1? d ._ 0 en o s;. z- ,-, ... ,m, an ll1, z- 1,2, ... ,m, respectively, as 

sampl<' size tends to infinity. Therefore, the consistency of statistics Jti 

and s; implies that problem P5 brings to problem P8 as sample size 

tends to infinity. 1 

Note that an optimal value A* in problem P 7 tends to infinity as 

sample size increases, when the linear programming problem 

Pg : 
Maximize 
subject to 

c'.r' 
Ax= jl, 
X 2: 0, 

replacing the random variablC' b by the sample mean It is infeasible. It 

is considered that A* is an index of violation of constraints A, x = JL 1 , 

i = 1, 2, ... , m. The estimates of variances are concerned only with the 

magnitude of recourse, which are independent of an optimal decision 

in both problems P 5 and P 8 . 

2.5. An Illustrative Example 

(Example 2.1.) Consider the following problem: 

Minimize 
subjext to 

2 Xt +.r2, 
X1 + X2 = b1, 

2x 1 -x2 = b2, 
.1'2 = bJ, 

:l'J, .1'2 2:0, 

where b1, b2 and b3 arc normally distributed random variables with un­

known parameters, which are assum<'d to be independent each other. 
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Let the weight vector be giv<'n by w = (10, 5, 10). As a result of sam­

pling with 11 sampl<>~ by comput<'r simulation, tlw sampl<' means fl 

and the variances .c;2 are obtl'\ined as given in Tabl<' 2.1, wh<'r<' the tnt<> 

means J1. and the tru<' variances a 2 ar<' also listed. 

Table 2.1. Parameters of b 1 , b2 and b3 

Jl s2 w. s2 II a2 

bJ 2.979 0.007 0.070 3 0.01 

b2 0.056 0.360 1.800 0 0.36 

b3 1.020 0.043 0.430 1 0.04 

The problem PE1 is transformed into the following problem based 

on the confidence region method. 

PE' I 

10(xl + .r 2 - 2.979) 2 A2 

Minimize L = 2.r 1 + :1·2 + (, _ O.Oi0)2 + r, ,rz,A A 

5(2xl - .r2 - 0.056)2 A2 10(.r2- 1.020)2 A2 

(A - 1.800)2 + (A - 0.430)2 

0.7(.rl + X2- 2.979)2 9(2.rl - J'2- 0.056)2 

subjext to (A- 0.070)2 + (A- 1.800)2 + 
4.3(x 2 - 1.020? = 1.

388 
(A- 0.430)2 ' 

Xt, X2 2:0, 

where a significance level is set to 5%. 

Optimal solutions for all cases of p ar<' given in Table 2.2. Wh<>n 

p = 3, we solve problem PE~ for 1.80 < A ~ 2. 70. \Vhen p = 2, the 

objective function L is minimized subject to 

0.7(x 1 + .r2 - 2.979)2 4.3(x2- 1.020)2 = 1.
388 

(A- 0.070)2 + (A- 0.430)2 ' 

(2.49) 2l't - X2 = 0.056, 
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Table 2.2. The optimal solutions for different p 

Case p range of>. ).* x* 1 ;1"2 L* 

A. >. ~ 2.70 2.700 0.736 1.710 16.809 

B. p=3 1.80 < >. ::; 2. 70 1.807 0.803 1.551 12.234 

p=2 0.43 < >. ::; 1.80 1.471 0.821 1.587 13.232 

p=1 0.07 < >. ::; 0.43 infeasible 

for 0.43 < >. ::; 1.80. When p = 1, the objective function Lis minimized 

subject to 

0.7(x 1 + x 2 - 2.979)2 

(>. - 0.070)2 = 1.
388

' 

(2.50) 2x 1 - x 2 = 0.056, 

X2 = 1.020, 

X1 ~ 0, X2 ~ 0, 

for 0.07 < >. ::; 0.43, which have no infeasiblc point. 

The best solution among these solutions is (>. *, :r~, .r2) = ( 1.807, 

0.803, 1.551) and L* = 12.234. Figure 2.1 illustrates an optimal solu­

tion of problem PE~. Furthermore, in Table 2.3, the optimal solutions 

corresponding to several sample sizes are given, which illustrates the 

asymptotic properties discussed in Section 2.4. Note that N = oo 

implies that the estimates give the true values of parameters. 
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:r 

2 * optimal solution when N = 11 

o optimal solution with true parameter 

Figure 2.1. Optimal solutions of problem PE1 

Table 2.3. The best optimal solutions for several sample sizes 

N ).* x* J xi L* 

11 1.807 0.803 1.551 12.234 

100 5.870 0.825 1.710 11.355 

300 8.642 0.820 1.649 10.640 

1000 16.270 0.840 1.651 10.271 

00 0.967 1.580 9.557 
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2.6. Stochastic Linear Programming with an Esti­

mated Objective Function 

\~/c consider in this section the following linear programming prob­

lem P1o which has unknown coefficients in the objective function: 

Maximize 

subject to 

n 

L CjXj, 
j=l 

n 

LaijXj =bi, i=1,2, ... ,m, 
j=l 

Xj ~ 0, j = 1,2, ... ,n, 

where A = ( ai1 ) and b = ( b,) are known coefficients, but c = ( c1 ) are 

unknown coefficients which are estimated by noisy observations. We 

assume that rank A = m and { x I Ax = b, :r ~ 0} is bounded and 

nonempty. 

Problem P 10 is viewed as the dual of problem P 1. These prob­

lems treat two types of stochastic behaviors. In problem P 1 , there are 

normally distributed random variables with unknown paranl<'ters. On 

the other hand, in problem P 10 , there are unknown coefficients which 

should be estimated only through the observations disturbed by nor­

mally distributed random errors. 

We consider the situation in which the unknown coefficients c can 

not be directly observed, and so the objective function is estimated by 

means of linear regression analysis based on an output y = c' x + t with 

a random disturbance t for an input x. The normal linear regression 

model is expressed as follows. 

(2.51) y = Xc + t, 
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where X is an N x n matrix of N sample points, y is an N dimensional 

column vector of observations and t is an N dimensional column vector 

of independent identically distributed random variables, which have a 

normal distribution .N(O, u2 ). If there is no redundant data, that is, 

rankX = n, the least square estimator c of cis given by 

(2.52) c = (X'X)- 1 X'y. 

Note that c is the best linear unbiased estimator of c and is normally 

distributed as follows. 

(2.53) 

Denoting the unbiased estimator of u 2 with s2
, we have 

(2.54) 

(c-c)'(X'X)(c-c) 2( ) 
V t = 2 "' \' 71 ' 

(7 

(N- n)s
2 

2 (1\r ) v2 = 2 "' \' - n , 
(7 

which arc mutually independent. So the following statistics has an 

F-distribution with (n, N- n) degrees of freedom. 

(2.55) 
vtfn = (c-c)'(X'X)(c-c) "'F(n,N -n) 

v2j(N -n) ns2 

Then we construct the joint confidence region of regression coefficients 

with a significance level a as follows. 

(2.56) (c- c)'(X' X )(c- c)::; ns2 Fo(n, N- n) 

Note that this confidence region is an ellipsoid in R". 
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Th<' unknown coefficients exist in the ellipsoidal confidence region 

with a significance level a. Then our confidence region method leads 

to a minimax problem that optimizes the objective function under the 

situation that estimated coefficients take the worst-case values in the 

confidence region. \Ve obtain a minimax problem due to the confidence 

region method as follows. 

Minimize Maximize 
C X 

pll : subject to 

c'x, 

Ax= b, 
X~ 0, 
(c- c)'(X'X)(c- c)~ I\: , 

where J{ = ns2 F0 (n, N- n). 

2.7. A Solution Algorithm for Problem P 1o and an 

Illustrative Example 

Problem P 1 1 is viewed as the following two-stage problem. 

Minimize max{c'x I Ax= b, x ~ 0}, 
c 

subject to (c- c)'(X'X)(c- c)~ K. 

Then we consider the following two problems P~ 2 (c) and P'1'2 . 

Maximize c' x, 
subject to X E nl ={xI Ax= b, .r ~ 0}, 

P I/ 
12 : 

Minimize f (c), 
subject to cE S12 = {cl(c-c)'(X'X)(c-c) ~ K} , 

where f(c) is the optimal value of problem P~ 2 (c). Problem P~2 (c) 

corresponds to the first stage problem to maximize with respect to x, 

where c is fixed, and problem P~2 corresponds to the second stage 
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problem to consider the worst-case values of the estimat<'d coefficients. 

Since problem P~ 2 (c) is a linear programming problem, it is sufficient 

to consider basic solutions for obtaining /(c) for every c. We get the 

following lemmas concerning to these problems. 

LEMMA 2.9. The objective function f(c) of problem P'1'2 is a piecewise 

linear convex function. 

PROOF: There are a finite number of basic feasible solutions for prob­

lem P~2 (c). Denote them by xf,xf, ... ,x~, where r is their number. 

Since the function f (c) is expressed as the maximum of r linear func­

tions of c, that is, 

(2.57) /(c)= max{(xf)'c, i = 1,2, ... ,r}, 

J( c) is a piecewise linear convex function. I 

LEMMA 2.10. Problem P~2 has a unique optimal solution. 

PROOF: From Lemma 2.9 and xf ~ 0 for all i, the subgradient of(c) 

of J (c) is nonnegative. Then any optimal solution of problem P~'2 is 

located on the boundary of n2. Let c1 and c2 ( # c I ) denote optimal 

solutions of problem P~'2 . Then 

(2.58) 

for 0 < >. < 1 is also feasible and is located in the interior of !h. The 

convexity off( c) implies that 

(2.59) 
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which means that c>. is optimal and is not located on the boundary 

of !12. This contradicts that an optimal solution of prohl<>m P;'2 is 

located on the boundary of S12 • I 

An optimal solution of problem P 12 is obtained from (2.57) by 

solving the following problem: 

Minimizec z, 
subject to (c- c)'(X'X)(c- c) $1\, 

c'xf :5 z, i = 1,2, ... ,1·. 

However, r is a rather large number and it is not computationally 

feasible to get all basic fC'asible solutions in advance. To develop an 

effective solution algorithm, we define the following subproblem P 14 (x) 

with parameter x: 

P14(x): 
Minimize x' c, 

c 
subject to (c- c)'(X'X)(c- c)$ 1\. 

Problem P 14 ( x) is based on the fact that only one linear constraint 

of problem P13 is active when problem P;2 (c) satisfies non-degeneracy 

assumption. An optimal solution of problem P14(x) is easily obtained 

by 

(2.60) c*(x) =- ]( ( ' ' 'X)-1 ~ 
x'(X' X)- 1 x ·"- x + c 

Given a basic feasible solution, we can decompose a matrix A into 

a basis B and a non-basis D, that is, A = [B, D] and we denote 

correspondingly x = [xa, xo] and c = [ca, co]. 
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LEMMA 2.11. (x*,c*) is an optimal solution of problem P11 , if and 

only if, c* is an optimal solution of problem P 14 (x*) ru1d satisfies the 

following optimality condition for lineru· programming problem ~2(c*). 

(2.61) (ciJ)'- (c8)' B- 1 D :50 

PROOF: The value of (c*)'x* gives the minimum of c'x* over c E !12 

and the maximum of ( c* )' x over x E n 1 . Therefore, c* is optimal to 

problem P 14 (x*) and x* is optimal to problem P~2 (c*). Then inequal­

ity (2.61) is satisfies from the nonnegativity of x. The 'only if' part is 

clear. I 

In the solution algorithm, problems P~ 2 (c) and P 14 (x) are alter­

nately solved until (2.61) is satisfied. To avoid cycling, we introduce 

a set J which stores optimal solutions of problems P'12 (c) for every c. 

The following is a solution algorithm for problem P 11 . 

Algorit hm 2.1. 

Step 1. Set c0 +- c, k +- 0 and J +- ¢. 

Step 2. Solve problem P~ 2 (ck) and let xk be an optimal solution of 

problem P~ 2 (ck). 
Step 3. If xk E J, then go to Step 5. Otherwise, set J +- J U {xk} 

and go to Step 4. 

Step 4. Solve problem P 14 (xk) and let ck+1 be an optimal solution of 

problem P 14 (xk). 

(2.62) K (X' x)-l k ~ 
(xk)'(X'X)-lxk x + c 

Let k +- k + 1 and return to Step 2. 
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Step 5. If :rk = xk-t, then xk is optimal to problem P 1 1 and termi­

nates. Otherwise, solve problem P~'2 with f( c) = max { ( xJ )' c 1 

x1 E J} and let ck+ 1 be an optimal solution of problem P;'2 . 

Let k +-- k + 1 and return to Step 2. 1 

THEOREM 2.12. H xk = xk-t in Step 5 of Algorithm 2.1, then xk is 

an optimal solution of problem P 1 1 . 

PROOF: Since xk is an optimal solution of problem P~ 2 (ck), we get 

(2.63) 

from the optimality condition (2.61). If xk = xk-t, then problem 

Pt4(xk-J) is equivalent to problem P 14 (xk). Therefore, ck is optimal 

to problem P14(xk). From Lemma 2.9, :rk is optimal to problem P 11 . 1 

THEOREM 2.13. Algorithm 2.1 finds an optimal solution of problem 

P11 after a finite number of iterations. 

PROOF: Let Jo = {x~, i = 1,2, ... ,r} be a set of all basic feasible 

solutions of problem P~ 2 (c). Note that J0 is finite and J ~ J0 . In each 

iteration, J is augmented with a new solution. When J = J0 holds, 

problem P~2 in Step 5 is equivalent to the original problem. Then from 

Lemma 2.8, Algorithm 2.1 gives an optimal solution in a finite number 

of iterations. I 

Now we show an illustrative example. 

(Example 2.2.) Consider the following problem. 

Maximize 
subject to 
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Ct X 1 + C2 X2, 

XJ + 3 X2 ~ 15, 
l't + 2 X2 ~ 11, 
It + X2 ~ 8, 

2:rt+ X2~14, 
Xt,X22::0. 

Table 2.4 Computational result by Algorithm 2.1 

k c k :rk J 

0 (1.282, 1.694)' (5, 3)' ¢ 

1 (0.977, 1.960)' (3, 4)' {(5,3)'} 

2 ( 1.514, 1.367)' ( 6, 2)' {(5,3)',(3,4)'} 

3 (0.941, 2.032)' (3,4)' {(5, 3)', (3, 4)', (6, 2)'} 

4 (0.979, 1.958)' (3,4)',(5,3)' 

The coefficients Ct and c2 of objective function arc unknown and ar<' 

estimated by noisy observations. By computer simulation with samplc 

size N = 20 and a significance level a = 5%, we have obtained 

X';)[ = ( 190.0 
.. 165.0 

165.0) ~ - ( 1.282) 
157.5 ' c- 1.694 , 

(2.64) s 2 = 0.2884, F(2, 18; 0.05) = 3.55, 

n2 = {c l (c- c)'(X'X)(c- c)~ 2.048}. 

Algorithm 2.1 applied to this problem PE2 proceeds as shown in 

Table 2.4. It is concluded that optimal solutions arc c• = (0.979, 1.958)' 

and x• = (5-2-X, 3 +.X)' for any 0 ~ .X ~ 1, and the optimal value is 

10.769. 

2.8 . Conclusion 

The confidence region method for two typ<'s of stochastic program­

ming problems are considered in this chapter. One is the problem with 
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a random right-hand side whose probability distribution indudes un­

known distribution parameters. The other is the problcm with random 

cost cocfficients whose stochastic behavior is introduced through the 

estimation of cost coefficients by randomly disturbed observations. 

A proposed minimax model based on the confidence region method 

is useful and effective for t hc above two problems in the sense that the 

unknown parameters, which are estimated by historical or experimental 

data, are incorporated into the decision problem with an appropriate 

significance level. Note that the above two problems dcal with the 

different stochastic aspects of parameters. These problems are viewed 

as dual problems to each other, since the dual of the problem with a 

random objective function becomes the problem with a random right­

hand side and the dual of the problem with an estimated right hand side 

becomes the problem with estimated objective function. Therefore, for 

the problem with random cost coefficients whose distribution functions 

includes unknown parameters, we can solve its dual problem by using 

a proposed solution method in Section 2.3, and for the problem with 

unknown coefficients in the right-hand side of constraints, we can solve 

its dual problem by using Algorithm 2.1. 

It is left for the further research to investigate the confidence region 

method for other problems, e.g., the problcm with nonlinear constraint 

such as/( :r, w) ~ 0 and the problem with distribution free stochasticity. 
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Chapter 3. 

STOCHASTIC LINEAR 
PROGRAMMING WITH 

ESTIMATED CONSTRAINTS 

3 .1. Introduction 

This chapter discuss£'S the confidence regwn method for a sto 

chastic linear programming problem that contains unknown coefficients 

in a coefficient matrix. Cousider the following linear programming 

problem: 

LP: 

n 

Maximize L Cj x 1 , 

j=l 
n 

subject to L ai1 x 1 = b,, i = 1, 2, ... , m, 
;=1 
x1 ~ 0, j = 1.2, ... ,n. 

where sotne of a,j, i = 1, 2, ... , m, j = 1, 2, ... , n, arc assumed to 

be unknown while others are known. The stochastic variation comes 

from estimation of unknown coefficients by means of the multiple re­

gression analysis by noisy obsen·ations of I:;= I a,1x1 , i = 1, 2, · · · , m. 

The confidence region of the left-hand side of constraints I:;=t a,1 x 1 , 

i = 1, 2, ... , m, becomes the intersection of reverse convex regions, 

which is the intersection of complement of convex region!-) and may 
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be disjunctive. Meyer [M4) have considered reverse convex programs 

and proposed an algorithm for finding a Kuhn-Tucker point when one 

feasible point is given in advance. Note that his iterative lineariza­

tion algorithm gives a sequence of feasible points, but does not always 

converge to an optimal solution. The algorithms by a cutting plane 

method [T3) and by a combinatorial method [Hl, Ul] arc also known 

for reverse convex programming. However, the convergence of a cutting 

plane method is not yet proved. For linear programming with one ad­

ditional reverse convex constraint, the combinatorial algorithm, which 

finds an optimal solution in a finite number of iterations, is proposed 

by Hillestad and Jacobsen [H2), where they obtain all vertices of linear 

constraints by the lexicographic simplex algorithm and find an opti­

mal solution by searching the edges of polytope defined by the linear 

constrain t.s. 

We mainly consider a linear programming problem, in which un­

known coefficients appear in only one constraint. This problem is equiv­

alently transformed into a linear programming problem with an addi­

tional reverse convex constraint. Our algorithm is based on a cutting 

planc method but finds an optimal solution of the reverse convex prob­

lem in a finite number of iterations. The proof is based on the fact that 

an optimal solution lies on the intersection of the boundary of reverse 

convex region and the edges of polytope constructed by known linear 

constraints. 

Section 3.2 formulates the problem and estimates the unknown co­

efficients in the constraint. Several properties on an optimal solution of 

a reverse convex programming problem are summarized in Section 3.3. 
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Section 3.4 describes an iterative algorithm and proves its finite conver­

gence to an optimal solution. This algorithm generates a point sequence 

converging to an optimal solution, but each point in the s<'queucc be­

fore convergence is not feasible. A lower bound of the> optimal value 

obtained at each iteration is discussed in Section 3.5. An illustrative 

example> is given in Section 3.6. Section 3. 7 extends the discussion to 

the problem, in which unknown coefficients appear in more' than one 

constraint. Section 3.8 is a summary of this chapter. 

3.2. Formulation of t he Problem 

vVc consider the following linear programming problc•m with one 

additional linear constraint that contains unknown coc>fficicnts. 

n 

}.faximize L c1xj, 

j=l 
n 

subject to L a,1 x1 = b,, i = L 2 ..... m. 
]=l 

n 

L {31 x1 = 17, 
]=l 

x1 ~ 0, j = 1,2, ... ,n, 

where aij, bi, c1 and 77 are assumed to be known coefficients, but some 

of /3j, j = 1, 2, ... , n, are assumed to be unknown. Dy th<· roufidcucc 

region method, constraint L.,j=1 /3jx j = 77 is interpreted as that 77 is 

restricted to the confidence interval of L:;1=1 /31 :r 1 with a cc>rtain sig­

nificance level. Let C I( x; a) denote a confidence interval of L:;= 1 {31 x j 

with a significance level a. Then problem P 1 is treatcd as the fol­

lowing problem with the constraint that 77 should be in th<' confidence 
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interval C I ( x; a). 

n 

Maximize L c1 :r1 , 

j=l 
n 

subject to L a 1jXj = b,, i = 1, 2, ... , m, 
J=l 

TJ E CI(x; a), 
Xj 2::0, j = 1,2, ... ,n, 

Multipl<' regression analysis is a useful technique to construct the 

confidence n·gion of the linear constraint with unknown coefficients. 

Vve consider the following regression model 

( 3.1) y=Xf3+e, 

where y is an N dimensional column vector of observations, X is an 

N x n matrix of n independent variables observed on each of 1\' in­

dividuals, {3 is an n dimensional column wctor of unknown regr<'ssion 

parameters, and E is an .V dimensional column ,.<'ctor of uuohserv<>d 

random disturbances which are assumed to be mutually independent 

and normally distributed with the mean 0 and the variance u 2 . \Vhen 

rank( X) = n, the least square estimator of the regression parameter {3 

is given by 

(3.2) /3 = (X'X)- 1 X'y, 

which is exactly th<' same as the maximum likelihood estimator of {3 and 

is the best linear unbiased estimator of {3 [M2). Then the confidence 

region of the regression parameter is given by 

( 3.3) 
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where s 2 is the sample variance. The confidence interval of d'.r for a 
. . 

gtven x IS 

(3.4) jj'x- JnF0 (n,X- n)Jx'V:r ~ J':r ~ 

S'.r + ~(~1,X n)J,7V;", 

where V = s 2 (X'X)- 1 . The constraint 1J E CJ(.r;o) is <'quivalent to 

tll<' following two nonlinear inequalities. 

-/J'x + JnF0 (n,N- n)J1·'Vx 2:: -1J, 
(3.5) 

/J'x + JnF0 (n, N- n)Jx'Vx 2:: 17. 

For a sake of simplicity, we denote them by 

(3.6) 
g-(x) 2:: -17, 

g+(x) ~ 17, 

respectively. Since the regions {xlg-(x) ~ -q} and {.rjg+(J·) ~ 11} , 

which are defined by reversing the inequalities, ar<' convex. the regions 

{ x lg- ( x) 2:: -TJ} and { x lg+ ( :r) 2:: 1]} are called re\·en;e convex. 

3.3. Reverse Convex Programming 

\Ve summarize properties on reverse convex programming in this 

section. The reverse convex programming problem is d<'fined by 

Minimize f ( x), 
subject to gi(x) 2::0, i = 1,2, ... ,1, 

wh<'r<' J : Rn -t R is a differentiable and pseudo-roncavC' function, 

and g, : R11 __. R1 , z = 1, 2, ... , 1, are differentiablc and psc•udo conv<'x 

functions. It is assumed that 

(3.7) G = {:rlg,(:r) ~ 0, i = 1,2, .... 1} 
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is nonempty and compact. Let convG denote the convex hull of G. 

A vector .r E G is said to be a vertex, if x cannot be written as a 

convex combination of other points of G, and let V(G) denote the set 

of vertices of G. Then, since f is pseudo-concave, an optimal solution 

of the following problem P 4 belongs to V( convG), 

Minimize f(x), 
subject to x E convG, 

and it holds that V( convG) = V( G) C G, which is easily obtained by 

showing that V(convG) ~ V(G) and V(convG) 2 V(G). We see that 

it is suffiri<'nt to seek an optimal solution of problem P 3 among the 

vertices of G. Note that the number of vertices of G is finite and, as a 

consequence, convG is a convex polytope [H1]. 

As a special case of reverse convex programming, W<" also consider 

the following linear programming problem with one additional reverse 

convex constraint. 

Maximize 
subject to 

c'x, 
Ax= b, 
g(.r) 2: 0, 
l' 2: 0, 

where g : R 11 ---+ R is a continuous and pseudo-convex function. We 

define that 

(3.8) 

(3.9) 

G ={ .rlg(.r) 2: 0}, 

Do :{x!Ax = b,x 2: 0}, 

where Do is assumed to b<' nonempty and bounded. L<'t E 1 , i = 

1, 2, ... , I\, denote the edges of Do, where [{ is their number. Then 
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conv(Do n G) is a convex polytope and an optimal solution of prob­

lem P 5 lies on Ei, i = 1, 2, ... , J( [H2), since 

(3.10) V(conv(D0 n G)) c U V(E1 n G) c U{E~ n G}. 

Now we consider the problem 

p6 : Maximize 
subject to 

c'x, 
:r E Do, 

which is obtained by dropping the reverse convex constraint. Let x0 

denote an optimal solution of problem P 6 . If .r0 E G, x 0 is obviously an 

optimal solution of problem P 5 . Otherwise, x0 satisfi<"s the following 

inequali tics: 

xo E Do, 

(3.11) g(xo) < 0, 

I I~ cxo>cx, 

where x is an optimal solution of problem P 5 . Let 8G and intG denote 

the boundary and the set of interior points of G, respectively. Let w 

denote the point where the line segment [x, J·0 ] meets 8G. Then w is 

given by 

(3.12) w=t:r+(1-t)xo 

with t E (0, 1), which is uniquely determined by solving th<' equation 

(3.13) g(tx + (1- t):ro) = 0. 
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Since 

(3.14) c'w = tc'.r + (1- t)c'x0 > c'x 

for every x E Do n intG, an optimal solution of problem P5 lies on 

D 0 n 8G [T4]. 

Here we state problem P2 again. 

Maximize 
subject to 

c'x, 
Ax= b, 
g-(x) ~ -TJ, 
g+(x) ~ 17, 
.r ~ 0, 

where g-(x) and g+(x) are convex functions defined by (3.5). The fea­

sible region of problem P2 is an intersection of the convex polytope Do 

and two reverse convex regions. Since (g-(.r) + 77) + (g+(x)- 11 ) ~ 0 

holds for any x E Rn, at least one reverse convex constraint is always 

satisfied for any x E Rn. Then it is sufficient to consider only one 

reverse convex constraint which is not satisfied by x0 . Let x* denote 

an optimal solution of problem P2 . If g-(xo) < -r], it holds that 

g+(x*) < 17, and if g+(xo) < 77, it holds that g-(.c*) < -77. Therefore, 

defining that 

(3.15) 
if g-(x0) < -17, 

if g+(.ro)<TJ. 

problem P2 is vi<>wed as a linear programming problem with on<> addi­

tional reverse convex constraint. 
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3.4. A Solution Algorithm 

We can get an optimal solution of problem P 2 , in principle, by com 

puting all edges of Do and comparing the objective values of all points, 

at which edges E" i = 1, 2, ... , I<, of D0 meet the boundary of G. In 

other words, an optimal solution of the following problem P7 is also 

optimal to problem P2 . 

Maximize d.l:, 
subject to x E conv(D0 n G). 

The proposed algorithm is based on a cutting plane method, wh<'rc tlw 

linear programming problems, generated by adding linear con~traints 

to cut off some regions notinG from D0 , are solved iteratively until an 

optimal solution is found. Her(> we assume that x 0 ~ G. An optimal 

solution is found at the point which is located on the intersection of 

some edges and boundary BG. 

We construct sequences of cutting hyperplanes H( x k) and linear pro 

gramming problems pk given as follows: 

where 

(3.16) 

pk: Maximize 
subject to 

fork ~ 1, when Xk-I is an optimal solution of problem pk-t. Figure 3.1 

illustrates these Do, D k and G. 

vVe show the way to construct the cutting hyperplane H(xk) as fol­

lows. For an optimal solution Xk of problem pk, let adj(xk) denote a 
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____ .,._. .. -- ' ... ..........!,...' \ ..... ... 

D ~· ' .. , ... , ' .... '.,. .,-0 ' ' , ,-., ' 
' . ' ' 

Figure 3.1. D0 , Dk and G 

set of vertices of Dk adjacent to Xk. If Xk is a nondegenerate vertex, 

there are n affinely independent adjacent vertices of Dk. We denote 

the set of such vertices by 

(3.17) adj(xk) = {si,sL ... ,s;:}. 

See Figure 3.2. The n linearly independent vectors on Dk emanating 

from Xk ar<' given by 

(3.18) u{ = s{- xkl J = 1,2, ... , n. 

The point that the extension of edge [xk, .9{] meets toG, say yi, is given 

by solving the following one-dimensional problems for each j and k : 

Pa(j, k) : 
Minimize B, 
subject to g(Bu{ + xk);::: 0. 

60 

,'' , ' 
" I " , 

,:'--~ ... 
... -'""' .-.., 

' 

' I 

(a) H (x k) of (3.20) when Xk lies on an edge of Do 

~ , , 

Xlc -·" r' ,, , 

(b) H (x k) of (3.23 ) when xk does not lie on an edge of Do 

Figure 3.2. The cutting hyperplane H (xk) 
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Then we have 

(3.19) 

where Bi is an optimal solution of probl<>m P8 (j, 1.:). If problem P8 (j, k) 

is infeasible, Bi is set to an arbitrary number greater than 1. The 

cutting hyperplane H(xk) is defined from affincly independent YL j = 

1,2, ... ,n, by 

(3.20) 

where 

(3.21) 

is an n x n matrix and e = ( 1, 1, ... , 1 )' is an n dimensional vector of 

ones. See Figure 3.2 (a). 

If xk is a degenerate vertex, there are more than n adjacent vertices 

of Dk. Then the cut defined by (3.20) is not uniquely determined aud 

if we choose n adjacent vertices arbitrary, the resulting cut may delete 

portions of the feasible region. Howev<>r, the Carvajal- Mareno cut 

(3.22) 

gives the cutting hyperplane in such a case, where ( z0, z*) is an optimal 

solution of the following problem: 

Pg : 

Minimize 
subject to 

zo, 
Biu{z ~ z0 , j = 1,2, ... ,n', 
n' 

L:e{u{z ~ 1, 
]=1 
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where n' denote the number of such adjacent vertices. Note that (3.20) 

and (3.22) are the same when n' = n. 

The .r k. which does not li<> on an edge of D0 , cannot be an opti­

mal solution of problem P2 . Since simplex S(xk.sLs1, ... ,si:) has no 

edge of D 0 and so has no optimal solution of problem P2 , we con­

struct the cutting hyperplane H(xk) by taking the base of simpl<>x 

S(x k, sL, s~, ... , sk) given by 

(3.23) 

where 

(3.24) 

See Figure 3.2 (b). Since cut (3.23) ddetes one vertex of Dk, we have 

(3.25) 

THEOREM 3.1. Hlhen an optimal solution Xk of problem pk is not 

feasible to problem P 2 , the cutting hyperplane H(xk) defined above 

separates xk from the feasible region of problem P2. 

PROOF: If xk does not lie on an edge of Dk. H(xk) is the base of 

simplex S(xk.sL,s~, ... ,si:) and all points of the simplex are located 

in Do\ G. Then it is clear that H ( x k) separates x k from Do n G. If 

Xk lies on an edge of Dk, H(xk) is defined by yi, j = 1, 2, ... , n, 

which is the base of simplex S(xk. yi, yi, ... , yk). Since Yk E 8G for 

all j and G is a reverse convex region, any point that is expressed 

as a convex combination of y{, j = 1, 2, ... , n, is located outside of 
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procedure CPMEP1: 

begin 

Set k t- 0; 

Solve problem P 0 ; 

while xk ~ D do 

begin 

if Xk E edges of Do 

t h en Construct H(xk) of {3.20) or {3.22); 

else Construct H( xk) of (3.23); 

Dk+I t- Dk n H(xk); 

Let k t- k + 1; 

Solve problem pk; 

e nd 

Xk is an optimal solution of problem P 2 ; 

end. 

Figure 3.3. Procedure CPMEP1 

the region G. Therefore, simplex S( .r k, Yi, y~, ... , y;:) is contained in 

Do \G, and H (xk) separates Xk from D0 n G. 1 

Now we describe a solution procedure, named CPMEP1, to solve 

problem P2 in Figure 3.3, which generates a point sequence {xk}, k = 
1, 2, ... , of optimal solutions oflinear programming problems pk_ Since 

Xk E Dk \Dk+J, the optimal value of problem pk is non-increasing at 

each iteration, that is, c' xk ~ c' xk+I· 

T HEOREM 3.2. The point sequence {xk} of optimal solutions has the 

subsequence { Xk 9 }, 0 :5 kt < k2 < ... , whose objective values strictly 
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decrease, that is, 

(3.26) 

for any q 

PROOF: Let l denote the number of basic feasible solutions of prob­

lem pk_ Since the cutting hyperplane H(xk) cuts off at least one basic 

solution of problem pk from Dk , at most 1 cutting hyperplanes cut off 

all such basic solutions. After adding l cutting hyperplanes to Dk. the 

optimal value of problem pk+l is less than that of problem pk , that 

is, c' x k > c' x k+l· This implies the existence of the strictly decreasing 

subsequence { .r k
9

} such that c' .r k
9 

> c'.r k
9
+1 • I 

From the fact of (Don G) ~ Dk, the sequence {c'xk} of optimal 

values is bounded by c'x* from below. The following theorem shows 

the convergence of the sequence. 

T IIEOR EM 3.3. The sequence { c':rk} of optimal values of problems pk , 

k = 1, 2, ... , generated by procedure CPMEPl converges to the opti­

mal value c' :r* of problem P2 after a finite number of iterations. 

PROOF: (Finiteness) There exists at most one point that is optimal to 

one of problems pk , k = 1, 2, ... , but is infeasible to problem P2 on one 

edge of D 0 . Once the vertices, which arc not located on an edge of Do, 

are selected as an optimal solution of problem pk, they are cut off from 

Dk by H (x k) of (3.23). Therefore, we can obtain an optimal solution 

of problem P2 on an edge of Do after a finite number of iterations. If 

the proposed algorithm iterates infinitely many times, there must be an 
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edge of Do which has more than one optimal solution of problem pk. 

This is a contradiction. 

( Convcrg<>nce) The decreasing sequence { c'.r 1.} of optimal Yalucs 

bounded from below converges to a certain Yalue p. Let ~~ be achieved 

at x, that is, ~t = c' x. When p > c' x*, the point x is infeasible to 

problem P 2 • Theorem 3.2 implies that there exists the point whose 

objective value is less than p as far as p > c'x* holds. Thrrefore we 

obtain IL ~ c' :r *. It is clear that p ;::: c' x* and hence fl = c'.r *. I 

Problem pk+ 1 is effectively solved by a dual simpkx method, since 

problem p.I:+J is obtained by adding one linear constraint to problem pk 

and an optimal solution x k of problem pk is available. The number of 

active constraints of Do in problem pk tells us v .. •hethcr .r k lies on an 

edge of Do or not. In fact, denoting their number by m', .z:,. lies on an 

edge of Do if and only if m' ;::: m- 1. 

3.5. A Lower Bound of the Optimal Value 

Since x,. generated in our algorithm is not feasible to problem P 2 

before converging to an optimal solution, we derive a lower bound of 

the optimal value by projecting xk upon the feasible region D0 n G. 

Let :f.~.: be a point that gives a lower bound of the optimal value at the 

k-th iteration. 

First, we consider the straight line from x 1.: normal to the hyper­

plane J'.r = 17, which denotes a regression line and is located in the 

center of confidence interval C I( x; a). Then we construct the hyper­

plane tangent to the surface g( x) = 0 as illustrated in Figure 3.4. This 
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Figure 3.4. Tangent hyperplane (I) 

hyperplane is defined by 

(3.27) 

where 

(3.28) 

PI =\lg(xk + a~;J). 

7Jk =(f3k)'(x,~: + a~J), 

a~ ={a I g(x.~: + afj) = 0}. 

This is a linear approximation of the surface g( ;r) - 0 at the• 1.·-th 

iteration. Then we solve the following linear programming problem: 

Maximize 
subject to 

and obtain an optimal solution .:r.1· 
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c'x, 
Ax = b, 
( .:ll )' _ I 

fJJ. X - 1J,., 
X;::: 0, 



Figure 3.5. Tangent hyperplane (II) 

Ncxt, wc construct the hyperplane tangent to the surface g( x) = 0 

at an intersection point of the line segment [xb:!:.k-tl and the surface 

g( x) = 0 as illustrated in Figure 3.5. This hyperplane is defined by 

(3.29) 

where 

(3.30) 

fJZ = 'Vg(Xk + ai{;~.k-1- Xk)), 

11~ =(/3~)'(.rk + ai(Ik-I - xk)), 

al ={a I g(xk + a(±k-l- .rk)) = 0}. 

Then we solve the following linear programming problem. 

Maximize 
subject to 
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c' :r' 
Ax= b, 
(Pi)' :f = 77k I 
:r ;::: 0, 

and obtain an optimal solution ±i· 
Note that both of optimal solutions .f.k and :ri are feasible to prob­

lem P2, since problems P~ 0 (."") and Pi0 (k) are more strictly constrained 

than problem P2. The first point ±1 reflects the estimatcd constraint 

jj1 :r = 17 and thc second point .::d reflects the previous point generating 

a lower bound. Thc updated lower bound is determitl<'d by 

(3.31) I. _ [ I I ,1 I 2] c l..k - max c ±k _ 1 , c £k, c ,r_k . 

Then the sequence { C1 ;r.d of lower bounds is nonderrcasinp, with an 

u ppcr bound c1 :r *. It is easily shown that I c1 x k - c1 
:!:.k I tends to 0 for J..· 

sufficient ly large, since Xk becomes identical to .r* after a finite number 

of iterations. If .r 1. = .r*, it holds ;r.k = x*. 

\\'hen one feasible point is obtained, the following it<'rativ<' sdl<'me 

gives a point that satisfies the Kuhn-Tucker first order necessary con­

ditions for problem P2 [l\14]. 

(i) Choose zo E Don G. 

(ii) Given z11 let z1+ 1 be an optimal solution of the following problem, 

which is obtained by the linearization of g(.r)- 0 at .r = z,. 

P( z,): 

Maximize 
subject to 

c' 1·, 

A:r = b, 
g(z.) + 'Vg( z1)(1·- z1 );::: 0, 
X;::: 0. 

By Meyer [M4, Theorem 2.1], the above pror<'dure gives an accu 

mulation point z* of the monotonically increasing sequ<'nce { z,} and z* 

is an optimal solution of problem P(z*). Then z* satisfies the Kuhn­

Tucker first order necessary conditions of problem P2. \Vc• shall say 
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that a feasible solution ;f.k is an t-optimal solution of problem P2 when 

it satisfies lc' :r k - c' J:.k I ~ f for a prescribed positiv(' number f. If we 

choose an epsi ion-optimal solution for z0 in the above scheme for a 

sufficiently small f, it is considered that z* is an optimal solution of 

problem P2. An optimal solution of problem P2 is given by proce­

dure CPMEP1 as well as by the above scheme. The former procedure 

generates a sequence of infeasible points and the later one generates a 

sequence of feasible ones. 

3 .6. An Illustrat ive Example 

(Example 3.1.) Consider th<' following problem: 

Maximiz(> 
subject to 

4 X] + 3 X2 + 13x3, 
2 X] + 3 X2 + 8 X3 ~ 4, 
2 X] + X2 + 4 X3 :5 3.2, 
3 X1 + 8 X2 + 4 X3 :5 3, 

{31 XJ + P2x2 + /33x3 = 1, 
XJ,X2,X3 2::0, 

wher<' {31 , {32 and {33 are unknown coefficients. Using the results of 

sampling by computer simulation with sample size N = 10 and a sig­

nificance level a - 5%, we obtain the following estimates of /3. 

~ = (1.9959, 1.0193, 2.8677) 

(3.32) 
( 

1.0497 -1.1185 0.3399 ) 
v = -1.1185 2.2543 -1.5573 

0.3399 -1.5573 2.4672 
X 10-2 

Fo.os(3, 7) = 4.35 

The computational results of procedure CPMEP1 in Section 3.4 arc as 

follows. 
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(i) first iteration: 

Xo = (0.5000, 0.0000. 0.3750) : infca.<.;ible 

s& = ( 0.0000, 0.1539, 0.4423), y~ = ( -0.1266, 0.1928, 0.4594) 

s5 = ( 0.0000, 0.0000, 0.5000), Y5 = ( -0.0671, 0.0000, 0.5168) 

s~ = ( 1.0000, 0.0000, 0.0000), yJ = ( 1.8743. 0.0000, -0.6557) 

H(xo) : 1.2680x1 + 1.0165x2 + 2.0997x3 ~ 1 

( ii) sccond iteration: 

.t 1 = (0.0000, 0.0000, 0.4762) : infeasible 

sl = ( 0.0000, 0.0000, 0.0000), y: = ( 0.0000, 0.0000, 0.4578) 

->? = ( 0. 7886, 0.0000, 0.0000), y~ = ( 1.8744, 0.0000, -0.6558) 

s~ = ( 0.0000, 0.1806, 0.3888), Y? = ( 0.0000, 0.0000, 0.2703) 

H(.r1) : 1.2977x1 + 0.9629x2 + 2.1843x3 ~ 1 

(iii) third iteration: 

x2 = (0.0000, 0.0000, 0.4578) : feasible 

An optimal solution is, therefore, x* - .r2 = (0.0000, 0.0000, 0.4578) 

and the optimal value is 5.9514. This problem is solved by adding two 

cutting hyperplanes. 
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3.7 . Extension to the Linear Programming Problem 

with more than One Additional Constraint Includ­

ing Unknown Coefficients 

We consider the following linear programming problem with more 

than one additional constraint including unknown coefficients. 

Maximize 
f1 

L CjXJ, 

J=l 
n 

subject to L a,1 x1 = b" i = 1, 2, ... , m, 
j=l 

1l 

L f3t}Xj=1],, i=1,2, ... ,l, 
J=l 
x 1 ~ 0, j = 1,2, ... ,n, 

where matrix fl = ({3,1 ) includes at lC'ast OllC unknown coefficient in 

each row. Let CJ,(:r;a) denote a confidcncc interval of I:;'=• p,1 x 1 

under a significance level o. Then problem P 11 is equivalent to the 

following problem with estimated constraints. 

n 

Maximize L c1 1·1 , 

]=1 
n 

P12: subject to L a,J'rJ = b,, i = 1, 2, ... , m, 
]=I 

171 E CJ,(.r;O'), i = 1,2, ... ,/, 
x 1 ~ 0, j = 1,2, ... ,n, 

Each constraint TJ 1 E C I, ( .r; o) is equivalent to the following two reverse 

convex constraints 

(3.33) 
g;(.-,;) ~ -1],, 

g;t"(.r) ~IJ1 , 
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which are defined similarly to (3.6). We define 

(3.34) 

where 

(3.35) 

I I 

G = n G, = n{x lg,(x) ~ 0}, 
t=l i=I 

if g;(x0 ) < -rJ, 

if g;t(xo) < 7],. 

An optimal solution of problem P 12 is obtained by solving problem P 7 . 

T he difficulty of this prohlcm is that an optimal solution is not always 

attained on an edge of Do, but may be attained on an intersection point 

of nonlincar functions g,(x) = 0, i = 1, 2, ... , l. 

Based on the Tuy's cuts, we construct the cutting hyperplanes as 

follows. Let h denote an index set of constraints violated by x k> that 

IS, 

(3.36) h = {i lgi(Xk) < 0, i = 1,2, ... ,1}. 

The point that the extension of edge [:r,.. .-;f] meets to G, for i E h. 

say yi,, is given by solving the following one-dimensional problems for 

each i, j and k: 

Minimize (]1 
k, l ' 

subject to g,(Bi,ui. + xk) ~ 0, 
P13(i,j, k): 

where tt{ is defined by (3.18). Then wc have 

(3.37) Yi,=xk+Of,u1
k, j=1,2 .... ,n, . ' 
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where 8{ 
1 

denotes an optimal solution of problem P13(z,j, 1.:). If Xk is . 
a nondegenerate vertex of Dk. the cutting hyperplane H(xk; i), which 

cuts off' the point ."Ck from the i-th reverse convex region Gi, is given by 

(3.38) 

where 

(3.39) 

is an n x n matrix. The degenerate vertex ccm be cut off by the 

Carvajal Moreno cuts ( 3.22) for the violated constraints g1 ( x) ?: 0, 

i E h. 

The cut H ( :r k) at the /;-th iteration is defined by 

(3.40) H(xk) = n H(xk; i), 
iElk 

which separates an optimal solution Xk of problem pk from the feasible 

region Dk. Here we state problem pk again. 

pk: Maximize c' :r, 
subject to x E Dk, 

The feasible region Dk of problem pk is defined by {3.16) and it is 

shown that Dk+I:) (DonG) for all k [H1]. As discussed in Section 3.4, 

we obtain a point sequence { x k} of optimal solutions of problems pk, 

k = 1, 2,.... It is not, however, guaranteed that a point sequence 

{ x k} of optimal solutions of problems pk , k = 1, 2, . . . converges to an 

optimal solution of problem P 12 . When the cutting hyperplanes gener­

ated in these iterations become parallel to the contour lines of objective 
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Figure 3.6. Convergence to an infeasible point 

function, that is, eMk,/ -+ c as k -+ oo, the amount of updated value 

ic'xk- c'xk+ll tends to zero and the sequence {xk} may not reach a 

feasible point. Figure 3.6 illustrates the convergence to an infeasible 

point x 0
• The cutting hyperplanes are becoming parallel to the con­

tour of objective function. A point sequence { x k} of optimal solutions 

of problems pk, k = 1, 2, ... converges to an infeasible point on such 

hyperplane. 

THEOREM 3.4. If a point sequence { x k} of optimal solutions of prob­

lems pk, k = 1, 2,.. converges to an infeasible point x 0 such that 

c1x 0 > c'x*, then the cutting hyperplane H(xk) becomes parallel to 

the contour of objective function. 

75 



PROOF: Let t > 0. When a sequence {:rk} converges to x 0
, it holds 

llxk- Xk+tll < t for a sufficiently large h'. Let dist(.rk. H(xk)) denote 

the distance between .rk and H(xk). Then it holds dist(xk, H(xk)) ~ f 

from that Xk E Dk \H(.rk) and Xk+I E Dk n H(.rk ). Since 

(3.41) Dk+• = Dk n [ n H(.r~.: i)j, 
tE/k 

it is obtained that 

(3.42) 

for all i, and 

(3.43) 

I > I ) c Xk - c Yk,t' 

for all i and j. If the cutting hyperplane H( x k) docs not become parallel 

to the contour of objective function, (3.42) and (3.43) imply that there 

exists at least one Y~.~ such that 

( 3.44) 

From xk E Do andy{, E G, it is concluded that there is an accumula-
' 

tion point x 0 E D 0 n G. This contradicts that .r 0 is infeasible. 1 

Now we define the distance between a point Xk and the feasible 

region by 

(3.45) d(xk) = L llxk- .rk.tll. 
tEh 
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where xL, i E h, is the point on g,(:r) = 0 nearest to Xk. Consid<•r 

the following linear programming problem P 14 (!..· ), which is the inner 

linearization of problem P 12 at xk,i, i = 1, 2, ... , l. 

Minimize 
subject to 

c' .r, 
Ax= b, 
\lgi(xZ,)'(.r- .rz,) ~ o, 
:r ~ 0. 

i=L2, ... ,l. 

Let xz denote an optimal solution of problem P 14(k). Then .rk is a 

feasible point of problem P 12 and c' x k ~ c' x * ~ c' x k. Note that x k -+ 

x* implies xk -+ x*. 

The convergence is checked by lc' x k - c' x k+ d ~ t 1 and the feasi 

bility is checked by d(.rk) ~ €2 for sufficiently small t 1 and t2. Using 

these criteria, there arc two cases in which this algorithm fails to ob­

tain an optimal solution. One case is that the convergence speed is too 

slow even though the algorithm converges to au optimal solution. The 

other case is that thc> algorithm convergc>s to an infeasible point and 

the cutting hyperplanes become parallel to objective function. Then 

lc1xk- C
1Xkl tends to zero in the former situation but lc1xk- c1xkl docs 

not tend to zero in the latter situation. 

When a point sequence {xk} of optimal solutions of problems pk, 

k = 1, 2, ... does not go to an optimal solution of problem P 12 , it is 

necessary to introduce an exceptional cutting hyperplane to restart the 

point sequence { Xk} toward x*. Assuming that the cutting hyperplanes 

become parallel to the contour of objective function, it holds 

(3.46) II max c'y{ i- Il).i~ c1 y~ ,II ~ t, 
t,J • 1,) ' 
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and 

( 3.4 7) · I J < I < I J mm c Y~; i _ c Xk+I _ max c Yk . 
f,) ' It) ,t 

When lc1 x k - C
1 x k+ 11 < f 1 , we set the accumulation point .r0 to :r k. 

When d(x 0
) < € 2 , we consider that :r0 is f<'asible and the sequence of 

optimal solutions attains to an f-optimal solution of problem P 12 . If 

d(x0
) ~ €2 , we consider that :r0 is infeasible. Then it holds that 

(3.48) c1 x 0 =min c1y1 > c1 x* ' . k t • 
1,] I 

In this case, we construct an exceptional cutting hyperplane defined by 

{3.49) 

After adding the exceptional cutting hyperplane H(xk) to prob­

lem pk, problem pk+I with the feasible region Dk+I = D~; nif(xk) has 

an optimal solution xk+l on the hyperplane H(xk). Xotc that 

(3.50) 

and at least one adjacent vertex si+ 1 of D k+ 1 is a vertex of Do, since 

it holds c1yL > c1x 0 for all i and j and YL are cut off by the hyper­

plane H(xk)· Then we have that 

{3.51) • I } I 0 
nunc Yk+I 1 < c x , 

1,) • 

and the sequence of optimal values of problems pk restarts from c1 x 0
• 

Figure 3. 7 shows the resulting algorithm, named CPMEP2, to solve 

problem P !2· 
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proce dure CPMEP2: 

begin 

Set k +-- 0; 

Giv<' tolerance levE"ls t 1 and €2; 

Let H(xo) = R11
; 

repeat 

begin 

Construct exceptional cut H(xk) of (3.49); 

Let Dk+I +-- Dk n H (xk) and solve problem Pk; 

Let k +-- k + 1; 

while ldxk- C
1Xk-II > €1 do 

end 

begin 

Construct H(xk) of (3.40); 

Let Dk+l +-- Dk n H(:rk) and solve problem Pk ; 

Let k +-- k + 1; 

end 

until d(xk):::; €2; 

x k is an optimal solution of probl<'m P 12 ; 

end. 

Figure 3. 7. Procedure CP~IEP2 

Consider the sequence of exceptional cuts and let { xf} denote the 

sequence of corresponding accumulation points. If we assume that 

the exceptional cuts are generated by this algorithm infinitely many 
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times, it contradicts the finiteness of V(Do), since at least one ver­

tex of Do is located between two any exceptional cuts. Therefore, the 

sequence { c' x~} is a monotonically decreasing sequence bounded by 

c'x* from below and this algorithm converges to an optimal solution of 

problem P12· 

Next we consider a lower bound of the optimal value and a sequence 

offcasible solutions of problem P12 . We find that an optimal solution xk 
of the inner linearized problem P 14 is a feasible solution of problem P 12 

and c' xr is a lower bound of the optimal value. Then consider the 

following scheme. 

(i) Let zo = xk E Do n G. 

(ii) Given z,, let Z 1+1 be an optimal solution of the following linearized 

problem, which is obtained by linearizing g1(x) = 0, j = 1, 2, ... , l, 

at x = z,. 

P'(z1 ): 

Maximize 
subject to 

c'x, 
Ax= b, 
9i(z,) + 'Vg1(z,)(x- z,) ~ 0, 

j = 1,2, ... ,1, 
X~ 0. 

When we obtain xk which is very close to an optimal solution, that 

is, lc'xr- c'xkl ::::; e for a sufficiently small e, this iterative scheme is 

considered to construct a sequence of feasible solutions converging to 

an optimal solution of problem P 12 . 

3.8. Conclusion 

The confidence region method for a stochastic linear programming 

problem that contains unknown coefficients in a coefficient matrix is 
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considered in this chapter. The w1known coefficients ar<> estimat<"'d by 

means of regression analysis based on noisy observations. The con­

straints including unknown coefficients are replacl'd by confidcnn' re­

gions derived under a certain significance level. The confidence region 

of such constraints are reverse convex and our problem is regcu·ded 

as a linear programming problem with additional reverse convex con­

straints. 

Vve have mainly considered a linear programming problem in which 

only one constraint includes unknown coefficients. In such <t probl<'m, 

an optimal solution lies among the points that intersect edges of poly­

tope constructed by the known linear constraints to th<' boundary of 

reverse convex region. A cutting plane method is proposed by utilizing 

the Tuy's cut. \Ve show that the algorithm finds an optimal solution 

of the reverse convex programming problem in a finite number of iter­

ations. Since the algorithm generates a sequence of infeasible solutions 

converging to an optimal solution of problem P2, a lower bound of the 

optimal value is also considered at each iteration. A lower bound of 

the optimal value gives a sequence of feasible solutions of problem P 2 

according to optimal solutions of problems P", k = 1, 2, .... 

For thC' linear programming problem in which more than one con­

straint includes unknown coefficients, an optimal solution may be lo­

cated on thC' intersection of the boundaries of reverse convex r!:'gions. 

Therefore, the algorithm for the former problem may conv<>rge to an in­

feasible point. Vole discuss how to find the convergence to an infeasible 

point and propose a modified algorithm to restart the point sequence 

toward an optimal solution. A lower bound oft he optimal value is also 

obtained at each iteration by solving the linearized problem. 
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Chapter 4 . 

A CONFIDENCE REGION METHOD 
FOR A STOCHASTIC LINEAR 

KNAPSACK PROBLEM 

4 .1. Introduction 

The linear knapsack problem has been well studied and som<> ef­

ficient algorithms of 0( 11) computational tim<> are known, if all co 

cfficients are known, where n is the number of items. This chapt<'r 

discusses the confidence region method for a stochastic linear knapsack 

problem. A stochastic linear knapsack problem with random cost cocf 

ficients is one of the generalized versions of a linear knapsack problem. 

We consider the following P-model of a stochastic linear knapsack prob­

lem introduced by Kataoka [K3], which is to find an optimal solution 

minimizing the goal value subject to a chance constraint that the total 

cost is less than the goal value with probability more than a 0 . 

Maximize J, 

subject to 
n 

n 

2: a1 xj = b, 
j=l 

0 :::; xi :::; b1 , j = 1, 2, ... , n, 
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where it is assumed that 

(i) aj > 0, b1 > 0 for j = 1, 2, ... , n, and 2::;1=1 a1 b1 ~ b > 0, 

(ii) 1/2 <no ::::; 1. 

(iii) c1 , j = 1, 2, ... , n, arr mutually independent random variables 

which have a normal distributions .N({Lj,O"j), j = 1,2, ... ,n, re­

specti vcly. 

Problem P 1 is solved parametrically in at most O(n 2 log n) computa 

tiona! tim<> by the algorithm of Ishii and Nishida [12]. 

In usual stochastic programming, t hr distribution parameters of 

random variable are known in adYance. However, the confidence region 

method for stochastic programming discussed in the previous chapters 

assumes that the distribution parameters of random variable are un­

known. We shall show that the game theoretic minimax model based 

on the confidence region method for a stochastic linear knapsack prob­

lem can be solved in a polynomial time by reducing it to a problem 

with known distribution parameters. 

Section 4.2 summarizes the solution procedure for problem P1 with 

known distribution parameters. By introducing the auxiliary problem 

with a positive parameter, problem P 1 is solved in at most 0( n 2 log n) 

computational time [I2]. Section 4.3 discusses the minimax model based 

on the confidence region method for problem P 1 with unknown distribu­

tion parameters, where unknown distribution parameters arc restricted 

to the confidence region. It is shown that this problem is also solved by 

the same procedure as proposed in Section 4.2. Section 4.4 summarizes 

this chapter. 
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4.2. A Stochastic Linear Knapsack Problem 

We summarize the solution procedure for problem P 1 • P roblem P 1 

is equivalent to the following deterministic problem: 

Maximize 
n 

L tlj.l;J - l{a 

j=l 
p2 : n 

subject to L a1 .r1 = b, 
j=l 
0::::; .1.·1 ~ b1 , j = 1,2, ... ,n, 

where /{0 is the a-percentile of a standard normal distribution. By 

variable transformations 

( 4.1) 

for j = 1, 2, ... , n, problem P 2 is further transformed into the following 

problem: 

n n 

Maximize L J..LiYJ- L o}y;, 
J=l J=l 

n 

subject to L Yi = b, 
j=l 
0 ~ y1 ~ '}'j, j = 1,2, . ... n. 

Now we introduce the following auxiliary problem P£l with a pos­

itive parameter R. 

P R. 
3 . 

Maximize 

subject to 
n 

L YJ = b, 
j=l 
0 :S y1 ~ 1'1 , j = 1,2, ... ,tL 

The following theorem shows a relation between problems P 3 and Pf. 
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TIIEORE~l 4.1. Let y* and yR denote optimal solutions of problems P3 

and Pf, respectively. If 

n 

( 4.2) R = L aj(yf)2 I 

j=l 

then it holds that y* = yR. 

PROOF: Since problems P3 and Pf are convex programming problems 

with a single linear constraint and upper bounded variables, optimal 

solutions of problems P3 and Pf satisfy the following K uhn-Tucker 

conditions ( 4.3) and ( 4.4 ), respectively. 

( 4.3) 

( 4.4) 

2 

r==a=;=Y=J =- flJ + ttJ- Vj +A= 0, J = 1, 2, .... n, 
n 

L a]y] 
j=l 

viy1 =0, u1(y1 -lj)=O, j=l,2, ... ,n, 
n 

L Yi = b, 0 ~ y1 ~ 11 , Uj,Vj ~ 0, j = 11 2, .. . ,n, 
j=l 

a]y1 - RJ,11 + u1 - Vj +A= 0, j = 1, 2, ... , n, 

v1 yj=0, tlj(Yj-lj)=O, j=1,2, ... ,n, 
n 

L Yi = bl 0 ~ Yi ~ 'Yi· tt1 ,Vj ~ 0, j = 1,2, ... ,n1 

j=I 

where A ,u1, Vj 1 j = 1,2, ... ,n, are Lagrang<' multipliers. Let (y*,u*, 

v*, A*) and (yR 
1 
u R, vR, A R) denote solutions of ( 4.3) and ( 4.4), respec­

tively. Then if R = JL..;=t a;(yf)2 , it holds that 

( 4.5) 
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Therefore yR is also an optimal solution of problc>m P3. I 

Let R* denot<' th<' R satisfying R = JL..;1=1 o}(yf)2 . Theor<'m 

4.1 implies that yn- is an optimal solution of problem P 3 . Th<'n we 

df'fine T(R) as a function of R. 

n 

( 4.6) T(R) = R- L a;(yJl)2 
;=l 

Since T(R) is continuous and non-decreasing function of R, there exists 

the unique R* that satisfi<>s ( 4.2). Furthcrmor<>, it holds that 

( 4. 7) 

T(R) < 0 {:=} R < R*, 

T(R) = 0 {:=} R = n·~ 

T(R) > 0 {:=} R > n•. 

The solutions of ( 4.4) ar<' given as functions of A as follows. 

uf(A) = max(O, RJ-Lj- A- a]11 ), 

vf(A) = max(O, A- Rpi ), 

( 4.8) 'Yi if A ~ -11aJ + Rp1 , 

Rp1 - A 2 y1R(A) = 02 ' if -11a1 + RJ,11 <A~ Rp1, 
} 

0 if A > R1t1 , 

for j = 1, 2, ... , n, and 
n 

( 4.9) L YfP) =b. 
j=l 

Since yf(A) is a non-increasing function of A, yf is found by solv­

ing equation L..;1=1 yf(A) = b. \Ye sort -11aj + RJt1 and R111, J = 

1, 2, ... , n, in non-decreasing order and denote their different values by 

(4.10) R R AR AR AR + Ao - -oo < A1 < 2 < · · · < N, < N, +1 = oo, 
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procedure AUX(R): 

b egin 

i ...._ 0; 

j r- N 1 + 1; 

repea t 

begin 

I r- f(i + j)/21; 

..\r-1\.R. 
I ' 

if 2:;1=1 yfp.) > b the n i r- l; 

if 2:~'= 1 yf(.A) < b the n j r- l 

e nd 

until L:;=l yf(.A) = b or j - i = 1; 

find .AR such that 2:~'= 1 yf(.A) = b; 

yR ...._ yR(..\); 

e nd. 

Figure 4.1. Solution procedure for auxiliary problem P f 

where N 1 denotes their number which is at most 211. yf(.A) is deter­

mined by (4.8), for each inten·al.A E (Af,Af+1 ), I.·= 0,1. ... ,NJ. 

Now we give an algorithm AUX(R ) in Figure 4.1 to solv<' prob­

lem Pf, which finds an optimal solution yR of problem Pf in at most 

0( n log n) computational time. To find R*, we obtain the values of 

positive R such that Af = A f for a ll pairs i and j with i i= J. W<' sort 

such R's in non-decreasing order and d<'note their different values by 

(4.11) 
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1 
where N2 denotes their number which is at most -n(3n - 1). For 

2 
each interval of R, the order of A f, j = 1, 2, ... , n, is uniquely deter-

mined and problem Pf is solved by algorithm AUX(R). WC' dC'note 

(R ,.,R,·+d th<' interval to which R* belongs. For .A E (Af,Ar+1 L 

compute the .A satisfying 2:;= 1 yf(.A) = b, where R is contained as 

a parameter and we denot<' it by .A(R). Note that the order of Af, 
j = 1,2, ... ,n, is the same for all R E (R, . ,Ri•+J). Then we have 

( 4.12) 

and let Sk = (Rf, R f) d<'note the closure of a s<'l in ( 4.12). If S~; = </>, 

.A* is not located in interval (Ar,Ar+1 ) and we search other intervals 

of .A for .A*. Otherwise, we have .A* E (Ar,Af+1 ) and R* E (Rf, R~), 

so R* is obtained by solving 

n 

(4.13) R* - L o-Jyr (.A) = 0. 
;=1 

Figure 4.2 is an algorithm to solve problem P3, which finds an optimal 

solution y* of problem P 3 in at most 0( n2 log n) computational time. 

4.3. A Confidence Region Method for a Stochastic 

Linear Knapsack Problem 

Vie consider the problem in which normally distributed random 

cost coefficients have unknown distribution paramC>ters. Bas<'d on es­

timation through noisy observations, we derive a confidence region in 

which the parameters are restricted under a certain significance level. 
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procedure SLKP: 

begin 

i- 0; 

j .._ N2 + 1; 

repeat 

begin 

l .._ f(i + j)/21; 

AUX(RL); 

if T(RL) > 0 t h en i .._ l; 

i f T (R1 ) < 0 t he n j .._ l 

e nd; 

u nt il T(R1) = 0 or j- i = 1; 

if T(R1) = 0 the n y* .._ yR'; 

e lse 

for every k = 0, 1, 2, . . . , .V1 d o 

if sk =I=</> t he n 

b egin 

AUX(Rt ); 

AUX(Rf); 

if T (Rf; ) = 0 t he n y* .._ yR~; 
if T (RY ) = o t he n y* .._ yn~; 
if T(Rf;) < 0 and T(RY) > 0 then y* .._ yn'; 

e nd ; 

y* is an optimal solution of probl<>m P 3; 

e nd. 

Figure 4.2. Solution algorithm for problem P3 
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The minimax model based on the confidence region method, discussed 

in this section, gives a minimax solution that optimizes the objective 

function under the possible worst-case values of estimated parameters. 

Now consider problem P 3 , which is equivalent to problem P 1 by 

variable transformations ( 4.1 ). The confidence region of distribution 

parameters has been given in Section 2.2. Then the minimax prob 

lem P 4 is given as follows. 

n 

Maximize Minimize 
y (,,,u)ES,. 

n 

subject to L YJ =b. 
j=l 

0 ~ y1 ~ 'Ti• j = 1, 2 , ... , n, 

where 

{ 
~ (JL1 - Jli)2 n(N- 1) 

(4.14) 5 0 = (p,a) L 8~ ~ N(l\' -n) F0 (n,N -n), 
J=l ) 

(N- 1)s~ 2 (N- 1)s] . } 
2(N )~ ai~ 2 (N )' J=1,2, ... ,n. 

Xp - 1 XI-{3 -1 

Optimal solutions aj, j = 1, 2, ... , n, of the minimizing part of prob­

lem P 4 with respect to a1 , j = 1, 2, ... , n, are given by 

(4.15) 
N -1 2 

\Lp(N -1)sj, 
j = 1, 2, ... , n, 

from the nonnegativity of Yi. By substituting ( 4.15) into problem P 4 

with variable transformations 

(4.16) ~ - J.l} - ilJ 
..,1 - , j = 1, 2, .... n, 

sJ 
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the minimizing part of problem P4 with respect to p 1 , J = 1,2, ... ,n, 

becomes the following problem with a quadratic constraint. 

Ps : 

where 

( 4.17) 

Maximize 
~ 

subject to 

N -1 
11 n 

L SJYj~j + L iliYJ + 
]=1 j=l 

n 

I:~; :::;!{, 
j=l 

~1 ~ 0, j = 1,2, ... ,n, 

, n(N- 1) 
/\. = N(N _ n) F0 (n, N- n). 

Now we introduce the following subsidiary problem P 5 (B) with a 

parruneter B. 

P5 (B) : 

Minimize 
n 1'"' 2 2~~]' 

J=l 
n 

subject to L s1 yi~J ~ B, 
j=l 
~j ~ 0, j = 1,2, ... ,n. 

Let ~(B)= (6(B),{2(B), ...• ~n(B)) denote an optimal solution of prob­

lem P 5 ( B). Then the following theorem describes a relation between 

problems P 5 and P 5(B). 

T IIEOREM 4.2. If~(()) satisfies 

n 

( 4.18) L ~J(B) = J{ 

J=l 

and 
n 

( 4.19) 2:: SJYJ~J(B) = B, 
J=l 
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I. 

then~( B) is an optimal solution of problem P 5 . 

PROOF: Since prohl<'ms P 5 and P 5 (B) arc convex programming prob­

lems, optimal solutions of problems P 5 and P 5 ( B) satisfy the following 

Kuhn-Tucker conditions (4.20) and (4.21), r<'spc>ctivcly. 

n 

(4.20) L~J:5 f{, ~1 ,v1 ~0, 1/j~j=O, j=1,2, ... ,n, 
j=l 

1l(L~J- K ) = 0. 
J=l 

n 

( 4.21) L SjYi~i ~ B, ~i• v1 ~ 0, llj~j = 0, j = 1, 2, ... , n, 
j=l 

n 

17(B- 2: siYi~1 )=0, 
j=l 

where 1J, 11 i, ~i, j = 1, 2, ... , n, are Lagrange multipliers. Let ( ~·, v*, 1() 

and (~(B), v( B), 17( B)) denote solutions of ( 4.20) and ( 4.21 ), respectively. 

Then (C,v*,17*) is constructed from (~(B),v(B),17(B)) as follows. 

( 4.22) C =~(B), v• = v(B)/17(B), 1( = 2j17(B), 

where 17( B) > 0 from ( 4.19) and ( 4.21 ). Th<' conditions L:;=l ~; :5 J{ 

and 17 (l::j=1 ~; - !{) = 0 are assured by ( 4.18). Therefore ~(()) is an 

optimal solution of problem P 5 . I 
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From (4.18), (4.19) and {4.21), an optimal solution C of prob­

lem P 5 is given by 

( 4.23) 
I\ 

j = 1, 2, ... , n. 11 SjYJ· 

L: s~y~ 
1=1 

Then problem P 4 becomes the following problem. 

where 

{4.24) 

7l 

Maximiz<' L JlJYJ - I\' 
J=l 

n 

subjc•ct to L YJ = b, 
J=l 

ll 

" .,2y2 
~'J'J' 
]=l 

0 :S y1 :S 11 • j = 1,2, .... n. 

]{' = .JK + N -1 

Problem P 6 is essentially the same as problem P 3 and so we can 

solve problem P 6 by algorithm SLKP. 

TIIEOREM 4.3. Assuming that the square root of a number can be 

calculated in 0{1) computational time, problem P4 can be solved in 

O(n 2 logn) computational time. 

PROOF: It is clear that ]{' of ( 4.24) can be calculated in 0( 1) compu­

tational time. Once problem P 4 is transformed into problem P 6 • it can 

be solved in O(n 2 log n) computational time by algorithm SLKP. I 
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4.4. Conclusion 

We introduced a minimax model based on the confidence regwn 

method for a stochastic linear knapsack problem with unknown distri­

bution parameters. In this model, unknown parameters are restricted 

in the confidence region and an optimal decision is sought to opt imize 

the objective function by assuming the possible worst-case valu<'s of 

such parameters within the confidence region. The proposed minimax 

problem is transformed to the problem with known distribution param 

eters, which is then solved effectively by algorithm SLKP in at most 

O(n2 logn) computational time. 

This parametric type algorithm is applicabl(> to other nonlinear 

programming problems, which haYe quadratic objective function or con­

straint. Such problems often occur in the E-V model and the P-modcl 

of stochastic programming. In this sense, it is worthwhile to investigate 

the case in which random variables arc not independent each other. 

Some generalization of this problem, which is rdated to a portfolio :w­

lection problem as a probability maximizing mod(>! of a stochastic linear 

knapsack problem, arc discussed in the following chapters. 
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Chapter 5. 

A PROBABILITY MAXIMIZING MODEL 
OF A STOCHASTIC 

LINEAR KNAPSACK PROBLEM 

5 .1. Introduction 

This chapter discusses a probability maximizing model of the sto­

chastic linear knapsack problem P 1 . 

Maximize Pr (t err: 3 2:: d) , 
)=1 

n 

subject to L a3 x 3 = b, 
j=l 

O~x3 ~(3 , j=1,2, ... ,n, 

where c = ( Cj) is assumed to be a normally distributed random vec­

tor, x = (xi) is an allocation vector and a = ( ai ), 1 = (13 ), b and d 

are known coefficients. This problem finds an optimal solution which 

maximizes the probability that an objective value exceeds a prescribed 

goal value. Ishii and Nishida [I3) have considered the case in which 

the random cost coefficients c1 , c2 , ..• , Cn are assumed to be mutually 

independent. T hey derive an equivalent deterministic fractional prob­

lem with a single constraint and a lower and upper bounded allocation 
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vector, and propose a solution algorithm which finds an optimal solu­

tion in at most O(n4
) computational timc by introducing two auxiliary 

problems. 

A portfolio selection problem is a mathematical formulation of a fi­

nance model to allocate a given amount of money among several invest­

ments for obtaining a large return under a small risk. Markowitz (M3] 

formulates the portfolio selection problem as maximizing the expected 

utility under uncertainty, where the portfolio is selected by taking into 

account both risk and r<'turn on investment. When we invest a money 

to some investments, we can obtain somc return after a certain time 

period. However, the amount of return on investment is uncertain and 

the uncertainty of each investment is different from each other. There 

are several mathematical models to predict the return on investment, 

e.g., a capital asset pricing model (CAP~) and an arbitrage pricing 

theory (APT), which provide the distribution of the ratc of return on 

investment. Therefore it necessitates thc investigation of probabilistic 

and statistical approachC's for the portfolio selection prohlC'm. 

We consider the one-period portfolio selection problem. Since the 

return on investment is assumed to be a random variable, there are 

two conflicting objectives that the expectation of total return should 

be maximized and the variance of total return (i.e .. risk) should be 

minimized. An efficient frontier of admissible portfolios, where the 

variance of total return for a fixed expected total return is minimized, 

is obtained in the mean variance framework. Szego [S4] considers the 

properties of an efficient frontier with one riskless asset. 
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This chapter deals mainly with a probability maxinuzing model. 

\Vhen the investor is aiming for total return in advance, hc manages to 

achieve his goal. Then, hc wants to find tlw portfolio that maxnmze:,; 

the probability of achieving his goal rathC'r than one' that maximize's 

the total rcturn. 

A probability maximizing model of portfolio selection problem P 1 

with a normality assumption of return is equivalent to a fractional pro 

gramming problem with the squared root of a quadratic form in th<' 

mean variance framework. Since the returns on investment arc not con 

sidered to be mutually independent, it is necessary to investigate the 

problem with correlated random coefficients, as a generalization of the 

problem with the independent random cost coefficients. Section 5.2 

starts with a probability maximizing model of the storhastic linear 

knapsack problem as a main problem, and formulates an equivalent 

problem that maximizes the ratio of cxrcss return to standard devia­

tion. We introduce two auxiliary problems, one of which is a quadratic 

programming problem with positive parameters Rand q. An optimal­

ity condition that an optimal solution of the auxiliary problem is an 

optimal solution of the main problem is then derived. Section 5.3 shows 

that an optimal solution of the main problem is geometrically fonnd on 

the efficient frontier in the mean variance framework and that an opti­

mal parameter value R* uniquely exists. The relation between an EV 

model and a probability maximizing model is also noted. Section 5.4 

gives a summary of Chapter 5. 
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5.2. A Probability Maximizing Model of a Stochas­

tic Linear Knapsack Problem 
We consider tl1<' following probability maximizing model of a sto 

chastic linear knapsack problem. 

Maximize Pr (t c,.r, ~d) , 
]=1 

n 

subject to L ajx i = b, 
j=l 

0 ~ Xj ~ "fj, j = 1,2, ... ,n, 

where c = ( Cj) is a random vector with an 11 dimensional normal dist ri­

bution N(l1, V). Vie assume that a = (a,), :Y = ( i'J) and b are positive 

and satisfy L:;=t a/r, ~ b for the sake of feasibility of problem P 1 • 

Moreover we assume at least one feasible solution .r of problem P 1 sat 

isfies 11' x ~ d, that is, Pr( c' x ~ d) ~ ~. This assumption is satisfied for 

d ~ max { 11' x}. When Pr( c' x ~ d) < ~ for any feasible x, there is no 

practical meaning, because it holds that Pr( c' .r 1 ~ d) :::; Pr( c' x2 ~ d) 

for c'x 1 = c'x2 and (x 1 )'V x 1 :::; (x2 )'V x2 , which implies a large variance' 

is preferred to a small variance. 

Then problem P 1 is equivalent to the following deterministic frac­

tional problem. 

ji'x- d 

v;;v;· Maximize 

subject to a'x = b, 
0 ~ .r ~ :y. 

After the following variable transformations 

(5.1) 
ax· 

y j = __]__1_ ' 
b 
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Table 5.1 
Problem Optimal solution Optimal value 

p3 y"' 

pq yq 

pq(R) yq(R) 

problem P 2 is furth<'r transformed into 

Maximiz<> 

subject to 

with a suitable dimension. 

q* 

zq 

zq(R) 

,t'y- d 

Jy'Vy' 
c'y = 1, 
0 ~ y ~ -y, 

We introduce two auxiliary problems pq and P9(R) with positiv<> 

parameters q and R: 

Maximize 
subject to 

Maximize 

subject to 

lt'Y- qJy'Vy, 
e'y = 1, 
0 ~ y ~ ')', 

R I q 'V 
f-1, y- 2y y, 

e'y = 1, 
0 ~ y < 'Y· 

We shall denote an optimal solution and th<> optimal value of each 

problem as describ<'d in Table 5.1. 

Since problems pq and Pq(R ) are convex programming problems, 

the following Kuhn-Tucker conditions KT9 and KT9(R) for problems 
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pq and Pq(R) define their optimal solutions, respectively. 

q(Vy)J #VY + tt1 + u1 - Vj +.A= 0, j = 1, 2, . .. , n, 

v1 y1 =0, uj(y1 -lj)=O, j=1,2, ... ,n, 

q(Vy)j + Rtt1 + u1 - Vj +.A= 0, j = 1, 2, ... , n, 

(I<Tq(R)) VjY1 = 0, u1 (y1 - ii) = 0, j = 1, 2, ... , n, 

where .A, u 1 , v1 , j = 1,2, ... ,n, are Lagrange multipliers. 

The following lemmas show how problem P3 is related to the aux­

iliary problems pq and Pq(R). 

LEMMA 5.1. Tile optimal values of problems P3 and pq satisfy 

zq < -d <===> q < q*, 

( 5.2) * q=q, 

zq > -d <===> q > q*. 

PROOF: SC'e Dinkelbach [D2]. I 

L EMMA 5.2. (Ishii and Nishida (I3]) If R 

yq(R) is an optimal solution yq of problem pq. 

solutions of I<Tq and KTq(R), respectively. Dividing the first <'quation 

in I<Tq(R) by R = Jyq(R)!Vyq(R), then (yq, uq, vq, ..\q) ts constructed 

from (yq(R), uq(R), vq(R), .Aq(R)) as follows. 

q uq(R) vq = vq(R), 
(5.3) yq = yq(R), u = ~· R 

..\q = .Aq(R). 
R 

Therefore, yq(R) is an optimal solution of problem pq. I 
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LEMMA 5.3. (Ishii and Nishida [I3}) The y 1(R) satis(ving 

(5.4) 

is an optimal solution yq of problem pq. 

PROOF: By th<' Kuhn-Tucker conditions KT 1 (R) and KTq(qR), W<' se<' 

that (y 1(R),qu 1(R),qv 1(R),q..\ 1 (R)) is a solution ofKTq(qR). Th<'re­

forc, from Lemma 5.2, the y 1 (R) satisfying (5.4) is an optima.l solu­

tion yq of problem pq. I 

Lemma 5.1 and Lemma 5.3 assure that optimal solutions y 1 (R) 

of problems P 1 (R) with positive R contain an optimal solution y* of 

problem P3. Thus problem P3 can be solved by considering only prob­

lems P 1(R) for positive R. \Ve, therefore, denote P 1 (R), y 1(R) and 

Z 1(R) with P(R ), y(R) and Z(R), respectively, in th<' subs<'quent dis-

CUSS JOn. 

For obtaining an optimal solution y* = y( R*) of problem P 3 , we 

define function T( R) of R by 

(5.5) T(R) = R{tt'y(R)- d} - y(R)'Vy(R). 

Th<' following thC'orem shows the optimality condition for y( R). 

T HEOREM 5.4. Let R* be a solution of equation T( R) = 0. Then 

y(R*) is a11 optimal solution of problem P3. 

PROOF: From Lemma 5.3, the y(R) satisfying (5.4) is an optimal solu­

tion of problem P(R). Then Lemma 5.1 implies that the y(R) satisfying 
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both zq = -d and ( 5.4) is an optimal solution of problem P 3. Since 

zq = -d and (5.4) arc equivalent to 

(5.6) R{f.L'y(R)- d}- y(R)'Fy(R) = 0, 

the y(R*) satisfying T(R*) = 0 is an optimal solution of problem P3. I 

Note that the optimal value is given by 

( 5.7) 
.. y'y(R*)'Fy(R*) 

q = R* . 

In the next section, we discuss the efficient frontier in the mean variance 

framework, and show thc uniqueness of R*. 

5.3 . An Optimal Solution on the Efficient Frontier 

Consider the region of admissible portfolios in the space of v and 1r, 

where v = y'Vy is a variance and 1r = J1 1Y is a mf>an of the objective 

value. The region of admissible portfolios is defined by 

( 5.8) S = {(v, 1r)l y'Vy = v, J1
1Y = 1r, c'y = 1, 0 $ y:::; 'Y }. 

Since we would prefer to minimize the variance as far as we get same 

mean of the objective value, the efficient frontier in the space of v and 1r 

is given by 

Let lL and lube subsets of {1,2, ... ,n} such that lL n lu = <P 

and Bj~ denote the efficient front ier of feasible region when Yi = 0 for 
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j E JL, y1 = "(1 for j E lu and 0 < Yi < "(1 for j ¢]LUlu. Then Bj~ 

is an arc of parabola and B is composed of a sequence of such arcs of 

parabolas Bj~ [S4]. B is a continuous curve which has two ext.r<'mal 

points Q M = ( VM, 1r 111) and Qm = (lim, 7r111 ), where 1r M and 1r m give th<' 

largest and the smallest means, respectively, and Vf11 and vm arc the 

corresponding variances. Note that 1r J\1 and 1r m are easily calculated 

by solving linear programming problems as follows. 

1r M = max{f.L'yle'y = 1, 0 $ y $ 'Y}, 
( 5.10) 

7rm = min{f.L'yle'y = 1,0$ y $ "f}. 

Let B denote by 

(5.11) 

as a sequence of parabolas / 1 , /2, ... , !I\·, where 1r0 = 1r m and 1r /\' = 1r M 

and ]{ is the number of parabolas of which the efficient frontier B 

consists. We define J'(1r) E 8j(1r) = [f'(1r- O),j'(1r + 0)] as thc 

subdifferential off( 1r ). Note that 

( 5.12) 

from the convexity of S. 

Now we show some illustrative examples of efficient frontier. 

(Example 5.1) 0 0 ) ( 0.5 ) 2 0 ' 'Y = 0.5 . 
0 3 0.8 
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The efficient frontier B corresponding to these data is given by 

5 7r2 - 177r + 15, for 
3 12 
- < 7r <-
2 - - -, 

I 

(5.13) 
11 2 

37r+ 3 , for 
12 18 

v= -?r - -<?r<-
12 7 - - 7, 

5 7r2 - 24 7l' + 30 ' for 
18 14 
-<?r<-
7 - - 5' 

which is composed of a sequence of arcs of B!1
}, B! and Bfl} as shown 

in Figure 5.1. Then we have 

3 12 18 14 } " 
1ro = 2' 7f'J = 7' 7r2 = 7' 7r3 = 5' \ = 3 ' 

(5.14) I ) I ) 1 I 12 I f (1ro = -2, f (1r1 = 7' f (1r2) = 7' f (1r3) = 4, 

3 3 14 
Qm = (4, 2), QM = {2, 5). I 

(Example 5.2) ! ~) ' ')' = (~~~ ) . 
8 25 2/3 

The efficient frontier B corresponding to these data is given by 

1 2 
- 7l' -
3 

27r+ 4, for 4 ::;7r::; 5, 

(5.15) 
22 2 34 43 

for 
20 

v= -7!' - -?r +- 5 < 7r <-
25 5 3 ) - - 3, 

13 2 
for 

20 22 
-7!' - 35 7l' + 97 -<71'<-4 , 3 - - 3, 

which is composed of a sequence of arcs of Bf3 } , B!2
} and Bfq as 

shown in Figure 5.2. Then we have 
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7r 

3 
Btq 7r3 QM 

11'2 B{l} 
~ 

2 
7!'] 

Qm 7l'o 

1 

B~ 
4> 

0 1 2 3 1/ 

Figure 5.1. Efficient frontier for Example 5.1. 

7l' 
7r3 

7 QM 
11'2 

6 

5 7f'] 

4 7ro 
Qm 

Btq 

3 

2 

1 
Bt3} 

B{2} 
4> 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1/ 

Figure 5.2. Efficient frontier for Example 5.2. 
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Problem P(R) is rewritten in the space of v and 1r as 

Maximize 

subject to 

1/ 
R1r--2' 
( v, 1r) E B C S. 

Let Q(R) = (v(R), 1r(R)) denote an optimal solution of problem 

P (v,1r)(R). Since S is a closed bounded region surrounded by convex 

parabolas, Q(R) is located on the efficient frontier B and the tangent 

line of the efficient frontier at Q(R) tells us that 

(5.17) j'(1r(R)) = 2R. 

Theorem 5.4 implies that the Q( R) satisfying 

(5.18) R( 1r(R)- d)- v(R) = 0, 

is given by an optimal solution of problem P 3 . Since Q(R*) is an 

optimal solution of problem P(v,1r)(R*), it holds that j'(1r(R*)) = 2R* 

and R*( 1r(R*)- d)- v(R*) = 0. 

Noting that v = f( 1r ), we have that 

(5.19) d = 1r(R*) _ 2j(7r(R*)). 
j'(1r(R*)) 

LEMMA 5.5. The function of 1r, 

(5.20) 
2f(7r) 

g(7r) = 7r- f'(7r)' 

is a monotonically increasing function on [ 1r m, 1r M ]. 

PROOF: From (5.11), we have that 

(5.21) 

2fi( 7r) 
g(7r)=7r- JI(7r)' 

'() 2f1(7r)f:'(7r) 
g 7r = {f'(7r)}2 - 1, 
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1" 

5 

4 

3 

2 

1 

Figure 5.3. g( 1r) for Example 5.2 

on 1r1-1 < 1r < 7rj. For a parabola fi(7r) = O'i7r2
- 2/317r + 'Yi, it holds 

that /3? - O'"f < 0 and a 1 > 0 because of v > 0. Then 

(5.22) 

and so g( 1r) is monotonically increasing on ( 7r1 _ 1 , 1rt) for i = 0, 1, ... , I\. 

At 1r = 7r11 i = 0, 1, ... , 1\, from (5.12), 

(5.23) 

where we define 

(5.24) g(1ro- 0) = -oo, g(1rK + 0) = +oo 

Therefor<', g( 1r) is an increasing function on [ 1r m, 1r M ]. 1 
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Figure 5.3 illustrates the shape of g( rr) for the data of Example 5.2. 

It is found that 

(5.25) Q(R) = QM 

and 

(5.26) Q(R) = Qm 

2/(rrM) 
for d ~ rr M - f' ( ) 

'lrJ\-1 

for 

Then, from (5.17), we have 

( 5.27) Q(R) = QM for any 

and 

(5.28) Q(R) = Qm 

Lemma 5.5 implies that the rr(R*) satisfying {5.21), as well as R*, is 

unique, because Q(R) moves from Q(Rm) to Q(RM) on the efficient 

frontier as R increases from R m to RM. 

THEOREM 5.6. The parameter value R = R* such that y(R*) is an 

optimal solution of problem P3 uniquely exists. 

Note that, in the (v, rr)-space, the tangent line of efficient frontier 

at the point, given by an optimal solution of problem P (v,1r)(R*), crosses 

the rr-axis at the midpoint of d and 1r( R*) as shown in Figure 5.4. 

Problem P(R) is the same to the EV model 

EV: 
Maximize 
subject to 
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I 'V 1-l y- w. y y, 
e'y = 1, 

O~Y~'Y. 

midpoint of d and rr(R*) 

rr(R* · · 

d 

v(R*) v 

Figure 5.4. An optimal solution on the efficient frontier 

which is maximized the expectation on which the variance is imposed 
1 

as a penalty with weight coefficient w = -R. When we set a goal 
2 

value d and decide the portfolio which maximizes the probability that 

attains the goal value, it can be found which value of weight coefficient 

is imposed on the variance for this portfolio. 

A solution algorithm for problem P3 is discussed in the next chap­

ter, where the variance covariance matrix of random cost coefficients 

has special structures used in the portfolio selection problems. 

5.4. Conclusion 

We discuss a probability maximizing model of a stochastic linear 

knapsack problem in this chapter. This problem is equivalent to a 

deterministic fractional problem under the assumption of normally dis­

tributed random cost coefficients. 'Ne show the optimality condition 
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for a positive parameter which is introduced in the auxiliary quadratic 

problem. The positive parameter value satisfying the optimality condi­

tion is uniquely determined, which is also explained in the mean vari­

ance framework related to the efficient frontier of feasible region. Since 

problem P(R) is the same to the EV model, we discussed a rE'lationship 

between a solution which maximizing the probability of achieving the 

goal and a solution of the EV model, as well as a relationship between 

the goal value d and the weight coefficient w. 

This problem is effectively applied to one of portfolio selection 

probl<>ms and it necessitates the development of cffici<'nt solution al­

gorithms for the problems with special structures of varianc<'s used in 

portfolio selection problems, e.g., a block diagonal model and index 

models, etc .. We discuss solution algorithms for such probl<>ms in the 

next chapter. 
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Chapter 6 . 

AN APPLICATION TO 
PORTFOLIO SELECTION PROBLEMS 

6.1. Introduction 

Finance problems have recently become a hot field of operations 

research. Portfolio theory gives us an optimal investm<>nt strategy or 

an effective use of the funds taking into account the avoidance of risk, 

where we can not avoid making a decision under uncertainty. Stochas­

tic programming models are necessary for investment analysis decision 

making. This chapter gives solution algorithms for two types of portfo­

lio selection problems via the corresponding stochastic linear knapsack 

problems. Note that the notation of problems and parameters in this 

chapt<'r is the same as those used in Chapter 5. As shown in Sec­

tion 5.2, when random cost coefficients have a normal distribution, the 

probability maximizing model P 1 of a stochastic linear knapsack prob­

lem is transformed into the deterministic fractional problem P3 and the 

auxiliary problem P(R) with a positive parameter R is introduced. 

To gcneraliz<> the problem with independent random cost coeffi­

cients to the problem with correlated random cost coefficients, we in­

troduce in this chapter two types of models of random variables, one 
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is a block diagonal model and the other is index models. In the block 

diagonal model, the variance covariance matrix of random cost coeffi­

cients is block diagonal, where it is assumed that the investments are 

classified into several groups such that the investments in the same 

group arc correlated each other but the investments in the different 

groups are mutually independent. 

Elton, Gruber and Padberg [E2, E3, E4] consider the problems 

with special structures of variances of random cost coefficients, e.g., a 

single index model, a multi index model and a constant corrclation coef­

ficients model. They solve such problems by using a ranking procedure, 

but the computational complexity is not mentioned clearly. 

Section 6.2 discusses a generalized stochastic linear knapsack prob­

lem in which random cost coefficients have a block diagonal variance 

covariance matrix. This problem is transformed into an equivalent frac­

tional problem , and then decomposed into subproblems corresponding 

to the blocks. \Ve propose a parametric algorithm by extending the 

Zipkin's ranking method [Z2]. A portfolio selection problem is also 

discussed as an example of this model. 

In Section 6.3, we discuss a portfolio selection problem of a single 

index model. A single index model is based on the CAPM (capital 

asset pricing model) and represents the rate of return on investment 

which is regressed to the market index by using many historical data 

about the risk and the return on investment. A single index model 

decomposes the risk on investment into the risk common to all invest­

ments caused by a market and the risk individual to each investment 
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caused by other factors. In this problem, all investments arc mutu­

ally correlated through the market index. By introducing a parameter 

corresponding to the common market index, we can obtain an optimal 

portfolio using the proposed efficient algorithm. The APT (arbitrage 

pricing theory) provides a multi index model. where the rate of return 

on investment is assumed to be determined by sevC'ral common indices 

besides the market index. An extension of th<> algorithm to th<' problem 

of a multi index model is also investigated in Section 6.3.4. Section 6.4 

gives a summary of Chapter 6. 

6.2. A Block Diagonal Model 
6.2.1. D ecomp osit io n into s ubproble m s 

\Ve consider the case in which variance covarianc<' matrix of ran-

dom cost coefficients is block diagonal. In this case, random cost coef­

ficients arc classified into several groups with the mutually correlated 

coefficients. It is assumed that there are m blocks and the lt·- th block 

has 1'k random coefficients, where L:;=I 1'k = n and each Tk is suffi­

ciently small compared with n. We shall now cite the main problem P 3 

and its auxiliary problem P(R) of Section 5.2 again, but they arc spe-

cialized to the problem setting of this section. 

p'y- d 
Maximize 

..JY'VY' 

P(R) · 

subject to e'y = 1, 

Minimize 

subject to 
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y 2: 0, 

1 
-RJt'Y + zy'Vy, 

e'y = 1, 
y 2: 0, 



where the mean J.L and the variance covariance matrix V are expresses 

as 

C' 
0 

J) V= ! y2 

(6.1) 
0 

Jl = ( J.L 1 , J.L 2, ... , m )I 
/) ' 

with an 1·k X r·k positive definite matrix Vk = ( CJt) and an 1·k-vector 

J.Lk fork= 1,2, ... ,m. 

Let yk = (yf, y~, ... , y;.k) denote decision variabl<'s in the k-th 

block. Then problem P(R) is decomposed into m subproblems and we 

obtain the k-th subproblem as follows: 
1 

Minimize -R(Jtk)1yk· + '2(yk)'1'kyk, 

subject to I k ey =wk. 
k > 0 y - ' 

where 'Wk is a nonnegative parameterwk such that 
111 

(6.2) 
k=I 

which denotes the amount of allocation given to the k-th block. Note 

that problem Pk(R, wk) has two nonnegative paramet<'rs Rand 'I.Vk· As 

far as no confusion occurs, we abbreviate Pk (R, wk) as pk and suppress 

the superscrip t k on yk, uk and yk. 

Now we consider problem pk for the k-th block. Sine<' probl<'m pk 

is a convex programming problem, the following Kuhn-Tucker condi­

tions give an optimal solution of problem pk. 

-RJL; + (Vy)j- u1 + ,\k = 0, J = 1,2, .. . ,rk, 

(6.3) I 
e y = Wk, 

ll;Y; = 0, Y; ~ o. U; ~ o. j = 1, 2, .. . '1'k. 
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The matrix form of these constraints other than the complementary 

condition is described by 

Yt 

(Vk -Ek ~) 
Yrk c~'' } (6.4) el 0 Ut -

RJ.Lr~c 
Wk 

where Ek is an 7'k x 1·k identity matrix. For a fix<'d w.~.-, we tan solve 

( 6.4) as a linear programming problem with complementary slackness 

conditions that both u i and y i are not simultaneously brought into 

basis. Since the rank of the matrix in ( 6.4) is 7' k + 1, there exists 

an rk + 1 dimensional basic vector and the corresponding basic ma­

trix. The possible number of the basic vectors is 2rk. Here we de­

note one of the basic vectors and the corresponding basic matrix by 

(Yt, · · · , Yl~c. 111k +I,··· , ttrk, Ak )' and Bk, respectively, with appropriate 

arrang<'m<'nt of elements, if necessary. The basic solution is expressed 

as 

(6.5) 

where 1 ~ lk ~ rk. Then an optimal solution of the k-th subprob­

lem Pk(R, wk) is given as the following linear functions of nonnegative 

parameters R and wk. 

(6.6) 
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(6.7) 
i = 1,2, ... ,lk, 

i = h + 1, ... , rk, 

(6.8) 

where 
TJe 

(6.9) !3t = I: bfjliJ, i = 1, 2, ... '1'k + 1, 
j=l 

and bfi, i, j = 1, 2, · · · , r k + 1, denotes the ( i, j )-th element of the inverse 

matrix of B k. 

As mentioned above, the allocation Wk to the k-th block deter­

mines the corresponding basic matrix. Conversely, by feasibility, the 

basic matrix determines the existence range of the corresponding allo­

cation wk as stated in the next lemma. 

LEMMA 6.1. For a basic matrix Bk, the corresponding set of alloca­

tion Wk, if any, is a convex subset on R~ = {w lw :2: 0}. 

PROOF: Since optimal solutions yk(R, wk) and uk(R, wk) given by (6.6) 

and (6.7) should be nonnegative so that a matrix Bk is basic, the allo­

cated value Wk for a basic matrix Bk must belong to 
Tk 

(6.10) nk(w) = n {tv I (3f R + bf,1'k+1w 2: 0}. 
i=l 

Clearly, !£k(w) is a convex set on R~. I 

Then we return to problem P(R). Problem P(R) is expressed by 

using the values of objective functions of the subproblems as follows: 
m 

Minimize L zk(R, Wk), 
k=l 

m 

subject to L Wk = 1, 
k=l 
Wk 2:0, k = 1,2, ... ,m, 
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where 

(6.11) 

is the optimal value of subproblem Pk(R, wk). Zk(R, w) is a con­

vex function of w E [0, 1]. We abbreviate zk(R, wk) as zk(wk) and 

yk(R, wk) as yk( wk) or yk. Possibly, zk( wk) has non-differentiable 

points if the basic matrix is degenerate, and their number is at most 2r~o . 

Except for these non-differentiable points, let D zk ( w) denote a deriva­

tive of function zk(w). 

LEMMA 6.2. The derivative of zk(wk) is obtained from a Lagrange 

multiplier >..k given by (6.8) as follows. 

(6.12) 

PROOF: From (6.3) and (6.8), we obtain that 

(6.13) 

l~e 

= ->..k L bf,rk+l 
i=l 

Note that 2:~~ 1 bf,r~e+I = 1, since bf,rk+l is an (rk + 1, rk + 1)-st element 

of matrix BkB;; 1
• 1 
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6.2.2. A ranking method and a solut ion algorit hm 

\Ve first review the Zipkin's simple ranking method [Z2], which 

treats a maximization problem with a continuously diff<'rcntiabl€' con­

vex objcrtive function and a single linear constraint. Based on the 

values of DZk(O), k = 1, 2, . .. , m, we can obtain the number of blocks 

which have positive allocations. Strictly speaking, DZk(O) denotes the 

right derivative of zk(w) at w = 0. The Kuhn-Tucker conditions for 

problem P 4 show that DZk(wk), k = 1, 2, ... , m, have a real number M 

satisfying 

'«'k > 0 ==> DZk( wk) = .Af, 
(6.14) 

Wk = 0 ==> D Zk(wk) ~ Af. 

The positive wk appears in an optimal solution according to the ,·alues 

of DZk(O), k = 1, 2, ... , m. \Ve arrange DZk(O) in incrE>asing order. 

Note that the order of DZk(O) is independent of R, since DZk(O) = 
-~:~t+l R. Let N denote the number of positive Wk. Then we? have 

Wk > 0 for k = 1, 2, ... , N, 
(6.15) 

Wk = 0 for k = N + 1, ... , m, 

and Af and w~;, k = 1, 2, ... , m, are given as functions of N from (6.2), 

(6.8), (6.12) and (6.14). Therefore, N * is optimal, i.e., wk(N*) = wz, 
k = 1, 2, ... , m, if N* satisfies 

( 6.16a) 

(6.16b) 

Dzw (0) < M(N*), 

DzW+1(0) ~ Af(N*). 

Note that only (6.16a) applies if .v• = m. 
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We now extend the ranking method in order to treat an optimiza­

tion problem with a piecewise linear convex objectiv<' function. Let ~~. 

i = 1,2, ... ,pk, denote the non-differentiable points of DZk(w). where 

Pk is their number which is at most 2q,. At these points, we define 

DZk(~:) as the subdiffcrential of zk(w) at w = ~:. 2 = 1,2 .... ,p~;, 

that is, 

( 6.17) 

where DZ~(~f) and DZi(~f) are left and right derivatives of zk(w) at 

w = ~f, respectively. Note that DZk(w) is strictly increasing, continu­

ous and piecewise linear from the convexity of zk(w) and Lemma 6.2. 

The optimality of solution yk(R, w) of problem Pk(R, w) can be 

checked by using the following function T(R). 

(6.18) T(R) = R{l/y- d}- y'Vy 
m nl 

= R(L )J/)'yk- d}- L (yk)'Vkl 
k=l k=J 

m 

= L { R(J.Lk)- (Vkyk)}'yk- Rd 
k=l 
m 

= 2::: WkAk - Rd. 
k=I 

In the ranking method, we solve the following equations for the blocks 

with positive allocations. 

( 6.19) DZk(wk)=M, k=1,2, ... ,N*, 

that is, 

(6.20) .>. k = - Jvf, k = 1, 2, .... N * 
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From (6.18), (6.20) and Theorem 5.4, the optimality condition is given 

by 

(6.21) A1 = -Rd, 

and from (6.8) we obtain 

(6.22) 
k = 1,2, . .. ,N*, 

k = N* + 1, ... ,m. 

Here it r<'mains to check whether Wk belongs to nk(w) or not. Since 

all Wk arc also dirC'ctly proportional to R, Lemma 6.1 impli<'s that we 

can check it without knowing the value of R. 

Let {s 1 ,s2 , ..• ,sp} denote a set of all left and right derivatives, 

DZ!f.(~n and DZ~(~;), i = 1,2, ... ,pk! k = 1,2, ... ,m, at the non­

differentiable points, where p is the number of different values of left 

and right derivatives and p ~ 2::::;.:1 Pk· 

LEMMA 6.3. The order of all left and right de1·ivatives Sen a= 1, 2, ... , 

p, is independent of the value of R. 

PROOF: Since at least one basic variable becomes z<>ro for w = ~~ ..,, ' 

from (6.6) and (6.7), a is proportional toR and so is So-· Thus the 

order of Sa, a= 1,2, ... ,p, is independent of R. I 

We denote s0 k,l, Sak, 2 , ... , Sa~:.p(kl the derivatives which are be­

tween DZk(O) and Dzk+1(0), where p(k) is their number and p = 

L::;=I p(k). \Ve sort them as follows. 

(6.23) DZk(O) ~ so-k. ~ · · · ~sa" PC"> :::; Dzk+J (0), k = 1, 2 .... , m, 
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where Dzm+1(0) denotes a sufficiently large number. 

Now we show a solution algorithm to solve probl<>m P 3 . 

Algorithm 6.1. (Block diagonal model) 

Step 1. Calculate DZk(wk), k = 1,2, ... ,m. 

Step 2. Let N ...- 1, o: ...- o: N 1 . 
' 

Step 9. Calculate wkl k = 1, 2, . . . , m, by (6.22). 

Step 4- If Wk E nk(w), then let N*- Nand go to Step 7. 

Step 5. If o: = o:N,p(N)• then let o: ...-a+ 1 and return to Step 3. 

Step 6. If N < m, then let N +--- N + 1, a +--- nN,l and return to 

Step 4. Otherwise terminate by concluding that problem P 3 

has no solution. 

Step 7. Normalizing Wk to satisfy condition L::;;=I wk = 1, i.e., 

(6.24) 
k = 1,2, ... ,N*, 

1..· = N* + 1, ... ,m, 

where 

(6.25) 

an optimal solution and the optimal value of problem P 3 are 

given by 

i = 1,2, ... ,lk. 

i = h.+ 1, ... , rk, 

for k = 1, 2, ... , m, and 

(6.27) q• 
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respectively, and then terminate. I 

The complexity of Algorithm 6.1 is dominated by the selection 

of a basic matrix and the calculation of its inverse matrix in Step 1. 

Therefore, in the worst case, it takes 00:::;=1 r~2r"') ~ O(n·m:xr%2r"') 

computational time. The complexity for the problem with mutually 

correlated random cost coefficients is 0( n 3 2'l ). Since 

(6.28) 

our algorithm gives a reasonable complexity when each 1'k is suffici<'ntly 

small compared with n. 

6.2 .3. A s imple p or t fo lio selection pro ble m 

Our algorithm is applied to the following simple portfolio selection 

problem. We consider the case in which there are n infinitely divisible 

investments with rates of returns r = (r1.r2,··· ,1' 11 ). It is assumed 

that returns on investments are not independent, but they arc corT<'­

lated in such a way that the variance covariance matrix of the rate 

of return on investment is block diagonal. The investor would like to 

know the proportion to be invested into each investment in order to 

get a large return under a small risk. Let r F denote the rate of return 

on riskless asset, i.e., the variance of the rate of return on riskless asset 

is zero. It is interpreted, in practice, as the riskless lending rate, e.g., 

bank deposits and saving bonds. 

To achieve the above goal, we consider to find a solution that 

maximizes the ratio of excess return [El), i.e., expected rate of return 
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minus riskless rate, to standard deviation under the constraint that a 

total sum of the invested proportion becomes equal to 1 and a short 

sale, which is a negatiYe investment, is not allowc>d. Thc>n the> problem 

is formulated as 

Maximize 
Ps : 

subject to 

1'
1.r- 1'£-' 

Jx'V;r' 
c'x = 1, 
X 2:: 0. 

This is in the same form as problem P3 and the proposed algorithm 

can be directly applied. 

We consider the expected rate of return 7' against the standard 

deviation a. Let point A( a A, fA) in the space of a and r denote portfo­

lio A, which is obtained by solving problem P5 with a A = J(x*)'V x• 

and rA = r'x*, where x* is an optimal solution of problem P5 . When 

the investor invests all of his original fund to the riskl<'ss asset, this 

portfolio B corresponds to point B(O, r F) in the spac<' of a and r. Let 

X, where 0 ~ X ~ 1, denote the fraction of the original fund that 

the investor places in portfolio A. The expected rat<' of return of the 

combined portfolio with riskless asset and risky portfolio is given by 

(6.29) 

where a = XaA. As illustrated in Figure 6.1, (6.29) means that the 

combined portfolio is expressed as a line segment AB in the space of a 

and r. The investor chooses a certain portfolio, i.e., a combination of 

portfolio A and B, according to his risk preference. For example, a risk­

averse investor would place a small fraction of his fund on portfolio A, 
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f 

_ 1·A - r F 
r=rp+ u 

r B(0,1'F) UA 

Figure 6.1. The combined portfolio of A and B 

while a risk-prone investor would place a large fraction of his fund on 

portfolio A. 

(Example 6.1) Consider a portfolio selection problem with six in-

vestments as given in Table 6.1. The rate of riskless asset is set to 4.5%. 

This model consists of three blocks. The derivatives DZ 1(w), DZ2 (w) 

and DZ3(w) arc given as follows, where the variables in the paren­

theses denote the' corresponding basic variables, whirh have positive 

allocations. 

DZ' (w) = { 
9 w- 9 R, o ~ w < ~L (yJ) 

(6.30a) 108 318 R 
w 2:: ~L (Y t , Y2) 37 w- 37 ' 

DZ
2
(w) = { 

25 w- 8 R , o ~ w <a. (ys) 

( 6.30b) 
36 70 R ~~ ~ w < ~i, (y4,Ys) -w -
13 13 , 

4 w- 6 R, w 2:: ~i' (y4) 

(6.30c) DZ3 (w ) = w- 5 R. (YG) 
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Table 6.1. P arameters of six assets 
-

Asset Expected Standard Correlation coefficients 

number return deviation #1 #2 #3 #4 #5 #6 

#1 8(%) 4(%) 1 - 0.5 0 0 0 0 

#2 9 3 -0.5 1 0 0 0 0 

# 3 3 1 0 0 1 0.5 0.4 0 

#4 6 2 0 0 0.5 1 0.8 0 

#5 8 5 0 0 0.4 0.8 1 0 

#6 5 1 0 0 0 0 0 1 

where 

( 6.31) 
1_1 2 2 2 1 

~~ - 15R, ~I = 17R, ~2 = 2.R. 

Figure 6.2 illustrates the derivatives of objective functions of sub­

problems. The derivatives at w = 0 and w = ~~ arc given by 

(6.32) 

DZ 1 (0) 

DZ 1 (~f) -

DZ2(0) 

DZ2(~?) -
DZ3(0) 
DZ2(a) 

-9 R 
_ 42 R 

5 
-8 R 

_ 86 R 
17 
-5 R 
-4 R = 8 oa.a 

Corresponding to the above values of a, we have the following 

results. 
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DZ 

0 

-8R 

-9R 

23 R ~R 
72 2 

R 

M = -4.5R 

Figure 6.2. Derivatives of objective functions of subproblems 
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(6.33) 

(ii) a = a2,1: 

(6 .34) 

(iii) a= a 3 ,1 : 

(6 .35) 

w 1 = ~R ¢: n1 (w) = {w 1 o ~ w ~ ~D 
'W2 = 0 

There is no optimal solution. 

101 1 1 
w1 = 

72 
R E n ( w) = { w 1 o ~ w ~ ~ 1 } 

7 2 2 
u·2 = 

50 
R ¢: n ( w) = { w 1 o ~ w ~ ~ 1 } 

'WJ = 0 

There is no optimal solut ion. 

101 1 { ] 
W1 = 72 R En (w) = w I 0 ~ w ~ ~J} 

23 
w2 = 

72 
R E n2(w) = {w 1 o ~ w ~ ~n 

1 
w3 = 2 R E n3

( w) = { w 1 w ;::: o} 

9 
In this case, we haveR* = 

20 
from (6.25) and an optimal port-

folio obtained from (6.26) is shown in Tabl<> 6.2. The expected return 

is 7.47500% and the standard deviation of rE'turn is 1.15704%. The 
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probability that the total return exceeds 4.5% is 99.49%. 

Table 6.2. Optimal portfolio of Exampl<' 6.1 

Allocation to block 

wj = 101/160 

w~ = 23/160 

w; = 36/160 

6.3. Index Mode ls 

Optimal portfolio 

yj = 39/160 

y~ = 62/160 

Yi = 0 

y; = 19/160 

y; = 4/160 

Y6 = 36/160 

6 .3.1. A single index mode l and a multi index mode l 

A capital asset pricing model (CAPM) introduced by Sharpe [53] 

explains the relation between risk and return on investment in a stock 

market. The risk of investment is assumed to be lin<'arly decomposed 

into th<' risk common to all investments caused by a market and the risk 

individual to each investment caused by other factors. This model is 

call<'d as a single index model, since it is expressed through the market 

index only. 

(6.36) 

where 

c,: the rate of return on investment i. 

1'm: the rate of return on market portfolio, which is the portfolio 

of all investments in the market. In tht" efficient market, rm 
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is assumed to have a normal distribution CalN(rm,cr?,,). The 

distribution parameters should be estimat<:>cl. H<:>r<' w<:> assume 

to be faced with the situation that they hav<' b<'en already 

estimated and we choose a suitable portfolio. 

1·1: th<' rate of return on riskless asset. 

{3,: beta-value of investment i, which is a measure of the r<:>spon­

siveness of investment i to changes in the market index. 

Oti: alpha-value of investment i, which is th<' r<'turn on invest­

m<'nt i that is independent of changes in the market ind<'x. 

f;: a random noise of investment i with a normal distribution 

CalN(O, cr;, ), which is independent of the ma.rk<'t index. 

Replacing <t, + r J( 1 - p,) by <l'i, ( 6.36) is simply r<:>writt<'n by 

(6.37) c,=a,+f3irm+Ei, i=L2, ... ,n. 

The values of a,, /3, and u;, cannot be directly obs<'rved from historical 

data and might change over time. \Yhen a,, J, and cr? are viewed 

as constants through time, we can estimate them by using regression 

analysis. 

Because a single index model is sometimes too simple to explain 

the practical stock market, a multi index model is introduc<'d based 

on an arbitrage pricing theory (APT). In the APT, the rate of return 

on investment is explained by common indices besides thr market in­

dex. A multi index model introduces extra indices in order to capture 

additional information, which are incorporated into f 1 in a single in­

dex model. Then the rate of return on investment is expressed as the 

following linear combination of indices ! 1 , ! 2 • ...• I L. 
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where It is the l-th index with a normal distribution CalN(lt. uf) which 

is independent each other and Pit is a measure of responsiveness of 

investment i to changes in the l-th index. It is also assumed that It is 

ind<'p<'ndent of €i. 

"'h<'n L = 1 and I 1 = r 111 • a multi indc•x model coincid<'s with a 

single index model. A multi index model can de~cribe the dependency 

on all indices, and has a higher explanatory power of risk and return 

on investment than a single index model. However, it is important to 

take notice of the mult.icolinearlity between indic<'s and stability of the 

coefficient estimates. 

6.3.2. Formulation of the problem of a s ingle index mode l 

Let be n investments infinitely divisible. vVe consider the follow­

ing probability maximizing model of a stochastic linear knapsack prob­

lem P 1 • 

n 

subject to L ajx1 =b. 
i=l 
0 ~ x·1 ~ 11 , j = 1,2, ... ,n, 

which is the same to the problem considered in Chapter 5 except that 

c = ( c1 ) is a vector of the rate of return on investment expressed by a 

single index model (6.37) . After appropriate variable transformations, 

we have an equivalent deterministic problem P3 and the auxiliary prob-
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lem P ( R) as follows. 

P(R): 

where 

Maximize 

subject to 

t-.Iaximize 

subject to 

p = E[c] = o + fJrm, 
(6.39) 

ll1Y- d 
JyiVy' 

e1y = 1, 
0 ~ y ~ ,, 

R I 1 I 
ll y- 2y Vy, 

c1y = 1, 
0 ~ y ~ ')', 

V = V[c] = fJ/31u?n + diag(u;1,u;2 , ... ,u;n). 

Problem P(R) has a unique solution, which is the y-part of a solution 

of the following Kuhn-Tucker conditions. 

(6.40) I 
cy=1, O~y~1. 6.6?:0 

~1 1 (y1 - 1'1 ) = 0, (21 y1 = 0, j = 1, 2, .... n. 

Introducing t = um(fJ1y) as a parameter, the solution of (6.40) can be 

expressed with three parameters R, .A and t as follows. 

(6.41) 

( 6.42) 

~lJ = max(O,RJ..L1 - umf:]1t- u;111 - .A), 

6 1 = max(O. - Rf.Lj + umJ1 t +.A), 

lJ• 

RJ..L1 - Um/3jt- A 
2 uej 

0, 
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if .A~ A~. 

if AJ <.A< Af, 
if .A> AI.! - J' 



where 

(6.43) 
AJ' = -a;{'lj + Rll; - amf31 t, 

AY = RI-Lj- amf3jt . 

From Theorem 5.4, y(R*) is an optimal solution of problem P3 , where 

R* is a solution ofT( R) = 0. The uniqueness of R* has been shown in 

Section 5.3. 

6.3.3. A solution algorithm 

Recall that i\. ]' and i\. f, j = 1, 2, ... , n, are linear functions of R 

and t. The R* that gives an optimal solution of problem P 3 is unique 

and is a solution of equation T(R) = 0. A procedure to decide R* by 

an extended binary search will be discussed later in this subsection. 

Here we consider a solution algorithm for a given R. Then AJ and Af, 
j = 1, 2, ... , n, are linear functions of parameter t. They are n pairs of 

parallel line segments in the space of t and A on interval (t m, t M) as 

shown in F igure 6.3. 

( 6.44) 
tm = min{amf3'y!e'y = 1, 0 ~ y ~ 1 }, 

tM = max{ amf3'yie'y = 1, 0 ~ y ~I'}. 

Note that the number of their intersection points is at most 2n(n-1) = 

0( n 2). Y..'e denote the different values of t at the intersection points as 

( 6.45) 

where N is their number. Note that, for any t E [t1 , ti+d• the order of 

values of AJ and AY, j = 1, 2, . .. , n, is independent of the value oft. 
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Figure 6.3. An illustrative example oft vs. A for n = 3 

When thE' value of t is fixed, we can sort all AJ and A~, J -

1, 2, ... , n and determine the form of Yi· j = 1, 2, ... , n, in (6.42) for 

each>.. Now we decompose a set {1, 2, ... , n} into the following index 

sets for each >.. 

(6.46) 

Then we have 

( 6.4 7) 

lt(>.) = {j I).~ Af}, 

J2(>.) = {j I AJ < ). < A~}, 

J3(>.) = U I>. ~ A~}. 

l)! 

Rp.1 - am/31t- >. 
2 

(] e; 

0, 
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j E J1(>.), 

j E J2(>.), 

j E J3(>.). 



Paramcter A in ( 6.4 7) is determined from constraint c' y( t) = 1, that is, 

~ ' RJ.L1 - a 111#1 t 
~ "'j - 1 + ~ (J2 

\ - ;Elt (.X) jEJ2(.X) CJ 
(6.48) A- 1 

I: -;;r 
jEh(.X) e; 

fort E [t,, t a+l], which is found by using a binary search. It also satisfies 

that a 111 {31y(t) = t, so we have 

1 ~ """" Rp1 - amf3jt- A 
(6.49) {3y(t)= ~ f3j"'j+ ~ {3j (J2 

;EJt(.X) jEh(A) e; 

- I: 
jEh(.X) 

and the coefficicnt of t is 

(6.50) 

Therefore, fl'y(t) is a piecewise linear and nonincrcasing function oft 

as illustrated in Figure 6.4. Let t* denote th<' value of t such that 

am/l'y(t*) = t*. Then we have 

amf3'y(t) < t ¢=:::} t* < t, 

( 6.51) a 11J3'y(t) = t ¢=:::} t* = t, 

(J m J3' y( f) > t ¢=:::} i * > f. 
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am,3'y- f 

. . . t* 

Figure 6.4. An illustrative example oft vs. fl'y for n = 3 

Now we propose an algorithm to obtain t* for a fixcd R. 

A lgorithm 6 .2. 

Step 1. Calculate tm and t M and let tL .-- t 111 and tL .-- tM. 

Step 2. Lct t .-- ( t L + tV )/2. 

Step 3. Sort A7 and AJ, j = 1, 2, ... , n, for fixed t. 

Step 4· Obtain y1(t), j = 1, 2, ... , n, and A(t). 

Step 5. Calculate t such that amf3'y(t) = t. 

Step 6. If t and t belong to the same interval, then terminate by con­

cluding that t* = l. Otherwise, if t < t, lC't tV .-- t and if 

t > t, let tL .-- t. Return to Step 2. 

TIIEOREM 6.4. Algorithm 6.2 finds the t* such that amf1'y(t*) = t* in 

0( n 3 log n) computational time. 

PROOF: First note that the form of y1(t) in (6.47) is the same for all t 

belongs to the same interval. Thus if t and t belong to the same interval, 
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t is equal to t•. \Vhen t < t, it holds that t* E [tL, t], since 

(6.52) Umf3'y(t) < Um/31y(f) = t < t 

implies t• < t. When t > t, it holds that t• E [t, tV], since 

(6.53) UmJ31y(t) > Um/31y(t) = t > t 

implies t* > t. 

From Step 2 to Step 6 are iterated for all intervals of t whose 

number is O(n2 ) in the worst case. The computational complexity for 

each step is as follows. 

Step 1. 0( n log n) to calculate tm and t M. 

Step ~- 0(1) 

Step 9. O(nlogn) to sort O(n) A's. 

Step 4. 0( n log n) to find >. by binary search. 

Step 5. 0( n) to calculate t. 

Step 6. O(n) to find whether f and t belongs to the same interval or 

not. 

Therefore, Algorithm 6.2 finds t* in 0( n 3 log n) computational time. 1 

Since t* and the corresponding t\ * satisfy linear equations e1 y = 1 

and umf3'y = t simultaneously, that is, 

(6.54) 
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and 

(6.55) (u~ L :1. + 1) t* + Um L :i t\* = 
jEJ,(>,•) e) JEJ2(>..•) eJ 

um L !3if;J R + um L f3rr1 , 
(J 

JEJ2(>..•) eJ JEJ.(>..•) 

t* and t\* are expressed as linear functions of R in the neighborhood of 

the fixed R. Then we have Yi as linear function of R as follows. 

(6.56) Yi = 

Note that 

(5.57) 

'Yj' 

J.i.J R- Um/3j t*- _l_A* 
2 2 2 , 

(JeJ (Jej (JeJ 

0, 

j E JI(A*), 

j E J2(A*), 

j E J3(A*). 

expresses an interval and we denote it by [ R1, Ru]. The forms of y 1 in 

(6.56) are the same for all R E [R1, Ru]. 

R* is determined so as to satisfy T( R) = 0. T( R) is given as 

T(R) = ( L J-lj'Yj- d) R- (J 111 L /3j'Yj t* 
JEJt ( >.. • ) JEJ.(>..• ) 

(6.58) 

-(Jt,.l 'YJ-
1) ).'- ;eFc>'i u;;'Y], 

which is a linear function of R from taking into account (6.54) and 

( 6.55). Since T( R) is a continuous and piecewise linear function of R 

such that 

(6.59) 
lim T(R) < 0, 
R-0 

lim T(R) > 0, 
R-oo 
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R• is found by the following algorithm using an extended binary search. 

Algorithm 6.3. 

Step 1. Calculate Rm and RM and let RL +-- Rm and nu +-- RM. 

Step 2. Let R +-- (RL + R u)/2. 

Step 3. Apply Algorithm 6.2 with the current value of R. 

Step 4. Obtain R 1, Ru and R such that T( R) = 0. 

Step 5. If R E [R1, Ru], then terminate by concluding that. R • = R. 
Otherwise, if T(R) < 0, let RL +-- Ru and if T(R) > 0, let 

Ru +-- R1• Return to Step 2. 

The computational complexity is dominated by the number of it­

eration from Step 2 to Step 5. Note that the number I\ of parabolas 

in the efficient frontier (5.11) is the same to the number of intervals of 

R defined by (6.57). Since it should be iterated f{ times in the worst 

case, Algorithm 6.3 takes O(Kn3 logn) computational time. 

6.3.4. Extension to a multi index model 

This section discusses how to extend Algorithm 6.2 to the problem 

of the multi index model (6.38). The rate of return on investment ex­

pressed by a multi index model (6.38) is a normally distributed random 

vector with 

fl = E[c] =a+ .81 11 + .8212 + · · · + .8Lh , 

(6.60) V = V[c] =.81.8~a~ + .82.8~ui + · · · + f3Lf3~a'i 

Introducing L parameters it = at(f3;y), 1 = 1, 2, ... , L . they-part of a 

solution of the Kuhn-Tucker conditions for the auxiliary problem P(R ) 
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2 

is given by 

if ,\ $ A j, 
L 

(6.61) 
Rp.1 - L at(31ttt - ,\ 

1=1 
if .\~ < ,\ < ,\~ . 

0, if ,\ ~ A~ . 

whc>re 

L 

AJ = -a;j'Yj + Rl-lj - L atf3jti t , 

(6.62) 1=1 

L 

AY = Rl-l1 - L at/3jtit. 
1=1 

vVhen we give the values of t 1 , t 2 , ...• t L· we can sort A 1• and Au. ) ) 

j = 1, 2, ... , nand determine the form of y1 , j = 1, 2 .... , n in (6.61) for 

each-\. Parameter,\ is determined from constraint c'y(t 1.t2 .... ,tl.) = 

1 with parameters t 1 , t 2 •... , tL in a manner analogous to {6.48). Let 

ti, t2, ... , fi.. denote the values of t1, t2, ... , tL such that 

(6.63) atf3;y(t;,t;, ... ,tiJ = tj, l = 1,2, ... ,£. 

Since atf3fy( t 1 , t2, ... , t L), l = 1, 2, ... , L are piecewise linear and non­

increasing functions of t 1 , t2, ... , t L, we have 

Utf3;y(tJ,t2, ... ,tL)<tt {:::::=} fj<ft, 

(6.64) atf3;y(t1,t2, ... ,tL)=tt {:::::=} ti=tt, 

atf3;y(tt,t2, ... ,tL)>tt {:::::=} tj >tt, 

for l = 1. 2, ... , L. We can soh·e problem P(R) by Algorithm 6.2 using 

a binary search for each it. The £-dimensional space of t 1 , t 2 , ... , t L is 

141 



divided into several cells, in each of which the order of the values of A.f 
and A.Y, j = 1, 2, ... , n, is uniquely determined. Since the number of 

such cells is O(n2L), we require O(n2L+1 logn) computational time to 

solve problem P( R) of a multi index model. 

6.4. Conclusion 

We discuss an application of a probability maximizing model of a 

stochastic linear knapsack problem to portfolio selection problems. 

The first problem considered in this chapter assumes that the 

variance covariance matrix of random cost coefficients is block diag­

onal. This problem is decomposed into several subproblems, for which 

the auxiliary quadratic problems are defined and solved parametrically. 

Our algorithm finds an optimal solution effectively by using a ranking 

method to merge subproblems. This problem is applied to the simple 

portfolio selection problem, which finds a portfolio that maximizes the 

ratio of excess return to standard deviation. 

The second problem considered in this chapter assumes that the 

random cost coefficient, i.e., the rate of return on investment, is ex­

pressed by index models. A single index model and a multi index 

model are used to explain risk and return on investment in the stock 

market. We mainly considered a single index model, which expresses 

the rate of return on investment as a linear regression model of the 

market index. By introducing a parameter corresponding to the mar­

ket index, we solve the auxiliary quadratic problem parametrically and 

propose an efficient solution algorithm to find an optimal portfolio. 
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The worst case complexity of the proposed algorithm to solve prob­

lem P 2 is O(Kn3 logn) and the number J( may be at most 0(2n). How­

ever, when the distribution of 1r0 , 1r1 , ... , 1r K on the 1r-axis is uniform, 

Algorithm 6.3 finds an optimal R* in 0( n) iterations by using a binary 

search. Moreover, when the distribution of t1, t2, ... , tN on (tm, tM) 

is uniform, Algorithm 6.2 finds an optimal t* in O(log n) iterations. 

Therefore the average complexity is approximately O(n2(logn)2 ). The 

problem of a multi index model can be solved by the procedure sim­

ilar to the problem of a single index model, but the computational 

complexity becomes higher order polynomial. 

In the future research, it would be necessary to investigate the 

distribution of stock return, which is considered not to have exactly 

normal distribution [N2]. The coefficients in index models are esti­

mated by means of regression analysis based on the historical data. 

In case we rely on an estimator of unknown coefficients in the index 

models, it is worthwhile to investigate the problem based on the con­

fidence region of estimates as discussed in the previous chapters from 

the viewpoint of a game theoretic strategy. The average complexity of 

the proposed algorithms applied to the practical finance data for the 

problem of a single index model as well as a multi index model should 

be investigated, too. 
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Chapter 7. 

A STOCHASTIC IMPROVEMENT 
METHOD FOR 

STOCHASTIC PROGRAMMIN G 

7.1. Introduction 

This chapter discusses a stochastic improvement method for sto­

chastic programming. Many optimization problems arisen in prac­

tice are formulated as stochastic programming problems. How<>ver, 

in most of them, the parameters describing the problems are unknown 

or known with uncertainty. Such problems necessitate statistical ap­

proaches to estimate the unknown parameters. Many studies of statis­

tical approaches for stochastic programming are proposed, for example, 

a Baysian analysis (B8, Jl], a minimax model (D4J, a prediction of the 

regions of an optimal solution and an optimal value (C3J and a confi­

dence region method (M7, M8J. 

The mathematical models show the relationships that exist among 

the system variables. We are interested in identifying the relationships 

and in estimating the parameters of the relationships. Since many 

models are assumed to have a structure expressed by a linear equation 

or by a system of simultaneous equations, a multivariate regression 

analysis is a useful statistical technique. 
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In practical applications, it is desirable that the estimates should 

be updated when<'v<'r we obtain new available' information. When we 

would like to improv<' the accuracy of estimates, we observe new avail­

able data and update the estimates of parameters of the relationships. 

It is not, however, efficient to solve such a problem from scratch cv<'ry 

time the estimates arc updated. It is desirable to update the optimiza­

tion problem as w<'ll as its optimal solution by modifying the previous 

data. For such purpose, we propose a stochastic improvement m<'thod 

for the linear programming problem that contains unknown coeffici<'nts 

in the constraints, which are iteratively improved by using newly avail­

able data obtained one after another. Th<' stochastic improvement 

method solves the problem by an iterative algorithm alternating h<'­

tween the improvem<'nt phase of optimal solutions and the updatmg 

phase of the estimates of unknown coefficients. 

Section 7.2 provides a formulation oft he lin<'ar programming prob­

lem considered in this paper and describes a procedure for updating th<' 

estimates. A solution algorithm of the stochastic improvement method 

is discussed in Section 7.3, which consists of the feasibility step for 

obtaining a feasible point and the optimality step for obtaining an im­

proved point. We update the estimates of unknown coefficients as well 

as solution by making use of an affine scaling method, when<>vcr ncw 

statistical data arc dc•livered. Section 7.4 shows the consistency of the 

estimated feasible region and proves that a point sequence generated 

by the proposed algorithm converges to a point that gives the optimal 

value with probability one. The results of th<' numerical experim<'nts in 

Section 7.5 illustrate the convergence of proposed algorithm. Finally, 
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S<'ction 7.6 gives a summary and discusses thc direction of furt h<'r rC' ­

search. 

7 .2. Formulation of the Problem 

\\'e consid<:'r th<:' following problem. 

P: 

n 

Minimize L CjX j, 

}=1 
n 

subject to L a,1 xj + b, $ 0, i = 1, 2, ... , m, 
J=l 

where both A= (a,1 ), i = 1,2, ... ,m, j = 1,2, ... ,n, and b = (b,), 1 = 
1, 2, ... , n, arc fixed coefficients but known with uncertainty. Tlw tnt<' 

values of A and b arc only given by cstimatiou with perfect information. 

We assume that prohl<'m P with the tnH' valuC's of coefficients has a 

bounded feasible r<'gion. Then we aim to obtain an optimal solution 

of problem P with the true values of co<'fficicnts after estimating them 

using additional sample information in an adaptive way. 

We consider the situation that, for giv<'n sample point x, th<' valu<' 

of L:;=l aij :r 1 + b, is available for the obs<'rvatiou Yi including normally 

distributed random error u,, i.e., y, = L:7=J o,1 x j + b, + Uj. Th<'n the 

multivariate regression model defined by (7.1) is useful to estimate the 

unknown coeffici<'nts [r..12 J. 

(7.1) 
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where 

yN = 

B= 

Y~n ) y~ 

N 
Ym 
XI 

n 
2 

Xn ~~. ) 
a7. 

1

) 

amn 

bm 

: matrix of observations 

: matrix of sample points 

: matrix of parameters to be estimated 

~2 u2 

( 

l u!n ) 
UN= :1 m : matrix of errors 

UN UN 
1 m 

We assume that X N has a full column rank and that ( u~, u~, ... , u~ )' 

is normally distributed independent random errors with the mean zero 

and the variance matrix E = ( Uij ). These assumptions are essential for 

normal distribution of the maximum likelihood estimator. The maxi­

mum likelihood estimator of regression parameter matrix B and vari­

ance covariance matrix E of disturbance are given by 

(7.2) 

(7.3) 

jj =(A, b)'= ((XN)' XN)-1 (XN)'yN, 

E = _2._(YN)'(I -XN((XN)'XN)-I(XN)')YN. 
N 

From E[UNJ = 0 and 

fj = ((XN)'XN)-t(XN)'((XN)B + U) 
(7.4) 
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B is unbiased for B and is a linear function of UN. Therefore, B = ( 1Ja1 ) 

is a random matrix which has multivariate normal distribution with 

(7.5) 
E[B]=B 

where GN = (gfJ) = ((XN)'XN)- 1
• Let vecB = ({3~,82, ... ,/3~J' 

denote the vector obtained by stacking the columns of B on top of one 

another. We obtain that 

(7.6) 
verB= (I ®( (XN)'XN) - 1(XN)') vecYN, 

V[vecB] = ((XN)'(E 0 I)- 1 XN)- 1
, 

where ® denotes the Kronecker product, which is an (mk x nl) matrix 

defined for an m x n matrix P = (p,1 ) and a k x l matrix Q as follows. 

(7.7) 
P21Q P22Q 

( 

P11 Q P12Q 

P ®Q= . 

Pm1Q Pm2Q 

If each row of XN is independent of each other, we have V[vecB)--. 0 

as sample size N tends to infinity. Then B is consistent, that is, it 

holds that 

(7.8) lim Pr( IIB- Bll < €) = 1 
N-oo 

for any positive f. 

Noticing that B are normally distributed random vanablcs, we 
~ 

have the following estimated problem P: 

~ 

P: 
Minimize c' x, 
subject to Ax+ b ~ 0, 
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..... 
by replacing the unknown matrix Bin problem P with the estimator B. 

\:Vhen we obtain k observations (:r1, y1 ), {:r2, y2 ), ... , (.rk, yk), we have 

the estimates Bk = (Ak, bk)' of unknown coefficients Bas the realiza­

tions of jj and the following resultant deterministic linear programming 

problem Pk: 

pk: Minimize 
subject to 

c' x, 
Ak.r + bk ~ 0. 

This chapter discusses a solution method of problem P through the 

sequence of problems {Pk} resulting from the sequential sample infor-

mation. 

\:Vhen we obtain a new observation yk+1 at the sample point xk+ 1
, 

the estimate Bk is updated to Bk+J. 

LEMMA 7.1. Assume tl1at Gk = ((Xk)'Xk)- 1 exists. Then it holds 

(7.9) 

PROOF: The proof is givcn by showing that Gk+ 1 ( Gk+l )- 1 = I. Kot­

ing that (Gk+t)-1 = (Gk)- 1 + :rk+1(xk+ 1 )' and Gk is symmetric and 

positive definite, we have 

ck+•(ck+I)-1 

(7.10) 

Gk k+t( k+t)'Gk 
=(Gk _ .r .r )((Gk)-1 xk+l(.rk+t)') 

1 + (.rk+l )'Gkxk+l + 
Gkxk+ 1 (:rk+J )' (( xk+t )' Gk .rk+I I_ Gk.rk+ 1 ( xk+I )') 

=I+ 1 + (xk+l )'Gkxk+J 

-I, 
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where 

Gk.t.k+l(.rk+1)' ((.rk+I)'Gkxk+1I _ cA.rk+l(.rk+l)') 

=( xk+ 1 )' Gk xk+t Gk .rk+J ( xk+l )' _ Gk 1.k+ 1 ( J.k+l )' Gk .r"+ 1 (:rk+t )' 

=( .rk+l )' Gkxk+ I Gk.l.k+l ( xk+l )' - (.rk+l )' Gk.1.k+ I cA· .l'k+ I ( .rk+ I)' 

= 0. I 

TIIEOREM 7.2. Wl1cn we obtain a ucw observation y'-+ 1 = B.rk+l + 
t/+ 1 At tlw sample point :rk+1 with a random disturbance uk+l, tlJC' 

estimate Bk is updated to Bk+ 1 as follows. 

(7 11) nk+1 - I x .r (Bk ck k+ I k+J ') 
( 

Gk k+l( k+t)' ) 
. - - 1 + (xk+! )'Gk:rk+t + x (y ) . 

PROOF: \Ve have 

nk+l =Gk+1p;k+1 )'F"+l 

(7.12) 

Notice that Gk is calculated by (7.9) recursively. 1 

\Vc consider point sequence {.rk} which converges to a point that 

gives the optimal value of problem P. At the starting time, the initial 

estimates are calculated by more than n + 1 sample's and an initial 

point of the sequence is given arbitrarily, which is not necessary to he 

feasible to the estimated problem because it is projected to the feasible• 
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region if not feasible. Each updated point xk+ 1 is cakulatC'd from A k, 

bk and xk. Two types of steps are considered to get an impro,·C'd point 

in the stochastic improYement method. One is th<' f<'asihility step that 

gives a point feasible to the updated feasible region, and the otlwr is an 

optimality step that gives an improved point. In the following sections, 

we propose an algorithm that generates a point sequC'nc<' { xk} and we 

will show SC'veral properties. 

7 .3. A Stochastic Improvement Method 

The improved point xk+l is given by the following two types of 

steps using the estimates A k and bk in problem pk. Now let D and Dk 

denote' feasible regions of problems P and pk a.•:; follows: 

(7.13) 

(7.14) 

tl 

L: a~1 xj + bi ~ 0, 
]=l 

i=l,2, .. .,m } 

i=l,2, ... ,m } 
Note that D is the region with true values of coefficients and Dk is an 

estimated region of D with the estimates of coefficiC'nts. 

First, we introduce the feasibility step that constructs from xk 

a feasible point to the updated feasible region of problem pk. The 

projection of xk to feasible region Dk is the main operation in the 

feasibility step. Let x} denote the projected point of xk. For xk ~ Dk, 

it is assured that xk satisfies the estimated constraints Ax+ b ~ 0 with 

some probability, that is, Pr(Axk + b ~ 0) > 0, since the estimators A 
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and b are normally distributed random variables. So we can select the 

values of A and b such that Axk + b ~ 0 from their confidence regions 

under an appropriate significance level. For an infeasible point xk (j. 

Dk, we consider the following auxiliary problC'm P (fJ) minimizing the 

object function with respect to B = (A, b)'. 

Minimize vec(B- Bk)'V(vecfl]-1 vec(B- Bk), 
p (D) : 8 

subject to Axk + b ~ 0. 

Problem P (B) has an optimal solution B* which give's the narrowest 

confidence region of unknown coefficients B, that is, B* bC'longs to the 
-confidence region of B under the highest significance lewl. B* is also 

viewed as an optimal solution of the following problC'm: 

Maximize a, 
B,Ck 

subject to BE SB(a), 
Axk + b ~ 0, 

where Sa( a-) denotes the confidence region of B under a significance 

level a. 

Since it is, however, too complicated to implement the selection of 

both A* and b*, we set A = A k for the sake of simplicity and select 
-only b* so as to maximize the significance level of th<' confidence region 

of b to which b* belongs. The resultant auxiliary problem minimizing 

with respect to b is given as follows. 

Minimize (b- bk)'V[b)-1(b- bk), 
p (b) : b 

subject to Akxk + b ~ 0, 

where V[bJ is a submatrix of V[vecB] corresponding to b. Then a 

feasible point x} is given by the following problem. 

Minimize llx- xkll, 
X 

subject to Akx + bk < 0. 
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Here we alter the feasible region Dk into Dk as follows, because the op­

timality step, which will be discussed below, requires a strictly interior 

point of Dk. 

(7.15) Dk = {.r ~A~:r + b~ ~ 0 for i E I, 

where 

(7.16) 

(7.17) 

A k .r + bk - v < 0 for i E I', 
1 1 -

Af x + bf ~ 0 for i rf. I U I' } , 

I I = { "I A k k b~ < 0 A k k bk = 0} z 1 .r + 1 - ' ,.rF + , 

and v is a prescribed tolerance level. Then .r} is located in the interior 

of Dk. 

~ext, we consider the optimality step that gn•es an improved 

point. We utilize an affine scaling method [B2] for getting an improved 

point xk+J. An interior point method for solving linear programming 

starts from a strictly interior point and generates a point sequence 

converging to an optimal solution through the interior of feasible re­

gion. The affine scaling variant of the Karmarkar's algorithm is one of 

the interior point methods, which solves the linear programming prob­

lem using an affine transformation. We consider the following iterative 

scheme based on the affine scaling method. 

(7.18) k+l k kdk .r =xF+o. , 
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where 

(7.19) 

(7.20) 

o.k = [(dk)'(Ak)'(TkfAk(l] - !' 

dk = -((A k)'(Tk)2 A k) -1 c, 

Note that x}, which is obtained in the feasibility step, IS a strictly 

interior point of Dk. 

We repeat sampling, estimation and stochastic improvement by 

the feasibility step and the optimality step, until the step siz<' of im 

provement becomes less than a prescribed tolerance levclv. Figur<' 7.1 

shows the resulting algorithm SIM to solve problem P by the stochastic 

improvement method. 

\Vhen we can obtain Nk samples (:rk+ 1,yk+ 1 ),(xk+2,yk+l), ... , 

( .l..k+ N~c, yk+ N") all together at one iteration, the estimated problem pk 

is updated to problem pk+N~c and the variance of estimator B with 

k· + l\'k samples is smaller than that of estimator B with k· + 1 sam­

ples. It is also desirable that the sample points arc chosen indepen­

dently of each other for the consistency of estimators. Since, however, 

the stochastic improvement method assumes that the sample point for 

the next observation is not independently generated but is provided 

by thC' xk+t given by (7.18) based on the present sample (;rk, yk), the 

sample points are not completely independent. This dependency of 

the sample points may slow down the speed that the variance of es­

timator converges to zero. \Vhen the infinitely many sample points 

arc restricted to a subspace of Rn, the estimator has no consistency . 
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procedure SIM: 

begin 

Give initial samples xN and observations yN for N > n; 

Let eN~ ((XN)'XN)- 1 and BN ~ GN(XN)'YN; 

Set a tolerance level v; 

Let ~· ~ N and define initial point xk+l arbitrarily; 

repeat 

begin 

Let k ~ k + 1; 

Observe new data (xk,yk); 
ck-lxk(xk)'Gk-t 

L t Gk ak-l . 
e ~ - 1 + (xk)'Gk-txk , 

Let Bk ~ I- X X (Bk-1 + ck-l xk(yk)')· ( 
ak-1 k( k)' ) 

1 + (xk)'Gk-l xk , 
if xk ¢ intDk 

then Feasibility step: Obtain x} and construct Dk; 

e lse Let x} ~ xk; 

Optimality step: Let xk+t ~ x} + akdk by (7.18); 

end 

until llakdk ll < v; 

end. 

Figure 7.1. Algorithm SIM 

However, since the estimate Bk in (7.18)- (7.21 ) is one realization of 

normally distributed random matrix B, that is, Pr(B = Bk) = 0 for 

any k, it is considered that the infinitely many sample points are re-
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stricted to a proper subspace of Rn with probability zero and this model 

assures us of the consistency with probability one. 

7 .4. Consistency of the Estimated Region and Con­

vergence of Algorithm SIM 

The estimated feasible region Dk with the estimates of coefficients 

converges to the true feasible region D with the true values of coeffi­

cients as sample size k becomes sufficiently large. From the consistency 

of estimator B, the following theorem holds. 

THEOREM 7 .3. With probability one, 

(7.22) lim Dk =D. 
k-oo 

PROOF: It is sufficient to show that 

(7.23) lim sup Dk C D C lim inf Dk 
k-oo k-oo 

with probability one. 

If x E limsupk_00 Dk, then there exists a sequence {yk}keA·--. i 

such that yk E Dk for all k E K , where ]{ is an infinite subset of 

{1,2, ... }. Thus, Akyk + bk ~ 0 for all k E /{. The consistency of 

estimators ensures that Ax + b ~ 0 with probability one, and hence 

x E D with probability one. This proves lim supk-oo Dk C D. 

If ~ ¢ lim inf k-oo Dk , then A k ~ + bk 1:. 0 for k sufficiently large. 

The consistency of estimators ensures that A~ + b 1:. 0 with proba­

bility one, and hence ~ f/:. D with probability one. This proves D c 

lim inf k-oo Dk. I 
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To measure the distance between the estimated feasible region Dk 

and the true feasible region D, we consider the Hau::;dorff distance. 

(7.24) b(Dk, D) =max( max min 11-r- Yll, max min llx- yll). 
rEDt yED rED yEO• 

where 11·11 denotes the Euclidean norm. From Theorem 7.3, for any 

positive f, there exist a number n 1 and a region Dt, with probability 

one, such that 

(7.25) 

and 

00 

(7.26) D c Di = U Dk. 
k=nt 

Moreover there also exist a number n2 and a region D;, with proba­

bility one, such that 

(7.27) 

and 

00 

(7.28) D ::> D; = n Dk. 
k=n2 

Let xt and x; denote optimal solutions of problems min{c'x l.r E D(} 

and min { c' x I x E D;}, respectively. The following theorem shows the 

convergence of algorithm SIM to a point that gives the optimal value 

of problem P with probability one. 
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T HEOREM 7.4. Let x• denote an optimal solution of problem P with 

the true value of coefficients. Then lc'xk- c'.r*l-+ 0 ask-+ oo with 

probability one. 

PROOF : For any positive f, from Dk CD( and limk-oo Dk = D with 

probability one, we obtain c' x( ~ c' xk for ~· sufficiently large. l'\ote 

that the sequence of objective values { c' xk} of problem pk at .r. = xk 

has an accumulation point {.t. 

If P, ~ c'x;, then c'xk ~ c'x; for k sufficiently large. Because 

6(D(,D;) ~ 2f holds with probability one, it is obvious that lc'x(­

c'x-1-+ 0 as f-+ 0. From c'x+ < c'xk < c'x- and c'x+ < c'x* < c'x-E E- - E C- - fl 

it is shown that lc'xk- c'x*l-+ 0 with probability one ask-+ oo. 

If c'x; ~ P,, then c'x; ~ c'xk for k sufficiently large. However, 

from D; C Dk and limk-oo Dk = D with probability one, we obtain 

c' x; ~ c' xk fork sufficiently large. Therefore, limk-oo c' .rk - c' x; and 

c' x; -+ c' x • as e -+ 0. I 

Since Bk -+ B as k -+ oo, the algorithm SIM generates a point 

sequence {.rk} which has an accumulation point x. Then Theorem 7.4 

implies that 

(7.29) x E argmin{c'xiAx + b ~ 0}. 

The stochastic improvement method solves problem P by alternating 

between the feasibility step and the optimality step. If we apply only 

the optimality step in problem pk without updating the estimates, 

the sequence generated by the stochastic improvement method may 

converge to an optimal solution of the estimated problem pk. Since the 
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sequence of problems {Pk} converges to problem P as sample size tends 

to infinity, it is meaningful to apply the optimality steps several times 

at one iteration, as it may obtain a point close to an optimal solution of 

the estimated problem p k at each iteration. Moreover, if we can obtain 

random samples besides the sample point xk, the convergence speed 

of o(Dk, D) with random samples is faster than the convergence speed 

of o(Dk, D), obtained by using the proposed algorithm, since random 

samples assure the consistency of estimator B. 

7 .5 . Computational Results 

We have conducted numerical experiments with the proposed al­

gorithm for the test problem. The unknown coefficients in A and b 

are chosen at random from the sample space uniformly distributed 

on {0, 1, . . . , 49} and {-50, -51, . .. , -99}, respectively. T he objective 

function is c' x = x 1 + x2 + · · · + x n. Let an optimal solution of the 

problem with the true values of coefficients be previously calculated and 

the existence ascertained. Let the observations of Axk + b include the 

random error which has an independent normal distribution .N(O, ~ ). 
We have solved the problem, where m = 40 and n = 20, twenty 

times by applying the proposed algorithm with v = 10-6 . Figure 7.2 

shows the average difference between c' xk and c' x*, which implies that 

the convergence mainly depends on the affine scaling method for k 

less than about 60 and, after that, xk is considered to be close to a 

point that gives an optimal value of problem p k and the convergence 

mainly depends on the accuracy of estimates. The convergence speed 
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E( lc' xk .- c' x* I) 
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Figure 7.2. The average difference between c' xk and c' x*. 

for k sufficiently large is about 0( k-0 ·85 ). An optimal solution with 

a tolerance level v necessitates the estimates with an accuracy v, i.e., 

liB - B kll < v . Therefore, when the affine scaling method (optimality 

step) gives a point sufficiently close to an optimal solution of the es­

timated problem, the number of iterations of the proposed algorithm 

mainly depends upon the consistency of the estimators. 

7 .6. Conclusion 

We have introduced m this chapter a new stochastic approach 

based on the stochastic improvement method for a stochastic linear 

programming problem. This is a new statistical approach to stochastic 

programming. As an example of this approach, the linear programming 

problem with linear constraints that contain unknown coefficients is 

considered. The unknown coefficients are estimated by means of a 
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multivariate regression analysis based on the observations with random 

noise. 

In the confidence region method discussed in Chapter 2 through 

Chapter 4, we estimate the unknown coefficients by their confidence 

regions under a certain significance level. The resulting deterministic 

problems are solved by using several solution procedures proposed in 

the previous chapters. If we receive new statistical data for improving 

the accuracy of the estimates of unknown coefficients, we must recon­

struct the confidence region and solve the resulting new problem. 

Contrary to this, in the stochastic improvement md hod, we can 

update thr estimates of unknown coefficients whenever wr receive new 

statistical data, and then improve the current solution in an adaptive 

way. The point sequence { x k} generated by the algorithm SI}.1 con­

verges to a point that gives the optimal value of problem P with the 

true values of coefficients with probability one, which is proven from the 

fact that thr consistency of maximwn likelihood estimator of unknown 

coefficients assures that the distance between the true feasible' region 

and the C'stimatC'd feasible region converges to zero with probability one 

as sample size tends to infinity. The stochastic improvement consists of 

the feasibility step that obtains a point feasible to the updated feasible 

region by projecting an infeasible point to the feasihl<' region and the 

optimality step that obtains an improved point by applying the affine 

scaling method. The proposed algorithm alternates between these two 

steps. 

The algorithm SU..l utilizes only the mean of estimator of unknown 

coefficients. Therefore, it is a subject of further research to develop a 
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model and a solution algorithm that makes usc of higher moment::; of 

estimators, e.g., variance. This will enable us to cstimat<' the ccmfi­

dence region of the constraints that contain unknown coe'fticic'nts w1th 

an appropriate significance level, which is abo viewed as the chance 

constraint Pr(.4.r + b:::; 0) ~a with a significancc l<'\'<'l n. It is IH'ccs­

sary and worthwhile to investigate th<" stochastic improvement method 

for the estimat<>d problem by the confidence region, which is a gener­

alization of our proposed method. 
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Chapter 8. 

CONCLUSION 

In this dissertation, we have discussed statistical approad1es for 

stochastic programming. Various algorithms have been proposed for 

several types of stochastic programming problems. Here we summarize 

the obtained results and discuss some directions of future re5earch. 

In Chapter 2 through Chapter 4, we have proposed algorithms 

based on th<:> confidence region method for stochastic lin<:>ar program­

ming problems. The unknown coefficients that describe the problem 

arc estimated from available information and then thcir confidence re­

gions arc derived under a given significance }<:>vel. The confidence re­

gion method provides a minimax solution that optimizes the objective 

function by assuming the worst case behavior of parameters in their 

confidence regions. In other words , a minimax solution by the confi­

dence region method minimizes the maximal possible damage in deci­

sion making. 

Chapter 2 has discussed the confidence region method for two types 

of stochastic linear programming problems, which ar<' dual each other 
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but have diff<>rent stochasticity. The first problem, which has a nor­

mally distributed random right-hand side with unknown distribution 

paranwters, has been formulated as a minimax model with a quadratic 

recourse. An optimal solution of the problem with true parameters 

is obtained from the asymptotic optimal solution of the quadratic re­

course model with sufficiently large sample size. 

Chapter 3 has discussed the stochastic linear programming prob­

lem with estimated constraints. When the unknown coefficients in the 

linear constraints are estimated by means of multiple regression anal­

ysis, the confidence regions of linear constraints form the intersection 

of reverse convex regions. vVe have proposed solution algorithms that 

usc a cutting plane method for reverse convex programming. vVc have 

shown the finite convergence of the cutting plane algorithm for the lin­

ear programming problem with one unknown linear constraint and the 

convergence of the modified cutting plane algorithm to an optimal so­

lution for the linear programming problem with several unknown linear 

constraints. 

Chapt<'r 4 has discussed the confidence region method for the P ­

modcl of the stochastic linear knapsack problem that contains unknown 

distribution param<>ters. vVe have proposed a polynomial time algo­

rithm by reducing it to the problem with known distribution parame-

ters. 

In the practical decision making under uncertainty, it is necessary 

and useful to reduce uncertainty by making use of statistical infor­

mation. In this sense, the confidence region met hod is an interesting 

approach to stochastic programming. It is important for us to develop 
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confidence region methods for other types of stochastic programming 

problems. 

Chapter 5 and Chapter 6 have dealt with a probability ma.ximizing 

model of the stochastic linear knapsack problem and its application to 

a portfolio sdcction problem. In Chapter 5, we have discussed a proba­

bility maximizing model of the stochastic linear knapsack problem with 

normally distributed random cost coefficients. The optimality condi­

tion was dcriv<•d for an optima.! solution of tlw introduc<•d auxiliary 

problem. The relationship between an optimal solution and an dfi­

cient frontier of the feasible region was clarified in the lll<'<lll variance 

framework, as a result of the uniqueness of optimal parameter value 

introduced in the auxiliary problem. 

Chapter 6 has developed efficient algorithms for the stochastic lin­

ear knapsack problem, which is found in the portfolio selection prob­

lems. Th<> block diagonal model has been solved by decomposing it 

into subproblems and merging them by ranking method. The problem 

of index models, which are based on the CAP::\1 or the APT, has been 

solved in polynomial time by introducing the parameters corresponding 

to the indices. 

Since the stock market deals with more than 1000 investments, 

it necessitates the development of more efficient algorithms to get an 

optimal portfolio for the problem of multi ind<>x model. As it is in gen­

eral difficult to predict with certainty the rate of return on investment, 

estimating the rate of return on investment by thC' confidC'ncc region 

under a given significance level is interesting. 1\lorcovc•r, since there are 

differE'nt models of portfolio selection problems, e.g. E-V mod<>l and 
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P-model, it is worthwhile to clarify their relation to the probability 

maximizing model. 

Chapter 7 has discussed a stochastic improvement method for sto­

chastic linear programming, which improves alternately the estimates 

of unknown parameters and the current solution of the estimated prob­

l<'m. We have proposed a solution algorithm, which alternates between 

the feasibility step and the optimality step. Tlw point s<'quence gen­

erated by the propos<'d algorithm converges to a point that giY<'S the 

optimal value with probability one. We consid0r that a future res<'arch 

direction of the stochastic improvement method is the dcvelopm<'nt of 

a model and its solution algorithm that make usc of higher mom<'nts 

of estimator, thereby enabling us to deal with the confidence region 

of unknown constraints. The stochastic improvement method may be 

developed in order to solve the stochastic mod<'l without transforming 

into the <'quivalent deterministic model. It is also inter<'sting to apply 

tlw stochastic improvement m<:'thod to the problem with <'ver-changing 

data like time series data. 

Many of the real life problems have to face with unc<'rtainty, for 

which prediction or estimation has to be done from enormous statistical 

data. It is therefor<' important to inv<'stigate statistical approach<'s for 

the decision problems under uncertainty. Th<' author hopes that the 

works contained in this dissertation will contribut<' to th<' d<'velopm<'nt 

of statistical approaches for stochastic programming. 
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