<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>溶媒抽出法における希釈剤効果に関する研究（全文）</td>
</tr>
<tr>
<td>著者</td>
<td>新苗正和</td>
</tr>
<tr>
<td>刊行者</td>
<td>京都大学</td>
</tr>
<tr>
<td>発行日</td>
<td>1992-09-24</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.11501/3090702</td>
</tr>
<tr>
<td>タイプ</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>author</td>
</tr>
</tbody>
</table>

京都大学
溶媒抽出法における希釈剤効果に関する研究

1992年

新苗正和
目次

第1章 序論 1
 1.1 文献 ... 7

第2章 D2EHPAによるCoの抽出に与える希釈剤効果の2, 3の実験的検討 10
 2.1 研究目的 .. 10
 2.2 実験方法 .. 10
 2.3 実験結果および考察 11
 2.3.1 Coの抽出性に与える希釈剤の影響 11
 2.3.2 硝酸アンモニウム濃度（イオン強度）の影響 14
 2.3.3 Loading比の影響 15
 2.4 結論 ... 19
 2.5 文献 ... 20

第3章 単成分系希釈剤効果の正則溶液論的検討 21
 3.1 研究目的 .. 21
 3.2 実験方法 .. 22
 3.2.1 D2EHPAによるCoの抽出実験 22
 3.2.2 TOMACによるCoの抽出実験 22
 3.3 D2EHPAによるCoの抽出に与える希釈剤効果の正則溶液論的検討 23
 3.3.1 初期D2EHPA濃度の影響 23
 3.3.2 希釈剤の影響 28
 3.4 TOMACによるCoの抽出に与える希釈剤効果の正則溶液論的検討 30
 3.4.1 初期TOMAC濃度の影響 30
 3.4.2 希釈剤の影響 33
 3.5 結論 ... 36
 3.6 文献 ... 37

第4章 混合希釈剤効果の正則溶液論的検討 38
第1章 序論

溶媒抽出法は、分析化学の分野では基本的な分離技術であり、工業的には、石油製品や医薬品の分離、精製等に利用されている。

しかし、溶媒抽出の分野で利用されるようになったのは、適当な抽出剤がなかったこと、また、抽出技術も一般化されていなかったこともあり、比較的最近のことであるが、現在では、金属の分離精製技術として不可欠になっている。また、近年、資源の枯渇、産業廃棄物処理等の問題から、さらに注目されるようになってきた。

溶媒抽出法の基本的なプロセスは、図1.1に示すように、抽出（extraction）、洗浄（scrubbing）、逆抽出（stripping）の3つの工程から構成されているが、逆抽出のあとに有機相再生工程を加えることもある。

一般には各工程とも、目的の濃度に達するまで複数段の接触が必要であり、抽出および逆抽出時の有機相と水相の容量比の調節により、目的成分の濃縮を行う。

溶媒抽出法において用いられる抽出剤は、様々なタイプに分類されているが、ここでは、Ritceyらによる簡単な分類を示すと、i）化合物生成を含むタイプ、ii）イオン対生成を含むタイプ、iii）金属イオンの溶媒化を含むタイプの3つに分類できる。

i）のタイプに属する抽出剤としては、酸性有機リン化合物やカルボン酸等の酸性抽出剤およびhydroxybenzophenone oxinesや誘導ス-hydroxyquinolines等のキレート抽出剤が含まれ、ii）のタイプに属する抽出剤としては、アミンや四級アミノニウム塩等が含まれる、iii）のタイプに属する抽出剤としては、phosphate, phosphonate, phosphine oxide等の多くの中性有機リン化合物等がこれに含まれる。

また、溶媒抽出法で用いられる抽出剤は、水溶性と混じらず、目的金属成分を水溶液から選択的に抽出でき、しかも燃え難く、無害で使用しやすい等の性質がさらに要求される。

イオン交換樹脂法やキレート樹脂法等の他の金属の分離法と比べた場合の、溶媒抽出法の長所を示すと、i）連続操作に適している、ii）重金属イオン、鉄、、有機酸等、広範囲にわたって、目的物を高濃度で回収できる、iii）選択的抽出能力が優れているので、抽出精製物の純度が高い、iv）イオン交換能力が大きく、かつ、抽出剤濃度の変化によって、イオン交換容量や抽出容量を簡単に調整できる点等が挙げられる。

金属製鍊における溶媒抽出法の最初の工業的な応用は、1945年頃からのウラン製鍊に始まる。希土類元素、V, Mo, Re相互間の分離、NbとTa, ZrとHfの分離等、いわゆるレアメタ
図1.1 溶媒抽出法の基本プロセス

の製錬においては、従来より、技術的にこれらレアメタルの相互分離は非常に困難であるため、図1.2に示すような種々の単位操作（流式法のみ示す）を軸として分離精製を行ってきた。しかし、これらの単位操作のなかでも溶媒抽出法は、ウラン製錬以後の技術開発、改良を経て、特に大きな発展を示してきている。

さらに、過去10数年における溶媒抽出法の金属製錬における注目すべき点は、従来、比較的高価な金属への利用に限られてきたのが、選択性の高い安価な抽出剤の開発と溶媒抽出法技術の進歩にあいまって、Cuを始めとして、Ni、Co、Zn等の一般金属の製錬にも、重要な分離精製技術として位置づけられるようになったことである。また、資源の枯竭問題とあいまって、ラテライト鉱やマンガン礁等の低品位鉱や未利用資源の処理技術のなかでも、溶媒抽出法は重要な位置を占めている。また、最近、資源リサイクルがよく取りあげられるが、これはには、クローズドシステムの技術開発が必要とされるが、溶媒抽出法はクローズドシステムの無人化運転が容易であることなどからも、煙灰やスクラップ等の産業廃棄物の処理プロセスにおいても、重要な分離技術として益々期待されるようになってきた。

溶媒抽出法においては、用いられる抽出剤は、一般に粘度が高く、比重も1に近いものが多い。したがって、普通は、粘度、分相性および分散性の調整を目的として、有機溶媒に

図1.2 レアメタルの分離精製に使用される単位操作の例（流式法）
ら金属イオンを抽出することはできないが、抽出過程において、抽出反応速度や抽出能力に大きな影響を与える。時には、希釈剤を変えるだけで分配係数が十倍も変化することもある。したがって、希釈剤の選択は、溶媒抽出をプロセスに組み込む際に重要な因子となり、その使用に当たっては、その都度実験で確認する必要がある。

希釈剤として一般に必要とされる性質を示すと、i) 抽出剤と相互によく混じり合う、ii) 第3相および低い密度性の問題を最小限に抑える、iii) 低い発泡性と高い引き点を持つ、iv) 木相に溶けない、v) 低い表面張力を持つ、vi) 安定であること等がある(26)。

希釈剤の影響は、多くの研究者により物理化学的に検討されているが(27)(28)(29)、希釈剤の影響は、非常に複雑であり、したがって、その検討結果も複雑なものになり、また、定量的に検討された報告は少ない。しかし、なかには、アミンによる金属錯イオンの抽出に関する影響を、DE (Diluent Effect) パラメーター(24)や効力(8)等を用いて定量的かつ単純に示す試みもされている。しかし、金属イオンの抽出に対して、抽出剤の検討を目的とした研究は多くなされているが、それに比べると、希釈剤の影響は、まだまだ十分に検討されているとは言えない。

溶媒抽出において希釈剤として使用される有機溶媒は、一般に極性の低い炭化水素類が多いことから、希釈剤の影響を近似的に取り扱う方法の一つとして、正則溶液体(regular solution theory)の適用が考えられる(25)。

多くの研究者が正則溶液体を適用して希釈剤の影響を検討しているが(21)(22)(23)、極性の高い希釈剤も同時に取り扱っている場合が多いように見受けられ、その取り扱いに無理があるのではないかと思われる。また、2種類の有機溶媒からなる混合溶媒を希釈剤として用いた場合の正則溶液体の適用も見られるが(17)(23)、定性的な研究が多く、しかも、いずれも定性的に取り扱っているだけで、なかには、極性の高いクロロホルムを用いて検討しており(17)(21)(22)(23)，その取り扱いに無理があるのではないかと考えられる。

溶媒抽出法において用いられる抽出剤は、一般に界面活性剤と考えられている(26)。これら抽出剤の界面活性は、同じ分子中に親水基と疎水基の両方を持ち、両親媒性に起因している。ただし、抽出剤の界面活性性としての性質理解が進んでいるにもかかわらず、抽出過程での界面現象の意義を考える場合に、完全にその重要性が認められているとは言えない。例えば、Freiserは、金属の抽出において界面効果は重要なないと述べており、一方、Hansenは、界面での反応の重要性を述べている(27)。このことからも、溶媒抽出法において界面化学的検討が十分なされているとは言えないことが分かる。また、溶媒抽出法において界面を取り扱う場合、多くの場合、金属の抽出反応速度の数値モデル、または、金属の分配等から間接的に取り扱っている。したがって、界面とパルク相の物理化学的研究から導かれる、より直接的な実験的検討が必要とされている。1987年に、McDowell(24)によって、U-アミン硫酸塩系に対して、その抽出機構を解明するために界面張力測定が初めて導入されて以来、界面に注目して系統的に研究しようとする試みは、ほとんどなされていないと言えるのが現状である。

近年、新しい抽出剤の開発が進められている一方で、混合抽出剤による協同効果を利用した新しい抽出系の開発研究が活発に行われている。Brownら(38)によって、Uの溶媒抽出において協同効果が初めて報告されて以来、協同効果の利用が検討されているが、特に、原子力分野で活発に検討されている(21)(22)。代表的な例を示すと、0.01M H2SO4 硝酸溶液からのUの抽出に対し、thenoyl trfluoroacetoacetone (TTA) と tri-n-butylphosphate (TBP)、または、tributylphosphine oxide (TBPO) との混合抽出剤を用いた場合、TFA単独の場合と比べて、それぞれ、5000倍および16000倍の分配係数の増加が報告されている(31)。

しかし、これらの活発な研究にもかかわらず、混合抽出剤の使用は、パイロットプランの段階はあっても、工業的にはまだ実用化されていないのが現状である。また、協同効果は、金属の抽出分離に対して極めて重要な現象であるにもかかわらず、基礎的な研究は、その抽出機構が複雑であることもあり、十分に検討されていないと言えない。ましてや、希釈剤の影響を検討した報告は少なく(34)(35)，その影響を検討することは重要であると考えられる。

以上のことから分かるように、溶媒抽出法は、実用化および基礎的研究が活発に行われているにもかかわらず、まだまだ十分検討されているとは言い難く、多くの検討すべき課題を残している。特に、希釈剤の影響、その複雑さのために、系統的に検討が十分行われていないと言うのが現状である。

以上の見地から、本研究では、抽出剤として、酸性抽出剤の代表的な抽出剤があり、また、工業的に広く利用され、溶媒抽出プロセスにおいて非常に重要である di- (2-ethylhexyl) phosphoric acid (DEHPA) を主として使用し、湿式製剤の分野では、一般的に極性の低い有機溶媒が希釈剤として使用されるという点を考慮して、主に低極性希釈剤の影響を検討を目的とし、まず、抽出性、塩析効果および金属イオンの抽出
にともなう重合体化に与える低極性希釈剤の影響を、单成分系希釈剤および2種類の有機溶媒からなる混合希釈剤を用いて、弱酸性溶液からのCoの抽出に対して実験的に検討した。(36)

次に、单成分系希釈剤および2種類の有機溶媒からなる混合希釈剤の影響を、D2EHPAによる弱酸性溶液からのCoの抽出に対して正則溶液論を適用することにより、定量的な検討を試み、さらに、高分子量四級アンモニウム塩であるtri-n-octylammonium chloride(TOMAC)による塩酸溶液からのCoの抽出に対して、テトラクロロウレタン塩イオンの抽出を仮定することにより、单成分系希釈剤および2成分系混合希釈剤の影響を正則溶液論に検討することを試みた。(37)(38)

次に、D2EHPAおよび酸性抽出剤の一つである2-ethylhexylphosphonic acid mono-2-ethylhexyl ester(EHPMA)を用い、抽出剤の界面活性に与える希釈剤の影響および界面活性と金属の抽出性の関係を、界面化学の立場から実験的に検討することを試みた。(39)

最後に、酸性および中性化合物を用い、抽出剤の物理的性質に与える希釈剤の影響および抽出性を検討することを目的として、D2EHPAおよびtri-n-octylamine(TOA)とTBPまたはtriocetyl phosphine oxide(TOP)との混合抽出剤による、塩酸酸性溶液からのAuの酸性抽出について、酸化剤として加えたFe(III)イオンとの分離および酸性効果によるAuの抽出機構の推察を含めて検討を試みた。(40)

1.1 文献

(2) 矢沢 柯、江口元雄：溶媒抽出と排水処理，共立出版（株），(1975)，244
(3) 西村治山：水曝発錶，19(5)(1979)，109
(4) 酒藤 男，水川悟，新苗正和：「レアメタルの精製技術に関する調査報告書」
 工業技術院公害資源研究所編，(1985)，212
(5) 西村治山：資源処理技術，31(4)(1984)，274
(10) C. Abbuzzesee: ISEC'83, Denver, (1983)，472
(14) H. A. Mottola and H. Freiser: Talanta, 13(1966)，55
(20) E. Högfeldt: Chem. Ind., 6(1970)，184
(22) 新苗正和，酒藤 男，浜田善久：公害資源研究所報告，17(2)(1987)，19
(23) V. S. Shmidt, E. A. Mezhov and S. S. Novikova: Radiokhimiya, 9(1967), 700

(31) C. Ginsty: ISEC'83, Denver, (1983), 42

(35) 新苗正和，疋藤 勇，坂本 宏，中廣吉孝，若松貴英：資源處理技術，38(4) (1991)，159

(36) 新苗正和，疋藤 勇，坂本 宏，中廣吉孝，若松貴英：日本金屬学会誌，55(3) (1991)，310

(37) 新苗正和，疋藤 勇，坂本 宏，中廣吉孝，若松貴英：日本金屬学会誌，55(2) (1991)，59

(38) 新苗正和，古屋仲茂樹，中廣吉孝，若松貴英：平成4年度資源・素材学会春季大会研究・業績発表講演要旨集，(1992)，255

(39) 新苗正和，小島憲弘，竹中由嘉，中廣吉孝，若松貴英：日本金屬学会誌，55(8)
第2章 D2EHPAによるCoの抽出に与える希釈剤効果の2、3の実験的検討

2.1 研究目的

溶媒抽出法は、分析化学の分野では基本的な分離操作であり、石油化学などでは、分離精製技術として工業的に利用されている。しかし、塩酸塩の分野で利用されるようになったのは、比較的最近のことである。現在では、資源の枯渇、産業廃棄物処理等の問題もある。金属の分離精製技術として不可欠なものになっている。したがって、金属の分離精製技術としての重要性が増すにつれて、金属の抽出特性を基礎的に検討することが、益々重要となっている。

溶媒抽出法で使用される抽出剤は、一般に、粘度、分相性および分散性の調和を目的として、希釈剤により適当な濃度に希釈して使用される。希釈剤は、抽出反応速度や抽出能力に大きく影響するため、希釈剤の選択は、溶媒抽出をプロセスに組み込む際に非常に重要な因子となり、その使用に当たっては、その都度実験で確認する必要がある。

Coを効率良く抽出する抽出剤として、di-（2-ethylhexyl）phosphoric acid (D2EHPA) が良く知られており、多くの研究者により、D2EHPAによるCoの抽出、または、Niとの分離について研究されている[11]～[13]。また、D2EHPAによる他の金属の抽出に与える希釈剤の影響についての報告も見られるが、希釈剤の影響を主目的に検討された報告は比較的少なく[11]～[13]、十分に検討されているとは言い難い。

塩酸塩における溶媒抽出法においては、一般に、極性の低い炭化水素類が希釈剤として使用される場合が多い。そこで、本章では、極性反応および水素結合性が無視できるような希釈剤だけを使用し、D2EHPAによる弱酸性溶液からのCoの抽出に与える希釈剤の影響を、問題提問の意味も含めて2、3の側面から実験的に検討を試みた。

2.2 実験方法

有機相は、抽出剤として、大和化学工業（株）製のDP8R(30mol·dm⁻³)の塩酸溶液と純水をそれぞれ5回ずつ洗浄したものをdi-（2-ethylhexyl）phosphoric acid (D2EHPA) として使用し、ベンゼン、トルエン、o-キシレン、m-キシレン、n-ヘプタン、シクロヘキサンおよびn-ヘプタンとベンゼンの混合溶液により、所定の抽出剤濃度になるように重量法により調整したものを使用した。ただし、D2EHPAの純度は、D2EHPAをエタノール-水（9:1容积比）に溶解し、N/10水酸化ナトリウム標準液でpH測定により求めた。ジエステル分と微量のモノエステル分を合わせたD2EHPAの純度は、99.3～99.6％であった。

供試水稲は、Co(NO₃)₂·6H₂OによりCo濃度を調整し、さらに、イオン強度を硝酸アンモニウムにより、0.2mol·dm⁻³および7.0mol·dm⁻³に調整した溶液で、少量のアンモニア水で適宜pH調整して使用した。また、有機溶液、Co(NO₃)₂·6H₂Oおよび硝酸アンモニウム等は、すべて試薬特級品（和光純薬（株）製）を使用した。

抽出操作は、有機相および水相をそれぞれ20cm³ずつ、容量100cm³の共栓三角フラスコに入れ、25℃一定に調整した恒温水槽中で1時間振とうすることにより平衡化させた。ただし、予備実験から、1時間の振とうで十分抽出平衡に達していることが分かった。振とう後、遠心分離器で2相に分離し、再相から一定量の溶液を分取した後、平衡水相については、ただちに平衡pHをpHメーターで測定した。平衡有機相中のCoは、2mol·dm⁻³の塩酸溶液で逆抽出し、平衡水相および逆抽出液中のCo濃度は、Cu-PANを指示薬とするキレート滴定法および原子吸光法により定量した。

2.3 実験結果および考察

2.3.1 Coの抽出性に与える希釈剤の影響

極性反応や水素結合性が無視できるような希釈剤が、D2EHPAによるCoの抽出性に与える影響を検討した。

図2.1cに、1vol％および10vol％のD2EHPAによるCo濃度0.002mol·dm⁻³、硝酸アンモニウム濃度0.2mol·dm⁻³の溶液からのCoの抽出性に与える希釈剤の影響を示す。図2.1dから分かるように、極性反応や水素結合性が無視できるような希釈剤を用いた場合でも、希釈剤によってCoの抽出性に与える影響が異なることが分かる。

D2EHPAによるCoの抽出反応は、一般に次のようになる。

\[
Co^{2+} + 2(RH)_{2} \rightleftharpoons CoR_{2} \cdot 2RH_{2} + 2R^{+} \quad \text{(2.1)}
\]
図2.1 数種の低沸点希釈剤で希釈したD2EHPAによるCoの抽出
有機相：1vol%D2EHPA, 10vol%D2EHPA
水相：0.002mol·dm⁻³Co; 0.2mol·dm⁻³H₂N₃O₃

ここで、RHおよび(RH)ₐは、それぞれD2EHPAおよびその二重体を示し、添字のaおよびoは、それぞれ水相および有機相を示している。式(2.1)で示される反応の抽出定数は、次式で示される。

\[K_{ex} = \frac{[\text{Co(RH)}][\text{H}^+]^2}{[\text{Co}^2+][\text{(RH)}]_a^2} \] (2.2)

式(2.2)は、さらに次のように変形することができる。

\[\log D - 2\log[(RH)_a] = \log K_{ex} + 2\text{pH} \] (2.3)

ただし、Dは分配係数を示している。

そこで、Coの抽出性を比較するために、式(2.1)の反応を仮定し、抽出率が50%（分配係数が1）となる時の平衡pH（pHe_s）および抽出定数K_{ex}を求めた結果を表2.1に示す。ただし、pHe_sは、Dの対数値と平衡pHの間に、ほぼ傾き2の直線関係がある領域のデータを用い、傾き2の直線近似法により求めた。また、K_{ex}は、式(2.3)の関係を用い、その切片から求めた。

<table>
<thead>
<tr>
<th>Diluent</th>
<th>1vol% D2EHPA</th>
<th>10vol% D2EHPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pHe_s</td>
<td>K_{ex}</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>4.21</td>
<td>1.93 x 10⁻⁵</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>4.29</td>
<td>1.35 x 10⁻⁵</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>4.62</td>
<td>2.94 x 10⁻⁶</td>
</tr>
<tr>
<td>Toluene</td>
<td>4.66</td>
<td>2.44 x 10⁻⁶</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>4.64</td>
<td>2.73 x 10⁻⁶</td>
</tr>
<tr>
<td>Benzene</td>
<td>4.69</td>
<td>2.18 x 10⁻⁶</td>
</tr>
</tbody>
</table>
2. 3. 2 硝酸アンモニウム濃度（イオン強度）の影響

水相のイオン強度を変化させた場合に、Coの抽出性に与える希釈剤の影響を検討した。

図2.3に、n-ヘプタン、ベンゼンおよびn-ヘプタンとベンゼンの混合溶液で希釈した
1vol%のD2EHPAによる、Co濃度0.002mol·dm⁻³、硝酸アンモニウム濃度7.0mol·dm⁻³濃度の
溶液からのCoの抽出性を例として示す。先の硝酸アンモニウム濃度0.2mol·dm⁻³の場合の
図2.1および図2.2との比較から分かるように、すべての希釈剤でCoの抽出性が酸性側に
移動していることが分かる。トルエン、o-キシレン、n-キシレンおよびシクロヘキサン
においても同様の傾向が見られた。

Coアンモニア錯化化合物の生成は、酸解離定数pKₐ = -logKₐ = 10.12（補正値考慮）およ
び全安定定数logβ₁ = 2.08、logβ₂ = 3.67、logβ₃ = 4.69、logβ₄ = 5.42、
logβ₅ = 5.57、logβ₆ = 4.91⁹¹⁹¹を用いて錯体平衡と質量保存を考え、Newton-
Raphson法により化学種の分布を検討したところ、約pH 6.0以下では、Coアンモニア錯化
化合物の生成は無視できと考えられた。したがって、この実験結果は、Coアンモニア錯化
化合物の生成が原因ではなく、硝酸アンモニウム濃度の増加による塩析効果が原因と考えられ
る。

図2.2 n-ヘプタン（S1）とベンゼン（S2）の混合溶液で希釈したD2EHPAによるCoの抽出
有機相：1vol%D2EHPA，10vol%D2EHPA
水相：0.002mol·dm⁻³Co；0.2mol·dm⁻³NH₄NO₃

図2.3 D2EHPAによるCoの抽出
有機相：1vol%D2EHPA
水相：0.002mol·dm⁻³Co；7.0mol·dm⁻³NH₄NO₃

表2.2に、硝酸アンモニウム濃度7.0mol·dm⁻³の場合のpHₐ.s、硝酸アンモニウム濃度0.2mol·dm⁻³の場合のpHₐ.sとの差（△pHₐ.s）および抽出定数Kₑ.sを示す。表2.2から分かるように、希釈剤によって塩析効果の程度に違いがあることが分かる。△pHₐ.s（Kₑ.sの比で
もあり）で見ると、溶媒パラメータの小さいn-ヘプタンとシクロヘキサンで希釈した場合の塩析効果は、他の希釈剤で希釈した場合と比較して小さくなっていることが分
かる。また、n-ヘプタンとベンゼンの混合溶液で希釈した場合、△pHₐ.s（またはKₑ.sの比）
で見ると、ベンゼンの割合の増加とともに、塩析効果の程度が連続的に増加する傾向が
見られる。ただし、硝酸アンモニウム濃度が7.0mol·dm⁻³の場合、シクロヘキサンの Kₑ.sが
n-ヘプタンのKₑ.sによりわずかに大きな値を示しているが、これは実験誤差によるものと
考えられる。

2. 3. 3 Loading比の影響
表2.2 pH, ΔpH, s and K_{ex}の値
有機相: 1vol% D2EHPA
水相: 0.002mol·dm$^{-3}$Co; 7.0mol·dm$^{-3}$NH$_4$NO$_3$

<table>
<thead>
<tr>
<th>Diluent</th>
<th>pHs</th>
<th>ΔpHs</th>
<th>K_{ex}</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane(S1)</td>
<td>3.90</td>
<td>0.31</td>
<td>8.15x10$^{-5}$</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>3.91</td>
<td>0.38</td>
<td>8.37x10$^{-5}$</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>4.17</td>
<td>0.45</td>
<td>2.45x10$^{-5}$</td>
</tr>
<tr>
<td>Toluene</td>
<td>4.21</td>
<td>0.45</td>
<td>1.97x10$^{-5}$</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>4.15</td>
<td>0.49</td>
<td>2.61x10$^{-5}$</td>
</tr>
<tr>
<td>Benzene(S2)</td>
<td>4.26</td>
<td>0.43</td>
<td>1.80x10$^{-5}$</td>
</tr>
<tr>
<td>S1(80%) - S2(20%)</td>
<td>3.99</td>
<td>0.36</td>
<td>5.50x10$^{-5}$</td>
</tr>
<tr>
<td>S1(60%) - S2(40%)</td>
<td>4.06</td>
<td>0.39</td>
<td>3.99x10$^{-5}$</td>
</tr>
<tr>
<td>S1(40%) - S2(60%)</td>
<td>4.16</td>
<td>0.42</td>
<td>2.81x10$^{-5}$</td>
</tr>
<tr>
<td>S1(20%) - S2(80%)</td>
<td>4.22</td>
<td>0.42</td>
<td>2.07x10$^{-5}$</td>
</tr>
</tbody>
</table>

D2EHPAの初期濃度（二液相濃度）と平衡有機相中のCo濃度の比（Loading比（L）, [Co$^{2+}$]/([RH])$^{2+}$）の値と式(2.2)で示されるCoの単量体抽出化学種の生成を仮定した場合の抽出定数の関係を図2.4および図2.5に示す。ただし、実験は平衡pHが4.33以下になる条件で行い、特に、n-ヘプタンおよびシクロヘキサンにおいては、平衡pHが4.0以下になる条件で実験を行った。図2.4および図2.5から分かるように、Loading比の値が増加すると、ある領域で抽出定数が増加することが分かる。抽出定数が一定値を示す低いLoading比の値の領域では、式(2.1)で示される反応が進行すると考えられるが、抽出定数の増加が見られるLoading比の値の領域では、式(2.1)で示されるようなCoの単量体抽出化学種の生成だけでなく、さらに、次式で示されるようなCoの重合体抽出化学種の生成を示しているものと考えられる(2)(9)(11)(13)。

\[(CoRe)_{n} \cdot 2RH_{o} + (RH)_{o} \cdot Co^{2+} \]

\[\rightarrow (CoRe)_{n} \cdot 2RH_{o} + 2H^{+}\] \hspace{1cm} (2.4)

図2.4 Loading比とCoの単量体抽出化学種の生成を仮定した抽出定数の関係
有機相: 1 ~ 40vol% D2EHPA
水相: 7.0mol·dm$^{-3}$NH$_4$NO$_3$

図2.4から分かるように、Coの重合体抽出化学種の生成は、それぞれの希釈剤において、n-ヘプタンでは、L = 0.06 ~ 0.07。シクロヘキサンでは、L = 0.07 ~ 0.08。また、ベンゼン、トルエン、o-キシレンおよびn-キシレンでは、L = 0.08 ~ 0.1のほとんど同じ領域からCoの重合体抽出化学種の生成が起こっているものと考えられる。溶解パラメーターが小さく抽出性が良いn-ヘプタンおよびシクロヘキサンでCoの重合体抽出化学種の生成するLoading比の値が低くなってしまい、その他の希釈剤では、ほぼ同じLoading比の値から、重合体抽出化学種の生成が起こっていることが分かる。Briskら(12)は、ケロシンで希釈したD2EHPAを用いて検討し、Loading比の値が0.1以上でCoの重合体抽出化学種の生成が起こると報告している。また、鈴木ら(13)は、2-エチルヘキシルアルコールで希釈した場合、Coの重合体抽出化学種の生成は、L = 0.15 ~ 0.20の領域で起こると報告しており
2.4 結論

極性反応や水素結合性が無視できる有機溶媒で希釈したD2EHPAによるCoの抽出に関して、2、3の側面から実験的に検討を行った結果、以下の結論を得た。

(1) Coの抽出性は、n-ヘプタン > シクロヘキサン > n-キシレン > トルエン > ベンゼンの順で良好であった。この抽出性的増加順序は、希釈剤の溶解パラメーターの減少順序とほぼ一致しており、このことは、Coの抽出性に与える希釈剤の影響を正則溶解論に基づいて説明できる可能性を示していると考えられる。また、n-ヘプタンとベンゼンの混合溶液で希釈した場合、溶解パラメーターの小さなn-ヘプタンの増加とともに、連続的にCoの抽出性が良くなる傾向が見られた。

(2) 硝酸アンモニウム濃度を増加させた結果、すべての希釈剤において、その抽出性は酸性側にずれ、いわゆる塩析効果が見られた。塩析効果の程度は、硝酸アンモニウム濃度0.2mol·dm⁻³と7.0mol·dm⁻³で比較した場合、希釈剤によって塩析効果の程度に違いがあり、特に、n-ヘプタンとシクロヘキサンで希釈した場合の塩析効果はベンゼン、トルエン、n-キシレンおよびm-キシレンで希釈した場合と比較してかなり小さいことが分かった。また、n-ヘプタンとベンゼンの混合溶液で希釈した場合、塩析効果の程度は、ベンゼンの増加とともに連続的に塩析傾向を示した。

(3) Loading比（= L, [Co³⁺]/[(RH)₂]ₖ）の値とCoの単体抽出化学種の生成について検討した結果、n-ヘプタンでは、L = 0.06 ~ 0.07、シクロヘキサンでは、L = 0.07 ~ 0.08、また、ベンゼン、トルエン、n-キシレンおよびm-キシレンでは、L = 0.08 ~ 0.1の領域からCoの重合体抽出化学種の生成が見られた。また、n-ヘプタンとベンゼンの混合溶液で希釈した場合、ベンゼンの増加の増加とともに、Coの重合体抽出化学種の生成するLoading比の値は連続的に増加する傾向が見られた。いずれにしても、本実験で使用したような極性の低い有機溶媒でD2EHPAを希釈する場合、常に、低いLoading比の値からのCoの重合体抽出化学種の生成を考慮する必要があると考えられる。
参考文献
(6) 芝田亜次, �.§内 正, 保与木茂樹, 西村隆治: 日本金属学会誌, 38(4)(1974), 316
(8) J. S. Preston: Hydrometallurgy, 9(1982), 115
(12) C. J. Bouboulis: ISEC'77, Toronto, (1977), 32
(14) A. F. M. Barton: Chem. Rev., 75(6)(1975), 731

第3章 単成分系希釈剤効果の
正則溶液論的検討

3.1 研究目的

希釈剤の影響は、多くの研究者により物理化学的に検討されているが(1)～(17)、その抽出機構の複雑さを加えて希釈剤の影響は非常に複雑で、そのため、検討結果はどう見ても定量化に欠けた複雑なものに過ぎない。したがって、実際の或る実用的な意味からも、希釈剤の影響を、巨視的な立場から、定量的かつ簡単に評価できれば、それは意味のあることと考えられる。なかには、希釈剤の影響をE恒等のパラメーターによって定量的かつ簡単に示す試みもされている(2)

湿式製鋼において希釈剤として使用されるものは、一般に極性の低い炭化水素類が多いことから、希釈剤の影響を近似的に取り扱う方法の一つとして正則溶液論(regular solution theory)の適用が考えられる(18)。多くの研究者が正則溶液論的に希釈剤の影響を検討しているが(8)～(17)，定性的な研究が多く、しかも、極性の高い希釈剤も同時に取扱っている場合が多いために見受けられ、その取り扱いに無理があるのではないかと思われる。

Coを効率的に抽出する抽出剤として第2章で取り扱った有機リン化合物であるD2EHPAが知られている。また、塩化物イオン濃度の高い水溶液からCoを効率的に抽出する抽出剤として高分子量4級アンモニウム塩であるtri-n-octylmethylammonium chloride (TOMAC)が知られている。

D2EHPAによるCoの抽出に与える希釈剤の影響を検討した報告は少ない(23)～(28)，しかし、なかには溶解パラメーターに結び付けて検討した報告も見られるが、定性的に取り扱っているにすぎない(23)。また、4級アンモニウム塩によるCoの抽出に対して、希釈剤の影響を正則溶液論的に検討した報告は少ない(16)～(17)。

第2章において、極性の低い希釈剤を用いた場合、D2EHPAによるCoの抽出に与える希釈剤の影響を正則溶液論に基づいて説明できる可能性を示した。

そこで、本章では、極性反応および水素結合性が無視できると考えられるような希釈剤だけを使用し、まず、有機リン化合物であるD2EHPAによる弱酸性溶液からのCoの抽出挙動および希釈剤の影響を、正則溶液論に基づいて定量的に検討し、さらに、高分子量4級アンモニウム塩の影響を、定量的に検討し、さらに、高分子量4級アンモニウム塩を用いてD2EHPAの抽出挙動を検討する。
モニウム塩であるTOMACによる塩酸溶液からのCoの抽出挙動および希釈剤の影響を、テトラクロロカルバート離イオンが抽出されるという簡単な抽出機関を仮定し、その抽出挙動および希釈剤の影響を正則溶液論に基づいて検討することを試みた。

3.2 実験方法

3.2.1 D2EHPAによるCoの抽出実験

有機相は、大化化学工業（株）製のD8Rを、第2章と同じ方法により洗浄したものとD2EHPAとして使用し、ペンゼン、トルエン、オキシレン、メキシレン、ヘプタンおよびシクロヘキサンにより、所定の抽出剤濃度になるように重量法により調整したものを使用した。ただし、D2EHPAの純度は、第2章と同じpH滴定により求めた結果、ジエステル分と混

量のモノエステル分を合わせた純度は、98.8%であった。

供試水相は、Co(NO₃)₂-6H₂OよりCo濃度0.002mol·dm⁻³に調整した硝酸アンモニウム濃度0.2mol·dm⁻³（イオン強度を一定にするために加えた）の溶液で、少量のアソニア水で

適宜pH調整して使用した。ただし、平衡水相pHが振動性になるように調整した。また、有

機溶媒、Co(NO₃)₂-6H₂Oおよび硝酸アンモニウム等は、すべて試薬特級品（和光純薬（株）

製）を使用した。

抽出操作、pH測定、Coの逆抽出およびCo濃度の分析は、第2章と同じ条件および方法で行

った。

3.2.2 TOMACによるCoの抽出実験

有機相は、抽出剤として、東京化成（株）で特別に合成した
tri-n-octylmethylammonium chloride（TOMAC）の高精密度品を精製させずにそのまま使用し、
ペンゼン、トルエン、オキシレン、メキシレン、四塩化炭素およびクロロペンゼンによ

り、所定の抽出剤濃度になるように重量法により調整したものを使用した。ただし、TOMAC
の純度は、ニトロペンゼンを用いたVolhard法により求めた結果、98.1%であった。また、
TOMACを希釈剤に溶解させる場合の単位重量当たりの容量V(w)を次的方法により求めた。

既知量のTOMACを各種希釈剤に溶解し、下式を用いてV(w)を求めた結果、TOMACの溶解量

および希釈剤の種類に関係なくほぼ一定値を示したので、実験的にV(w)を1.1037cm²·g⁻¹と

決定した。ただし、希釈剤の容量は、25℃における見かけ密度を求め、重量法により決定

した。

V(w) = (Wₑ + Wₓ - ρ Wₓ) / ρ Wₑ

Wₑ: TOMACの重量
Wₓ: 希釈剤の重量
ρ: TOMACが溶解した希釈剤の見かけ密度
Vₑ: 希釈剤の容量

供試水相は、CoCl₂-6H₂OによりCo濃度0.004mol·dm⁻³に調整した塩酸溶液6mol·dm⁻³の溶

液を使用した。また、有機溶媒（すべて和光純薬（株）製）、CoCl₂-6H₂O（国産化学（株）

製）等はすべて試薬特級品を使用した。

抽出操作は、有機相および水相をそれぞれ20cm³ずつ、容量100cm³の共栓三角フラスコに

入れ、25℃一定に調整した恒温水槽中で1時間振とうして平衡化させた。ただし、予備実験か

ら1時間の振とうで十分抽出平衡に達していることが分かった。振とう後、ただちに遠心分

離器で2相に分離し、両相から一定量の溶液を分取した後、平衡有機相中のCoは、0.1mol·

dm⁻³の塩酸溶液で逆抽出し、平衡水相および逆抽出液中のCo濃度を原子吸光法で定量する

ことにより、平衡水相および平衡有機相中のCo濃度を求めた。

3.3 D2EHPAによるCoの抽出に与える希釈剤効果の正則溶液論的検討

3.3.1 初期D2EHPA濃度の影響

D2EHPAによるCoの抽出は、一般に次式で示すことができる。

2(RH)}₂ + Co²⁺ → Co₂±2RHhex + 2H⁺ (3.1)

ただし、RHおよび(RH)₂は、それぞれD2EHPAおよびその二量体を示している。また、添字
のsおよびsは、それぞれ水相および有機相を示している。式(3.1)で示される反応の熱力学
学的抽出定数(K₀, t)は、次式で示される。

K₀, t = f Co[Co₂±2RH]₀ γ₂[H⁺]₂ / f₂([RH]₀)₂γ Co[Co²⁺]ₙ (3.2)
ただし、f_cおよびf_aは、それぞれ平衡有機相中のD2EHPAによるCoの抽出化学種およびD2EHPAの二体の活量係数を示し、γ_iおよびγ_cは、それぞれ平衡水相中のγ_iおよびγ_cの活量係数を示している。本実験条件では、水相のイオン強度は一定と考えられるので、K_{ij}は次式で書き換えることができる。

$$K_{ij} = f_c[CoR_2][HH]^{1-2xH} / f_a^2[(RR)2][Co^{2+}]$$ \hspace{1cm} (3.3)

次に、新しく抽出定数K_{ij}を定義する。

$$K_{ij} = f_c[CoR_2][HH]^{1-2xH} / f_a^2[(RR)2][Co^{2+}]$$ \hspace{1cm} (3.4)

さらに、式(3.4)を次式に変換する。

$$\log D = 2\log[(RR)2] / \log K_{ij} + 2pH$$ \hspace{1cm} (3.5)

ただし、Dは分配係数を示す。式(3.5)から、その辺りを平衡pHに対してプロットすると傾きの直線を示すことが予想できる。図3.1には、ペンゼン、トルエン、o-キシレン、m-キシレン、n-ヘプタンおよびシクロヘキサンで希釈した4vol％のD2EHPAの場合を例として示す。実験結果は、本実験領域では、ほぼ傾き2の直線を示している。その他のD2EHPA濃度でも同様に傾き2の直線を示した。したがって、K_{ij}は、その切片から求めることができる。

式(3.3)において、f_cおよびf_aは無限希釈法則に従う理想的な状態が基準にとられている。そこで、有機相に対して仮想的な希釈溶液を基準とした場合の活量係数を$f_i(\phi_i, \phi_c, \phi_a)$とすると、$f_i$との関には次の関係がある。

$$f_i = f_i(\phi_i, \phi_c, \phi_a) / f_i(\phi_i \rightarrow 1)$$ \hspace{1cm} (3.6)

ただし、ϕ_i, ϕ_cおよびϕ_aは、それぞれ平衡有機相中の$\gamma_i, CoR_2, 2RH$および希釈剤の体積分率を示している。

K_{ij}に希釈剤自身の影響を見るためには、希釈剤自身の性質によって変化する項を分離して扱う必要がある。したがって、式(3.3)、式(3.4)および式(3.6)から次式が導かれることになる。

$$\log K_{ij} = \log K_{ij} + 2\log f_i(\phi_i, \phi_c, \phi_a) / f_i(\phi_i \rightarrow 1)$$

$$- \log f_c(\phi_i, \phi_c, \phi_a) / f_c(\phi_i \rightarrow 1)$$ \hspace{1cm} (3.7)

ここで、正則溶液論的に考察してみる。正則溶液論においはしばしば利用されるScatchard-Hildebrandの理論の適用は、2成分系溶液に限られており、その多成分系での拡張を試みた。Scatchard-Hildebrandの多成分系への拡張式は、多成分系での過剰ギブス自由エネルギーGを成分iのモル数で偏微分することにより次式で示すことができる。

$$\log f_i = V_i(\Sigma_i(\delta_i - \delta_i)) / 2.3RT$$ \hspace{1cm} (3.8)

図3.1 数種の低極性希釈剤で希釈した4vol％D2EHPAによるCoの抽出
ただし、V_i および S_i は、それぞれ成分 i のモル容積および溶解パラメーターを示す。溶解パラメーターは、モル蒸発エネルギー (ΔE_v) とモル容積で与えられる数値（(ΔE_v / V_i) 1/2）で、物質について固有の値である。次に、式 (3.8) を式 (3.7) に代入すると次の式が得られる。

$$\log K_{a, i} = A_1 + B_1 \phi_a + C_1 \phi_a^2 + D_1 \phi_c + E_1 \phi_c^2 + F_1 \phi_c^2 \quad (3.8)$$

ただし、それぞれの係数は以下のよう示される。

$$A_1 = \log K_{a, i}$$

$$B_1 = -2(2V_o(\delta_a - \delta_d) - V_c(\delta_c - \delta_d))(\delta_a - \delta_d) / 2.3RT$$

$$C_1 = (2V_o - V_c)(\delta_a - \delta_d)^2 / 2.3RT$$

$$D_1 = 2(2V_o(\delta_a - \delta_d) - V_c(\delta_c - \delta_d))(\delta_a - \delta_c) / 2.3RT$$

$$E_1 = -2(2V_o - V_c)(\delta_a - \delta_c)(\delta_a - \delta_d) / 2.3RT$$

$$F_1 = (2V_o - V_c)(\delta_a - \delta_c)^2 / 2.3RT$$

ここでは、ϕ_a は平衡有機相中の Coの抽出化学種と遊離のD2EHPAを合わせた全体体積分率を示し、添字のa、c およびd は、それぞれ平衡有機相中の (RH)$_2$、CoR$_2$・2RHおよび希釈剤を示している。もし、ϕ_aが初期のD2EHPAの体積分率 ($\phi_{a,i}$) に等しく一定であると仮定するとき、式 (3.9) は次式で示される。

$$\log K_{a, i} = A_2 + B_2 \phi_a + C_2 \phi_a^2 \quad (3.10)$$

ここで、

$$A_2 = A_1 + B_1 \phi_{a,i} + C_1 \phi_{a,i}^2$$

$$B_2 = D_1 + E_1 \phi_{a,i}$$

$$C_2 = F_1$$

である。

本実験領域では、$K_{a, i}$の対数値は平衡有機相中の Co濃度には依存しないことから確認済みであり、また、第2章で示したように、Coの抽出に伴う重合体の生成、本実験領域では起こらないと考えられる。したがって、式 (3.10) は簡単に次式で示すことができる。

$$\log K_{a, i} = A_3 + B_3 \phi_{a,i} + C_3 \phi_{a,i}^2 \quad (3.11)$$

式 (3.11) から分かるように、$K_{a, i}$の対数値のD2EHPAの初期の体積分率への依存性を調べることにより、その切片から$K_{a, 1}$を求めることが可能である。

図3.2は、$K_{a, 1}$の対数値とD2EHPAの初期の体積分率の関係を示している。図3.2から、すべての希釈剤において、$K_{a, 1}$はD2EHPAの初期の体積分率にほとんど依存しないことが分かる。このことは、D2EHPAの場合、式 (3.11)の右辺の第2項および第3項が無視できるものと考えられる。したがって、$K_{a, i}$の値を$K_{a, 1}$と見なしむことができる。表3.1に、実験結果から得られた各種希釈剤で希釈したD2EHPAの$K_{a, i}$（各種抽出剤濃度での$K_{a, i}$の平均値）の対数値を示す。
表3.1 見かけの熱力学的抽出定数の値

<table>
<thead>
<tr>
<th>Diluent</th>
<th>$\log K_{d,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>-4.64</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>-4.86</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>-5.51</td>
</tr>
<tr>
<td>Toluene</td>
<td>-5.58</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>-5.52</td>
</tr>
<tr>
<td>Benzene</td>
<td>-5.69</td>
</tr>
</tbody>
</table>

3.3.2 原料の影響

これまでの実験では、その基準が希釈剤としての性質によって変化するため、一定の基準に基づいて希釈剤の影響を検討することはできない。そこで、一定の基準から希釈剤の影響を見るために、次のような検討を行った。有機相に対してそれぞれの化学種の仮想的な純粋溶液を基準状態とすることにより、次に示すような見かけの熱力学的抽出定数（$K_{d,t}$）を定義する。

$$K_{d,t} = \frac{i_{co}(\phi_{s}, \phi_{co}, \phi_{d})[CoRe_{2}RH]_{2}10^{-2}}{i_{s}(\phi_{s}, \phi_{co}, \phi_{d})[(RH)_{2}][Co^{2+}]}$$ (3.12)

それぞれの化学種の仮想的な純粋溶液を基準状態とする利点は、その抽出反応が変化しない限り、希釈剤を使用するしないに係わらず$K_{d,t}$が一定値を示すことである。そこで、式(3.3)、式(3.4)および式(3.12)から次式が導かれる。

$$K_{d,t} = \frac{i_{d}([\phi_{d}+1])^{2}}{i_{co}(\phi_{d}+1)}$$ (3.13)

したがって、式(3.8)および式(3.13)より次式が導かれる。

$$\log K_{d,t} = A_{s} + B_{s} \delta_{d} + C_{s} \delta_{d}^{2}$$ (3.14)

ここで、

$$A_{s} = 0.013d + (2V_{o} \delta_{d} - V_{co} \delta_{co}) / 2.3RT$$

$$B_{s} = -2(2V_{o} \delta_{d} - V_{co} \delta_{co}) / 2.3RT$$

$$C_{s} = (2V_{o} \delta_{d} - V_{co} \delta_{co}) / 2.3RT$$

である。

次に、ある一つの希釈剤を標準とすることにより、式(3.14)から次式を導くことができる。

$$\frac{1}{(\delta_{d} - \delta_{s})} \log \left(\frac{K_{d,t}^{0}}{K_{d,t}} \right) = \left(\frac{2V_{o}}{2.3RT} \right) \delta_{d} + \delta_{s}$$

$$-2(2V_{o} \delta_{d} - V_{co} \delta_{co}) / 2.3RT$$ (3.15)

ここで、添字Sは標準とした希釈剤を示す。

図3.3に、$K_{d,t}$の対数値と溶解パラメーターの関係を示す。ただしご、$V_{o} - V_{co}$ / 2.3RTおよび-2($V_{o} \delta_{d} - V_{co} \delta_{co}$) / 2.3RTの値は、n-ヘプタンを標準として、式(3.15)から最小二乗法により求めた値を用いる。図3.3に示すように、$K_{d,t}$の対数値と溶解パラメーターの間に2次関数的な関係が見られ、式(3.14)がこの現象を比較的良く表現しているものと考えられる。実験結果から、$A_{s} = -22.4$、$B_{s} = 4.87$および$C_{s} = -0.333$が得られた。ただし、用いた溶解パラメーターの値は、n-ヘプタン：7.4、シクロヘキサン：8.2、m-キシレン：8.8、トルエン：8.9、o-キシレン：9.0およびベンゼン：9.2である(21)。また、溶解パラメーターの単位は、慣習によりcm3·g$^{-1}$·mol$^{-1}$である。ただし、D2EHPAの場合、先の式(3.11)に対する実験結果より、式(3.14)を抽出定数$K_{d,t}$に対するものとしてすることもできる。また、有機相中のD2EHPA濃度が一定とみなせるような領域では、一般式として式(3.11)および式(3.14)から、一定のpHにおける分配係数(D)の対数値を溶解パラメーターの2次式で表現できる。ただし、D2EHPAの場合、式(3.11)に対する実験結果より、式(3.11)の右辺の第2項および第3項に関する項は無視できる。
3.4 TOMACによるCoの抽出に与える希釈効果の正則溶液論的検討

3.4.1 初期TOMAC濃度の影響

TOMACによる塩化物溶液からのCoの抽出として、従来より一般的に考えられているテトラクロロコバルト錯イオンの抽出を仮定すると、その抽出反応は、簡単に次式で示すことができる。

\[2R_3R'NCI_2^+ + CoCl_2^2+ \rightleftharpoons (R_3R')_2CoCl_4^2+ + 2Cl^- \] \quad (3.16)

ただし、\(R_3R'NCI_2 \)は、TOMACを示す。式(3.16)で示される反応の熱力学的抽出定数

\(K_{OC}^{\text{ex}} \)は、次式で示される。

\[K_{OC}^{\text{ex}} = fC_{NCI}^*[(R_3R')_2CoCl_4] \gamma_{CI}^*\gamma_{[CoCl_2^2+]^2} / fC_{NCI}^*[(R_3R')_2CoCl_4] \gamma_{CI}^*\gamma_{[CoCl_2^2+]^2} \] \quad (3.17)

ただし、\(fC_{NCI} \)および\(fC_{[CoCl_2^2+]^2} \)は、それぞれ平衡有機相中のTOMACによるCoの抽出化学種およびTOMACの活度係数を示しており、また、\(\gamma_{CI}^* \)および\(\gamma_{[CoCl_2^2+]^2} \)は、それぞれ平衡相中のCoCl_2^2+およびCl^-の活度係数を示している。平衡相相中には、CoCl_2^2+だけでなく各種コパルト錯イオン種が存在するが、本実験条件では、相のイオン強度およびCl^-濃度が一定と仮定できるので、\(fC_{NCI} \)および\(fC_{[CoCl_2^2+]^2} \)は一定と考えることができ、したがって、CoCl_2^2+の濃度を決定する必要はなく、平衡相相中のCoの全濃度を決定するだけでよい。ここで、\(fC_{NCI} \)は次式で示される反応の全安定度数を示している。

\[Co^{2+} + Cl^- \rightleftharpoons CoCl_{2}^{2+} \] \quad (3.18)

したがって、式(17)は次式で示すことができる。

\[K_{OC}^{\text{ex}} = fC_{NCI}^*[(R_3R')_2CoCl_4] / fC_{[CoCl_2^2+]^2}[(R_3R')_2CoCl_4] \] \quad (3.19)

ただし、\([CoCl_2^2+]^2 \)は平衡相相中の全Co濃度を示している。式(3.19)において、\(fC_{NCI} \)および\(fC_{[CoCl_2^2+]^2} \)は無限希釈法則に従う理想的な状態が基準にとられている。そこで、平衡有機相に対する仮定的な純粋溶液を基準とした活度係数\(fC_{NCI}^*[(\phi_1, \phi_Co, \phi_e)] \)を考えると、3.3.1で示した式(3.8)と同じ関係が得られる。

\[fC_{NCI}^*[(\phi_1, \phi_2, \phi_e)] / fC_{[CoCl_2^2+]^2}[(\phi_1, \phi_2, \phi_e)] \] \quad (3.20)

ただし、\(\phi_1, \phi_2, \phi_e \)は、それぞれ平衡相相中の\((R_3R')_2CoCl_4 \)および\(R_3R'NCI_2 \)の体積分率を示している。ここで、次式で示される見かけの抽出定数\(K_{OC}^{\text{ex}} \)を定義する。

\[K_{OC}^{\text{ex}} = [(R_3R')_2CoCl_4] / [R_3R'NCI_2^2][CoCl_2^2+] \] \quad (3.21)

次に、式(3.19)、式(3.20)、式(3.21)およびScatchard-Hildebrandの多成分系への拡張式（\(\log fC_{NCI}^* = V_i (\phi_i(\delta_i - \delta_i)/2, 3.8T) \) を用い、3.3.1において式(3.11)を導いた場合と同様に取り扱うことにより、次の関係を導くことができる（ただし、本実験条件において、\(K_{OC}^{\text{ex}} \)の対数値が有機相中のCo濃度に依存しないことは確認済み）。

\[\log K_{OC}^{\text{ex}} = A_C + B_e \phi_e + C_e \phi_e^2 \] \quad (3.22)

ここで、

\[A_C = \log K_{OC}^{\text{ex}} \] \quad (3.23)
\[B_b = \frac{-2(2V_e(\delta_e - \delta) - V_{co}(\delta_{co} - \delta_e))(\delta_e - \delta)}{2.3RT} \]

\[C_b = \frac{(2V_e - V_{co})(\delta_e - \delta)^2}{2.3RT} \]

である。ただし、\(\phi_e \)は初期のTOMACの体積分率を示し、添字のeおよびcoは、それぞれ平衡有機相中のR3R'NClおよび(R3R'N)2CoCl2を示している。式(22)から分かるように、

\[K_{eq,1}^* \]の対数値のTOMACの初期の体積分率への依存性を調べることにより、その切片から

\[K_{eq,1}^* \]を求ることができる。

図3.4 数種の低極性希釈剤で希釈したTOMACの初期の体積分率と見かけの抽出定数の関係

<table>
<thead>
<tr>
<th>Diluent</th>
<th>(\log K_{eq,1}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorobenzene</td>
<td>3.89</td>
</tr>
<tr>
<td>Benzene</td>
<td>3.36</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>3.14</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.20</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>3.03</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>2.92</td>
</tr>
</tbody>
</table>

3.4.2 希釈剤の影響

3.3.2同様に、有機相に対してそれぞれの化学種の仮想的な純粋溶液を基準にとり、次に示す見かけの熱力学的抽出定数 (\(\tilde{K}_{eq}^* \)) を定義する。

\[\tilde{K}_{eq}^* = \frac{I_{fco}^* (\phi_e, \phi_{co}, \phi_e)[(R3R'N)]_2CoCl_2}_{I_{fco}^* (\phi_e, \phi_{co}, \phi_e)[R3R'NCl]_2[Co^{2+}]_x.t} \] （3.23）

次に、式(3.19)，式(3.20)，式(3.23)およびScatchard−Hildebrandの多成分系への
拡張式を用い、3.3.2において式（3.14）を導いた場合と同様に取り扱うことにより、次の関係を導くことができる。

\[
\log K_{1,i} = A_s + B_s \delta_a + C_s \delta_a^2
\]

(3.24)

ここで、

\[
A_s = \log K_{1,i} + \frac{(2V_a \delta_a^2 - V_{co} \delta_{co})}{2.3RT}
\]

\[
B_s = -2(2V_a \delta_a - V_{co} \delta_{co}) / 2.3RT
\]

\[
C_s = (2V_a - V_{co}) / 2.3RT
\]

である。

図3.5に、TOMACを用いた場合の\(K_{1,i}^0\)の対数値と希釈剤の溶解パラメーターの関係を示す。ただし、式（3.24）中の（2V_a - V_{co}）/ 2.3RTおよび2(2V_a \delta_a - V_{co} \delta_{co}) / 2.3RTの値は、クロロベンゼンを標準とし、3.3.2における場合と同様に、式（3.15）の関係から、最小二乗法により求めた値を用いた。図3.5に示すように、\(K_{1,i}^0\)の対数値と希釈剤の溶解パラメーターの間に、式（3.24）から予想されるような2次関数的な関係が見られ、式（3.24）がこの現象を比較的良く表現しているものと考えられる。実験結果から、\(A_s = 87.8\), \(B_s = -19.7\), \(C_s = 1.14\)が得られた。ただし、用いた溶解パラメーターの値は、四塩化炭素: 8.8, クロロベンゼン: 9.5(21)を用い、ベンゼン、トルエン、o-キレンおよびn-キレンについては、3.3.2で示した値を用いた。また、式（3.22）および式（3.24）から、\(K_{1,i}^0\)を消去することにより、見かけの抽出定数\(K_{1,i}\)を溶解パラメーターの2次式で示すことができる。また、TOMACの濃度が一定と見なせる領域では、さらに、分配係数（D）の対数値を溶解パラメーターの2次式で表現することが可能である。図3.6に、3vol%のTOMACを用いた場合の\(K_s\)の対数値および5vol%のTOMACを用いた場合のDの対数値と溶解パラメーターの関係を示す。実験結果は、予想されるように、2次関数的な関係が見られる。

![図3.5 希釈剤の溶解パラメーターと見かけの熱力学的抽出定数の関係](image1)

![図3.6 希釈剤の溶解パラメーターと見かけの抽出定数および分配係数の関係](image2)
3.5 結論

有機リン化合物であるD2EHPAによる弱酸性溶液からのCoの抽出挙動および塩分解系希釈剤の影響を正則溶液論に基づいて定量的に検討を試みた。また、4級アンモニウム塩であるTOMACによる塩酸溶液からのCoの抽出に対して、テトラクロロコバルト錯イオンが抽出されるという簡単な抽出機構を仮定し、その抽出挙動および希釈剤の影響を、正則溶液論的に考察することにより、以下の結論を得た。

(1) D2EHPAの抽出定数（logK_{d,1}）は、D2EHPAの初期の体積分率に依存せず、ほとんど一定値を示した。このことは、理論式におけるD2EHPAの初期の体積分率の1次および2次項が無視できるものと考えられる。

(2) D2EHPAの見かけの熱力学的抽出定数（logK_{d,1}）と、基準は無限希釈状態、または、抽出定数（logK_{d,1}）および分配係数（logD）を希釈剤の溶解パラメター（δe）を用いて、2次関数で表すことが可能であった。

(3) TOMACの見かけの抽出定数（logK_{d,1}）は、TOMACの初期の体積分率を用いて、半定量的に、2次関数で表すことが可能であった。

(4) TOMACの見かけの熱力学的抽出定数（logK_{d,1}）と、基準は無限希釈状態、見かけの抽出定数（logK_{d,1}）および分配係数（logD）を希釈剤の溶解パラメター（δe）を用いて、半定量的に、2次関数で表すことが可能であった。

3.6 文献

(4) C. Abbruzzese: ISEC’83, Denver, (1983), 472
(8) H. A. Mottola and H. Freiser: Talanta, 13(1966), 55
(14) E. Högfeld: Chem. Ind.,(8)(1978), 184
(16) 新苗正和, 柄田喜久: 公害資源研究所研究, 17(2)(1987), 19
(17) 新苗正和, 柄田喜久: 公害資源研究所研究, 17(4)(1988), 41
(20) C. J. Bouboulis: ISEC’77, Tronto, (1977), 21
第4章 混合希釈剤効果の正則溶液論的検討

4.1 研究目的

溶液抽出法において、金属の抽出に対する希釈剤の影響は、多くの研究者により物理化学的に検討されているが、抽出機構の複雑さ加えて希釈剤の影響は非常に複雑で、そのため、検討結果はどうも定量化に欠けた複雑なものに定まる。したがって、希釈剤の影響を、定量的かつ簡単に示すことができれば、それは意味のあることと考えられる。

第2章において、n-ヘプタンとベンゼンの混合溶剤で希釈したD2EHPAによる挿酸性溶液からのCoの抽出を検討した結果、その組成比とCoの抽出性、収率等および重合体の生成するLoading比の値との間に直接的な変化が見られた。したがって、これら混合希釈剤の影響を定量的に検討してみることは重要であると考える。また、第3章において、D2EHPAによる弱酸性溶液からのCoの抽出およびTOMACによる塩酸溶液からのCoの抽出に与える希釈剤の影響を、正則溶液論におけるScatchard–Hildebrandの多成分系における挿拡張式を用いて、その抽出挙動および希釈剤の影響を検討し、正則溶液論に基づいて定量的あるいは半定量的に説明できる可能性を示した。これまでも、希釈剤の影響を正則溶液論に基づいて検討した報告は観られ、(8) (17)、または2種類の有機溶剤を混合した混合希釈剤の影響を正則溶液論的に検討した報告も見られるが、(11) (17)、いずれも定性的で定量的には取り扱っており、その取り扱いに無理があるのではないかと考えられるものもある。そこで、本章においては、挿酸反応や水素結合性の無視できるような3種類の有機溶剤を混合した混合希釈剤を用いて、D2EHPAによる弱酸性溶液からのCoの抽出挙動および希釈剤組成の影響を正則溶液論に基づいて定量的に検討し、さらに、TOMACによる塩酸溶液からのCoの抽出に対して、テトラコバルトクロロ酸イオンが抽出されるという簡単な抽出機構を仮定し、その抽出挙動および希釈剤組成の影響を、定量的または半定量的に取り扱うことを目的として、正則溶液論に基づいて考察することを試みた。

4.2 実験方法

4.2.1 D2EHPAによるCoの抽出実験

有機相は、抽出剤として、大八化学工業（株）製のD88を、第2章で示した同じ方法により洗浄したものをD2EHPAとして使用し、n-ヘプタンとベンゼンの混合溶剤により、所定の抽出剤濃度になるように重合法により調整したものを使用した。ジエチル及び脱量のモノエチル塩を合わせたD2EHPAの純度は98.0%であった。

供試水相は、Co(NO₃)₃-6H₂OによりCo濃度0.002mol·dm⁻³に調整した硝酸アンモニウム濃度0.2mol·dm⁻³（イオン強度を一定にするために加えた）の溶液であり、少量のアンモニア水で適宜pH調整して使用した。ただし、平衡水相pHが挿酸性になるように調整した。また、n-ヘプタン、ベンゼン、Co(NO₃)₃-6H₂Oおよび硝酸アンモニウム等は、すべて試薬特級品（和光純剤（株）製）を使用した。

抽出操作、pH測定、逆抽出操作およびCo濃度の分析等は、第2章で示した同じ条件および方法により行った。

4.2.2 TOMACによるCoの抽出実験

有機相は、抽出剤として、東京化成（株）で特別に合成したTOMACを精製せずそのまま使用し、四塩化炭素とクロロベンゼンの混合溶剤により、所定の抽出剤濃度になるように重合法により調整したものを使用した。ただし、TOMACの純度は、ニトロベンゼンを用いたVolhard法により求めた結果、96.1%であった。また、TOMACを希釈剤に溶解放された場合の単位重量当りの容量V(w)は、第3章の3.2.2で示した同じ方法により実験的にV(w)=1.10 37cm³·g⁻¹と決定した。

供試水相は、CoCl₂-6H₂OによりCo濃度0.004mol·dm⁻³に調整した塩酸濃度0.01mol·dm⁻³の溶液を使用した。また、四塩化炭素、クロロベンゼン（以上、和光純剤（株）製）、CoCl₂-6H₂O（国産化学（株）製）等は、すべて試薬特級品を使用した。

抽出操作、逆抽出操作およびCo濃度の分析等は、すべて第3章の3.2.2で示した同じ条件および方法で行った。

4.3 D2EHPAによるCoの抽出に与える混合希釈剤効果の正則溶液論的検討
4.3.1 初期D2EHPA濃度の影響

2種類の低極性有機溶媒を混合した混合希釈剤の影響を定量的に検討する目的で、n-ヘプタン（S1）とペンゼン（S2）の混合溶液でD2EHPAを希釈した場合について検討した。

各種溶液のn-ヘプタンとペンゼンの混合溶液で希釈した4vol%D2EHPAを例として、3章の式（3.5）に基づいて、log D - 2log[(RH)]と平衡pHの関係を示したのが図4.1である。ただし、ここで、Dは分配係数を示し、RHおよび(RH)2は、それぞれD2EHPAおよびその二量体を示している。また、添字のgは有機相を示している。

図4.1 n-ヘプタン（S1）とペンゼン（S2）の混合溶液で希釈した4vol%D2EHPAによるCoの抽出

図4.1から分かるように、本実験条件では、ほぼ傾き2の直線を示している。このことは、3章で示したD2EHPAによるCoの抽出機構が、n-ヘプタンとペンゼンの混合溶液で希釈した場合についても成立することを示している。したがって、抽出定数（Kd）は、その切片から求めることができる。その他のD2EHPA濃度においても同様にほぼ傾き2の直線を示した。

次に、3章の3.1と同様に、Scatchard-Hildebrandの多成分系への拡張式を用いて、正則溶液論に基づいて考察することにより、2成分系混合溶液で希釈した場合の抽出定数（logKd）を次式で示すことができる。

\[
\log K_d = A_1 + B_1 \phi_{Co} + C_1 \phi_{Co}^2
\]

ここで、

\[
A_1 = A_2 = B_2 \phi_{Co} + C_2 \phi_{Co}^2
\]

\[
B_1 = D_2 \phi_{Co} + E_2 \phi_{Co}^2
\]

\[
C_1 = F_2
\]

\[
A_2 = \log K_d
\]

\[
B_2 = -2[2V_a((\delta_a - \delta_{a1}) + (\delta_{a1} - \delta_{a2})\Phi_{a1}^2)]^2
\]

\[-V_{Co}((\delta_{Co} - \delta_{a1})(\delta_a - \delta_{a1}) + (\delta_{a1} - \delta_{a2})\Phi_{a1}^2)] / 2.3RT
\]

\[
C_2 = 2[2V_a((\delta_a - \delta_{a1}) + (\delta_{a1} - \delta_{a2})\Phi_{a1}^2)](\delta_a - \delta_{Co}) / 2.3RT
\]

\[
D_2 = 2[2V_a((\delta_a - \delta_{a1}) + (\delta_{a1} - \delta_{a2})\Phi_{a1}^2)] - V_{Co}((\delta_{Co} - \delta_{a1}) + (\delta_{a1} - \delta_{a2})\Phi_{a1}^2)](\delta_a - \delta_{Co}) / 2.3RT
\]

\[
E_2 = -2[2V_a - V_{Co}((\delta_a - \delta_{a1}) + (\delta_{a1} - \delta_{a2})\Phi_{a1}^2)]
\]

\[-V_{a1}((\delta_a - \delta_{a1}) + (\delta_{a1} - \delta_{a2})\Phi_{a1}^2)] / 2.3RT
\]

\[
F_2 = (2V_a - V_{Co})(\delta_a - \delta_{Co})^2 / 2.3RT
\]

である。ここで、Kd（= f_{Co}[CoR2·2RH] + 10^{-28}/f_a^2[(RH)2]a^2[CoR2·2RH]）は、Coおよびf_a、特にCoの通過率に影響を及ぼす係数を示し、添字aはC相を示している。なお、図4.1内の実験条件のCoR2·2RHおよび(RH)2の活量係数を示し、添字aはC相を示している。
の(RH)2、CoR2·2RHおよび希釈剤を示している。また、ΔvおよびΔv2は、希釈剤が成分1および成分2の2成分からなる場合のそれぞれの溶解パラメーターを示し、Δv2は、成分2の体積分率（φ2.1 + φ2.2 = 1、Δv2は、成分1の体積分率）を示す。また、Kd,2およびKd,2の記号は、希釈剤が1成分からなる場合は1、2成分からなる場合は2とする。ただし、ここでは、第3章と同様に、平衡有機相中のCoの抽出化学種と遊離のDZEHFAを合わせた全体積分率が初期のDZEHFAの体積分率（φ2.1）に等しく、一定であると仮定している。また、本実験領域では、平衡有機相中のCo濃度に依存しないことは確認済みであり、また、第2章で示したように、Coの抽出に伴う重合体の生成は本実験領域では起こらないと考えられるので、式(4.1)は、次式で示すことができる。

logKd,1 = A2 + B2 + C2 (4.2)

したがって、混合液中で希釈した場合の抽出定数Kd,2の対数値のDZEHFAの初期の体積分率への依存性を調べることにより、その切片からKd,2を求めることができる。

![図4.2 n-ヘプタン(S1)とベンゼン(S2)の混合液で希釈したDZEHFAの初期の体積分率と抽出定数の関係](image)

表4.1 見かけの熱力学的抽出定数の値

<table>
<thead>
<tr>
<th>Diluent</th>
<th>logKd,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1(80%) - S2(20%)</td>
<td>-5.01</td>
</tr>
<tr>
<td>S1(60%) - S2(40%)</td>
<td>-5.19</td>
</tr>
<tr>
<td>S1(40%) - S2(60%)</td>
<td>-5.43</td>
</tr>
<tr>
<td>S1(20%) - S2(80%)</td>
<td>-5.58</td>
</tr>
</tbody>
</table>

図4.2は、n-ヘプタンとベンゼンの混合溶液で希釈した場合のKd,2の対数値とDZEHFAの初期の体積分率の関係を示している。図4.2から、Kd,2はDZEHFAの初期の体積分率にほとんど依存しないことが分かる。このことは、式(4.2)の右辺の第2項および第3項が無視できるものと考えられる。したがって、Kd,2の値をKd,2と見なすことができる。表4.1に、実験結果から得られた、各種組成のn-ヘプタンとベンゼンの混合溶液で希釈したDZEHFAのKd,2（各種抽出濃度でのKd,2の平均値）の対数値を示す。

4.3.2 希釈剤組成の影響

次に、n-ヘプタンとベンゼンの混合溶液でDZEHFAを希釈した場合の、希釈剤組成の影響を検討した。

第3章で示した式(3.13)の関係を、希釈剤が2成分からなる場合に適用すると、次式で示すことができる。

Kd,2 = \(\frac{t \phi_{A1} \phi_{E2}}{t \phi_{A1} + \phi_{E2}} \) (4.3)

ここで、tは、有機相に対してそれそれぞれの化学種の仮想的な純粋溶液を基準状態とした場合の見かけの熱力学的抽出定数（= \(t \phi_{A1} \phi_{E2} \) [CoR2·2RH]2)10⁻²²ₙ / \(t \phi_{A1} + \phi_{E2} \))、\(t \phi_{A1} \)および\(t \phi_{E2} \)は、それぞれ有機相に対して仮想的な純粋溶液を基準とした場合のCoR2·2RHおよび(RH)2の活性係数を示す。
したがって、第3章の式(3.13)で示した希釈剤が1成分からなる場合のK_{1}の式と式(4.3)からK_{3}を消去し、それに対して式(3.8)で示したScatchard-Hildebrandの多成分系への拡張式を代入することにより次式が得られる。

$$
\log K'_{2,2} = A_3 + B_3 \phi_{2,2} + C_3 \phi_{2,2}^2
$$
(4.4)

または、

$$
\log K'_{2,2} = A_4 + B_4 \delta' + C_4 \delta'^2
$$
(4.5)

ここで、

$$
A_3 = 1 + B_3 \phi_{2,2} + C_3 \phi_{2,2}^2
$$

$$
B_3 = 2(2V_e(\delta - \delta e) - V_c(\delta e - \delta e) + (\delta a_1 - \delta a_2)) / 2.3RT
$$

$$
C_3 = (2V_e - V_c)(\delta e - \delta e)^2 / 2.3RT
$$

$$
A_4 = 1 + B_4 \phi_{2,2}^2 - C_4 \phi_{2,2}^2
$$

$$
B_4 = -2(2V_e \delta - V_c \delta e) / 2.3RT
$$

$$
C_4 = (2V_e - V_c)^2 / 2.3RT
$$

である。

また、式(4.5)の混合希釈剤の溶解パラメーター(δ')は、それぞれの希釈剤成分の体積分率平均として式(4.6)で示される。

$$
\delta' = \delta_1 \phi_1 + \delta_2 \phi_2
$$
(4.6)

図4.3は、先の実験で求めた$K'_{2,2}$の対数値をペンゼンの組成および式(4.6)により求めた溶解パラメーター(δ')に対してプロットした結果を示している。ただし、図中のn-ヘプタンおよびペンゼン、それぞれ単独で希釈した場合の見かけの熱力学的抽出定数$(\log K'_{2,2})$の値は、第3章で求めた値を用いた。

図4.3から分かるように、式(4.4)および式(4.5)から予想されるような2次関数的な関係は見られず、ほとんど直線的な関係を示している。このことは、n-ヘプタンまたはペンゼンのどちらか一方による溶質の選択的溶媒和が優勢となり、この現象を複雑にしているものと考えられる。また、Högfeldtは141）ペンゼンと四塩化炭素の混合溶液を用いた場合、固相状態で1：1型の化学種の生成が起こることを示し、同様の化学種の生成が溶液状
用できるのではないかと考えられる。実験結果より、As = -4.74、Bs = -1.02および
Aa = -0.54、Ba = -0.568が得られた。
また、D2EHPAの場合は、第3章の式(3.11)および先の式(4.2)に対する実験結果より、式(4.4)または式(4.5)を抽出定数K_aに対する式とすることができる。また、有機相中のD2EHPA濃度が一定と見なせる領域では式(4.2)および上記の結果から、一定のpHのDの対数値
を希釈剤組成または φ_a の1次式で表すことができる。

4.4 TOMACによるCoの抽出に与える混合希釈剤効果の正則溶液論的検討

4.4.1 初期TOMAC濃度の影響

2種類の低極性有機溶媒を混合した混合希釈剤の影響を検討する目的で、四塩化炭素とクロロベンゼンの混合溶媒でTOMACを希釈した場合について検討した。

第3章と同様に考察することにより、TOMACによるCoの見かけの抽出定数K_a,φ_aは、
(1) [CO₂]_t、[CoCl₄]_t、[CoCl₂]_tおよび[CoCl₃]_tは、それぞれTOMACおよび平衡水相中の全Co濃度を示している）は、次式で示すことができる。

\[\log K_a,φ_a = A_s + B_s φ_a + C_s φ_a^2 \]

ここで、

\[A_s = A_e + B_e φ_a + C_e φ_a^2 \]
\[B_s = D_e + E_e φ_a \]
\[C_s = F_e \]
\[A_e = \log K_e,φ_a \]
\[B_e = -2(E_e - V_{co})(\delta_e - \delta_{e1}) + (\delta_{e1} - \delta_{e2})\Phi_{φ_a,2}\]
\[C_e = (2V_e - V_{co})(\delta_e - \delta_{e1}) + (\delta_{e1} - \delta_{e2})\Phi_{φ_a,2}\]
\[D_e = 2(2V_e - V_{co})(\delta_e - \delta_{e1}) + (\delta_{e1} - \delta_{e2})\Phi_{φ_a,2}\]

である。ここで、φ_aおよびφ_aは、それぞれ平衡有機相中の[RaR′N]⁺CoCl₄の体積分率
およびTOMACの初期体積分率を示し、V_eおよびδ_eは、それぞれモル分率および溶解パラメターを示す。また、添字のe、Coおよびφ_aは、それぞれRaR′NCl₁、(RaR′N)₂CoCl₄および希釈剤を示している。また、δ_eおよびδ_aは、希釈剤成分1および成分2の2成分からなる場合の、それぞれの溶解パラメターを示している。K_e,φ_a(= f_{co}([RaR′N]⁺CoCl₄)_t / f_{φ_a}([RaR′NCl]_t)[CoCl₄]_t)、f_a(同様に、活量係数を示す)は、見かけの熟力学的抽出数を示す。

図4.4 四塩化炭素 (S2) とクロロベンゼン (S1) の混合溶媒で希釈した
TOMACの初期の体積分率と見かけの抽出定数の関係

-46-

-47-
また、\(\Phi_{2.1} \) は、成分2の体積分率（\(\Phi_{2.1} + \Phi_{2.2} = 1 \）、\(\Phi_{2.1} \) は、成分1の体積分率）を示す。また、\(K_{2.1} \) および\(K_{2.2} \)の添字jは、希釈剤が1成分からなる場合は1、2成分からなる場合は2とする。ただし、ここでは、第3章と同じく、平衡有機相中のCoの抽出化学種と遊離のTOMACを合わせた全体積分率が、初期のTOMACの体積分率（\(\phi_{i.1} \)）に等しく一定であると仮定している。本実験条件下では、\(\log K_{2.1} \) は、平衡有機相中のCo濃度に関係なくほとんど一定であることは、実験により確認済みであるので、式（4.7）中の右辺第2項および第3項は無視でき、したがって、式（4.7）は、次式で示すことができる。

\[
\log K_{2.1} = A_0 + B_0 \phi_{2.1} + C_0 \phi_{2.2} \tag{4.8}
\]

図4.4に、四塩化炭素（S2）とクロロベンゼン（S1）の各種組成の混合溶液で希釈した場合の\(K_{2.2} \)の対数値とTOMACの初期の体積分率の関係を示している。\(\log K_{2.2} \) と\(\phi_{2.1} \)の間には数値的関係が見られ、式（4.8）を用いてこの現象を半定量的に表現できるものと考えられる。したがって、式（4.8）に基づいて、その切片から\(K_{2.2} \)を求めることができる。

表4.2に、実験結果から得られた\(K_{2.2} \)の対数値を示す。

表4.2 見かけの熱力学的抽出定数の関係

<table>
<thead>
<tr>
<th>Diluent</th>
<th>(\log K_{2.2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1(80%) - S2(20%)</td>
<td>3.75</td>
</tr>
<tr>
<td>S1(60%) - S2(40%)</td>
<td>3.59</td>
</tr>
<tr>
<td>S1(40%) - S2(60%)</td>
<td>3.39</td>
</tr>
<tr>
<td>S1(20%) - S2(80%)</td>
<td>3.18</td>
</tr>
</tbody>
</table>

4.4.2 希釈剤の影響

次に、四塩化炭素とクロロベンゼンの混合溶液でTOMACを希釈した場合の、希釈剤成分の影響を検討した。

4.3.2と同様に考察することにより、次式が導かれる。

\[
\log K_{2.2} = A_0 + B_0 \phi_{2.1} + C_0 \phi_{2.2} \tag{4.9}
\]

また、

\[
\log K_{2.2} = A_0 + B_0 \delta_2 + C_0 \delta_2 \tag{4.10}
\]

ここに、

\[
A_0 = \log K_{2.2} \delta_2 \delta_2
\]

\[
B_0 = 2(2V_c \delta_2 - \delta_2^2) - V_c (\delta_2 - \delta_2^2)) / 2.3RT
\]

\[
C_0 = (2V_c - V_c \delta_2) / 2.3RT
\]

\[
\delta_2 = (2V_c - V_c) / 2.3RT
\]

である。ただし、\(\delta_2 \) は、有機相に対してそれぞれの化学種の仮想的な純粋溶液を基準状態とした場合の見かけの熱力学的抽出定数を示している。また、\(\delta_2 \) は、式（4.8）で示されている。

図4.5は、先の実験で求めた\(K_{2.2} \)の対数値をクロロベンゼンの組成および式（4.8）による溶媒バランスメーター（\(\delta_2 \)）に対してプロットした結果を示している。ただし、四塩化炭素およびクロロベンゼン、それぞれ単独で希釈した場合の見かけの熱力学的抽出定数（\(\log K_{2.2} \delta_2 \)）の値は、第3章で求めた値を用いた。図4.5から分かるように、式（4.9）および式（4.10）から予想されるような2次関数の関係は見られず、先のDEHPAの場合と同様に、とどまど直線的な関係を示している。このことは、四塩化炭素またはクロロペンゼンのどちらか一方向に溶解溶液の選択性を示すか、逆にこの現象を複雑にしているものと考えられる。また、4.3.2と同様に、四塩化炭素とクロロベンゼンの相互作用が起こっている可能性も考えられる。いずれにしても、二相希釈剤の溶媒バランスメーター（\(\delta_2 \)）によっては、定量的な説明には至らないということを示している。しかし、4.3.2と同様に、式（4.9）または式（4.10）の右辺の第3項は非常に小さく、無視できるものと考え定してやってみることにより、希釈剤組成または\(\delta_2 \)の1次式が半実験式として利用できるのである。
図4.5 四塩化炭素とクロペンゼンの混合溶液の組成と見かけの熱力学的抽出定数の関係

図4.6 四塩化炭素とクロペンゼンの混合溶液の組成と見かけの抽出定数および分配比数の関係

4.5 結論
このことは、n-ヘプタンまたはベンゼンのどちらか一方による溶媒の選択的溶解和、または、n-ヘプタンとベンゼンの相互作用が原因と考えられ、体積分率から見詰めた混合希釈剤の溶解パラメーター（$\delta_1' = \delta_{11} + \delta_{12}$）では、定量的に説明できないと考えられる。しかし、正則溶媒論的には説明できないが、極性的低い2種類の希釈剤を用いた場合、理論式における希釈剤組成またはδ_1'の2次項が無視できると仮定することにより、希釈剤組成またはδ_1'の1次式を半經驗式として利用できるのではないかと考えられる。また、分配係数Dの対数値も希釈剤組成およびδ_1'の1次式で表すことが可能であった。

(3) 四塩化炭素とクロロペンゼンの混合溶液で希釈した場合、本実験条件では、簡単にTOMACの初期の体積分率（ϕ_{Ac}）を用いて2次関数で表現することが可能であった。

(4) 先のDZEHPAの場合と同様に、TOMACのCの抽出に与える希釈剤組成の影響を正則溶媒論に基づいて表現することはできなかった。このことは、DZEHPAの場合と同様に、四塩化炭素またはクロロペンゼンのどちらか一方による溶媒の選択的溶解和または四塩化炭素とクロロペンゼンの相互作用が原因と考えられる。しかし、正則溶媒論的には説明できないが、極性的低い2種類の有機溶媒を混合した混合希釈剤を用いた場合、抽出性と希釈剤組成または体積分率から見詰めた混合希釈剤の溶解パラメーター（δ_1'）の間に、半経験的な関係を導くことが可能であった。

4.6 文献

4. C. Abbruzese: ISEC'83, Denver, (1983), 427
16. 新苗正和，重藤 勇，浜田善久：公益資源研究所報告，17(2)(1987)，19
17. 新苗正和，重藤 勇，浜田善久：公益資源研究所報告，17(4)(1988)，41
第5章 希釈剤効果に関する界面化学的検討

5.1 研究目的

溶媒抽出法において用いられる抽出剤は、一般に、界面活性剤と考えられている。これら抽出剤の界面活性は、同じ分子中に親水基と親油基の両方を持ち、その両親媒性に起因している。しかし、抽出剤の界面活性剤としての性質の理解が進んでいるに問わず、抽出過程での界面現象の意義を考える場合に、完全にその重要性が認められているとは言えない。例えば、Freiserは、金属の抽出において界面の影響は重要でないと述べており、一方、Hansenは、界面での金属の抽出反応の重要性を述べている。このことから、溶媒抽出法において、界面化学の立場からの検討がまだ十分に行われていないとの指摘もある。また、溶媒抽出法において界面を取り扱った研究例においても、多くの場合、金属の抽出反応速度の数学モデル、または、金属の分配等から直接的に取り扱っているが過ぎない。したがって、界面と溶媒系の物理化学的研究から導かれる、より直接的な実験的検討が望まれている。1987年に、McAvoyとColemanによって、ペンタミン硫酸塩系に対して、その抽出機構を解明するために界面張力の測定が初めて導入されて以来、界面に注目したより直接的な実験的検討は、ほとんどなされていないのが現状である。特に、希釈剤の影響を界面化学的に検討した報告はほとんど見られない。

工業的に広く利用されている抽出剤にD2EHPAがある。D2EHPAは、界面活性剤であり、しかも、水への溶解度が小さいため、界面がその抽出反応に重要な位置を占めると考えられる。そこで本稿においては、主として有機リソ化合物である抽出剤D2EHPAを各種希釈剤に溶解した溶液の界面張力を実験的に測定し、その結果に基づき、抽出剤の界面活性に与える希釈剤の影響および抽出剤の界面活性と金属の抽出性の関係を検討することを主な目的として行った結果を報告する。

5.2 実験方法

有機相は、主な抽出剤として高純度のD2EHPA（純度99％、半井化学（株）製）を精製せずにそのまま使用し、これをアヘプタン、シクロヘキサン、ベンゼンおよびα-キシレンに所定抽出剤濃度になるように適宜溶解して調整した。また、2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (EHPA) として大八化学（株）製PC88A（純度95.5％）を精製せずに使用した。

水相には、硝酸濃度0.1mol·dm^-3一定の水溶液を供試水相として使用した。Fe(III)の抽出実験においては、Fe(NO₃)₃·9H₂Oを所定Fe(III)濃度に調整した上記硝酸水溶液と供試水相として使用した。

界面張力の測定に際しては、有機相と水相の体積比0/1を1とし、試料溶液を温度25℃一定に保つ恒温槽中に24時間以上静置した後、Wilhelmyガラスプレート法を用い、実験検定法に基づき界面張力を測定した。Fe(III)の抽出実験においては、有機相と水相を15cm³ずつ、50cm³の共栓三角プラスコに分取し、温度25℃一定とした恒温槽中に15分間静置した後、1時間振とうし抽出反応を平衡化させた。予備実験より、1時間の振とうで抽出反応は十分平衡に達していることが分かった。振とう後、恒温槽中に30分間静置した後、平衡水相中のFe(III)濃度を原子吸光法により定量した。また、平衡有機相中のFe(III)濃度を供試水相中のFe(III)濃度から平衡水相中のFe(III)濃度を差し引くことにより求め、Fe(III)の分配係数（Dr₃）を計算した。また、有機溶液およびFe(NO₃)₃·9H₂O等は、すべて試薬特級品（半井化学（株）製）を使用した。

5.3 実験結果および考察

5.3.1 界面化学的考察

界面張力と界面に吸着した抽出剤化学種の化学ポテンシャルとの関には、次に示すギブスの吸着等温式が成り立つ。

\[dy = - \sum \Gamma_i d\mu_i \] (5.1)

ここで、\(y \), \(\Gamma \)および\(\mu \)は、それぞれ界面張力、抽出剤の界面過剰量（界面ln²当りの吸着量）および化学ポテンシャルを示す。また、添字のiおよびjは、それぞれ抽出剤化学種およびその物理量が界面に関するものであることを示す。

界面に吸着する抽出剤化学種が一種類だけであるとすると、式（5.1）を次式で示すように簡単になる。
\[
\frac{d\gamma}{d\theta} = -\Gamma_1 d\mu_{1,1}
\]

（5.2）

界面に吸着した抽出剤化学種が溶液本体と平衡状態にある場合、次の関係がある。

\[
\mu_{1,0} = \mu_{1,1} = \mu_{1,2}
\]

（5.3）

ここで、添字の0および1は、それぞれ水相および有機相本体を示している。また、
\[\mu_{1,0} \]および\[\mu_{1,1} \]は両相相を理想溶液であると仮定すると、それぞれ次式で示される。

\[
\mu_{1,0} = \mu^0 + RT\ln C_{1,0}
\]

（5.4）

\[
\mu_{1,1} = \mu^1 + RT\ln C_{1,1}
\]

（5.5）

ここで、\[\mu^0 \]および\[C \]は、それぞれ化学種1の標準化学ポテンシャルおよびその溶液本体での濃度を示している。

したがって、式（5.2）、（5.3）および式（5.4）から、次の関係式を導くことができる。

\[
\Gamma_1 = -d\gamma / 2.3RTd\ln C_{1,0}
\]

（5.6）

また、式（5.2）、（5.3）および式（5.5）から、同様に、次の関係を導くことができる。

\[
\Gamma_1 = -d\gamma / 2.3RTd\ln C_{1,1}
\]

（5.7）

以上のことから、ギブスの吸着等温式を考える場合、溶液本体として有機相または水相のどちらからでも考えることができる。

そこで、DZEHPAを抽出剤として用い、溶液本体に有機相を考えた場合について考察する。
DZEHPAは、一般に、有機相中で単量体および二量体の二つの状態で平衡を保って存在していることが知られており、両者の間には次式で示す平衡関係がある。

\[
2RH_2 \rightleftharpoons R_2H_2
\]

（5.8）

したがって、二量体化定数（\[K \]）は、次式で示される。

\[
K = [R_2H_2]_0 / [RH]_2
\]

\[
= C_{2,0} / C_{1,2}
\]

（5.9）

ここで、\[RH \]および\[R_2H_2 \]は、それぞれDZEHPAの単量体および二量体化学種を示し、\[C \]は、

\[C_{1,0} \]は、それぞれ有機相本体中のDZEHPAの単量体および二量体濃度を示している。また、DZEHPAの水相への溶解度は非常に小さいので、抽出剤の初期の式量濃度（\[C_1 \]）は、次式で示すことができる。

\[
C_1 = C_{1,0} + 2C_{2,0}
\]

\[
= C_{1,0} + 2K_2 C_{1,0}^2
\]

（5.10）

DZEHPAは有機相中で、大部分が二量体として存在していることが知られている。したがって、DZEHPAの二量体濃度が高くなった式量濃度\[C_1 \]の半分と考えることができ、単量体濃度\[C_{1,0} \]を次式で示すことができる。

\[
C_{1,0} = (C_{2,0} / K_2)^{1/2}
\]

\[
= (C_1 / 2K_2)^{1/2}
\]

（5.11）

DZEHPA等の有機リン化合物系抽出剤は、界面において単量体化学種が活性および優勢と考えられていることから、有機相本体中では、二量体が主成分であるが、界面に吸着するのは単量体（単量体の抽出剤の陰イオン化学種も考えられるが、本実験条件では、水相の硝酸濃度が0.1mol·dm⁻²と比較的高いことから考えて無視できる）だけと仮定する。

そこで、式（5.11）を式（5.6）に代入することにより、ギブスの吸着等温式を次式のように変形することができる。

\[
\Gamma_1 = -d\gamma / 2.3RTd(1/2\ln C_1)
\]

（5.12）

次に、溶液本体として水相を考えることにする。有機相と水相への抽出剤の分配平衡は、一般に次のように表現することができる。

\[
2RH_2 \rightleftharpoons R_2H_2 \]

（5.13）

したがって、分配平衡定数（\[K \]）は、次式で示される。

\[
K = [R_2H_2]_0 / [RH]_2
\]

\[
= C_{2,0} / C_{1,2}
\]

（5.14）

したがって、式（5.14）から、水相中における抽出剤の単量体化学種濃度は、次式で示す
5. 3. 1 式(5. 12)から分かるように、測定した界面張力を1/2logCrに対してプロットすれば、その傾きから界面過剰溶着γを求めることができる。

図5. 1から図5. 1dにD2EHPAをそれぞれヘプタン、ジクロへキサン、ペンゼンおよびベンゼンに溶かした溶液のγと1/2logCrの関係を示す。いずれの希釈剤を用いた場合も、あるD2EHPA濃度以上で、特にベンゼンおよびペンゼンの場合その傾向が顕著であるが、γの急激に減少する。また、γ-1/2logCrプロットの傾きがほぼ一定になる領域がある。この一定の傾きを示す領域は、界面へのD2EHPAの単分子層吸着していることを示していると考えられる。

5. 3. 2 界面張力変定

5. 3. 1で示した式(5. 12)から分かるように、測定した極面張力を1/2logCrに対してプロットすれば、その傾きから界面過剰溶着Γ₁を求めることができる。

図5. 1から図5. 1dにD2EHPAをそれぞれヘプタン、ジクロへキサン、ペンゼンおよびベンゼンに溶かした溶液のγと1/2logCrの関係を示す。いずれの希釈剤を用いた場合も、あるD2EHPA濃度以上で、特にペンゼンおよびペンゼンの場合その傾向が顕著であるが、γが急激に減少する。また、γ-1/2logCrプロットの傾きがほぼ一定になる領域がある。この一定の傾きを示す領域は、界面へのD2EHPAの単分子層吸着していることを示していると考えられる。

5. 3. 3 Γ₁とCr₁/2の関係

次に、式(5. 12)の関係に基づいて、先の5. 3. 2に述べた各種希釈剤に関する実験結果からさらに定義した示す領域を直線近似により処理し界面過剰溶着Γ₁を求める。Γ₁とCr₁/2の関係を示したのが図5. 2aから図5. 2dである。いずれの希釈剤においても、Γ₁とCr₁/2の間にランダムミーアー型の吸着等温線が観察される。そこで、それぞれの希釈剤を用いた場合のD2EHPAの飽和界面過剰溶着Γ₁をおよびそれに必要な各種希釈剤の最小有効希釈剤濃度Ca₁を、さらに表面に吸着したD2EHPA分子によって占められる膜分子当りの吸着面積A₁および見かけの吸着定数K'を求めることができる。ただし、A₁は、次式により計算した。

$$ A_1 = 1 / \sqrt{K_{100}} $$

ここで、Kはアポガドロ数を示している。また、式(5. 20)によって定義されたK'は、式(5. 18)から分かるように、界面過剰溶着および飽和界面過剰溶着Γ₁の半分になる時のCr₁/2の値から求めることができる。

表5. 1に、各種希釈剤中でのD2EHPAについて求めたΓ₁、Ca₁、A₁およびK'の値を示す。また、参考のため、それぞれの希釈剤の溶解パラメーターも示している。

Vandegriftらは(9)、Leybold-Heraeus space filling molecular model kitから構築した分子モデルを用いて、D2EHPAがアルキル基が界面に密に並んだ場合およびアルキ
図5.1 γと1/2logCfの関係

図5.2 ΓとCfの関係
ル基が界面に平行に並んだ場合に対してA_1値を計算し、それぞれ0.58nm²および1.03nm²を報告している。表5.1に示したA_1の値は、ベンゼンにおいてわずかに平行モデルから求めた理論値より大きいが、他のいずれの希釈剤においても、実験値は、Vandegriftの示した二つのモデルに基づく理論値の間にあり、妥当な値を示していると言える。

表5.1 異種希釈剤中のC_{en}、A_1、Γ_{100}およびx'の値

<table>
<thead>
<tr>
<th></th>
<th>C_{en} (mol·dm⁻³)</th>
<th>A_1 (nm²)</th>
<th>$\Gamma_{100} \times 10^6$ (mol·m⁻²)</th>
<th>x' (mol·dm⁻³)⁻¹/₂</th>
<th>δ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-ヘプタン</td>
<td>0.0797</td>
<td>0.619</td>
<td>2.68</td>
<td>24.5</td>
<td>7.4</td>
</tr>
<tr>
<td>サイクロヘキサン</td>
<td>0.0681</td>
<td>0.682</td>
<td>2.44</td>
<td>32.0</td>
<td>8.2</td>
</tr>
<tr>
<td>o-キサレン</td>
<td>0.190</td>
<td>0.920</td>
<td>1.81</td>
<td>12.7</td>
<td>9.0</td>
</tr>
<tr>
<td>ベンゼン</td>
<td>0.393</td>
<td>1.08</td>
<td>1.53</td>
<td>8.75</td>
<td>9.2</td>
</tr>
</tbody>
</table>

5.3.4 D2EHPAとEHPNAの界面化学的比較

次に、抽出剤の分子構造の違いが界面活性にどのような影響を与えるかを検討するために、D2EHPA分子中のC-O-P結合のうちの1つをC-P結合に置き換えた分子構造をもつモノエステルであるEHPNAを用い、同様の実験を行い、D2EHPAとの比較検討を行った。

図5.3に示すため、D2EHPAとEHPNAの化学構造を示す。また、サイクロヘキサンで希釈したEHPNAにおいて、γと$1/2\log C_r$およびΓと$C_r^{1/2}$の関係をそれぞれ図5.4および図5.5に示す。また、実験により求めたC_{en}、A_1、Γ_{100}およびx'の値を表5.2に示す。

Vandegriftらは(19)，D2EHPAの場合と同様に、EHPNA分子のアルキル基が界面に垂直に密に並んだ場合のA_1の値と界面に平行に存在する場合のA_1の値を分子モデルにより計算し、それぞれ0.62nm²および1.03nm²の値を報告している。表5.2に示した場合において、EHPNAのA_1の実験値は、アルキル基が界面に垂直に存在する場合のA_1の理論値よりわずかに小さな値を示している程度で、この実験結果からEHPNAのアルキル基はほとんど全て界面に垂直な状態で存在しているものと考えられる。本実験では、PC88Aを精製せずにEHPNAとして用いたが、実験結果は十分評価できるものと考えられる。

C-O-P結合がC-P結合で置き換えられるとアルキル基のエチル側鎖がリン原子に結合している酸素原子に立体障害を与え、二量体の生成に必要な水素結合を阻害するため、二量体の生成を減少させる傾向があることが、D2EHPAの2つのC-O-P結合を2つともC-P結合に置き換えたdi-(2-ethylhexyl)phosphinic acidについて報告されている(19)。表5.2に示したC_{en}の値は、D2EHPAの場合より小さな値を示している。EHPNAが二量体を生成するには、図5.3に示すように厚さ水素結合が必要であるが、C-P結合を1つ含むため、二量体の生成が減少し、界面で活性な単量体抽出剤濃度が増加した結果、EHPNAのC_{en}がD2EHPAよりかなり小さくなったものと考えられる。

5.3.5 抽出剤の界面活性に与える希釈剤の影響

分子モデルから導かれたA_1の理論値と実験値を比較することにより、界面におけるD2EHPA分子の配向性に関して有用な情報を得ることができる。

表5.1に示したA_1の値は、n-ヘプタン、サイクロヘキサン、o-キサレン、ベンゼンの順序にしたがって、単純に言えば、極性の強い希釈剤（あるいは溶解パラメーターの大きい希釈剤）ほど、界面においてD2EHPA分子のアルキル基が垂直に密に並んだ状態で存在する場合のA_1の理論値から、界面に平行に存在する場合のA_1の理論値に近づく傾向を見る。
表5.2 シクロヘキサン中のEHPNAのC_m、A_i、Γ_{100}およびK'の値

<table>
<thead>
<tr>
<th></th>
<th>C_m (mol·dm$^{-3}$)</th>
<th>A_i (nm2)</th>
<th>$\Gamma_{100} \times 10^6$ (mol·m$^{-2}$)</th>
<th>K' (mol·dm$^{-3}$)$^{-1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td>0.0121</td>
<td>0.574</td>
<td>2.89</td>
<td>55.1</td>
</tr>
</tbody>
</table>

図5.4 γと$1/2\log C_F$の関係

図5.5 Γ_iと$C_F^{1/2}$の関係

図5.6 EHPNAの二重体

の原因の一つとして、希釈剤のD2EHPAへの溶媒和能力と考えられる。極性の強い希釈剤ほどD2EHPA分子を強く溶媒和し、D2EHPA分子が密に並ぶことが制限される結果、極性の強い希釈剤ほどA_iの値が大きくなると考えられる。しかし、D2EHPA分子のアルキル基が界面において垂直に密に並んだ場合のA_iの理論値と比べて、その大きなA_iの実験値を希釈剤の溶媒和だけを説明するには無理があると考えられる。特に、o-キシレンやベンゼンのような芳香族化合物が、n-ヘプタンやシクロヘキサンに比べて、D2EHPA分子のアルキル基が界面に平行に存在する場合のA_iの理論値に近い値を示しているのは、希釈剤の溶媒和だけでなく、界面におけるベンゼンまたはo-キシレンのp電子雲と水との相互作用もその原因の一つと考えられる。Vandegriftらは、o-キシレンのp電子雲と水との相互作用は、o-キシレン分子を界面に平行に積み重ねる傾向があり、この相互作用が、di-(hexoxyethyl)phosphoric acid分子のアルキル基をo-キシレン/水界面において、界面に平行に配向させる傾向があると報告している(29)。したがって、本研究においても、o-キシレンやベンゼンのp電子雲と水との相互作用により、n-ヘプタンやシクロヘキサンに比べて、D2EHPA分子のアルキル基が界面において界面に平行に配向させられる傾向が強
なくなったものと考えられる。n-ヘプタンを希釈剤とした場合、A1の理論値と実験値にそれほど大きな差がないことから、DZEHPA分子の大部分が界面でアルキル基を界面に垂直に並べた状態をとし、シクロヘキサンやオーキシレンでは、界面においてアルキル基を界面に垂直または平行にした二つの状態が共存して存在し、ベンゼンでは、DZEHPA分子の大部分が、界面においてアルキル基を界面に平行にした状態で存在しているものと考えられる。

表5.1に示したA1（またはΓ1∞）およびCaiを、抽出剤の界面活性を示すパラメータとしてとると、簡単な考えた場合、Caiが小さければ、界面活性が比較的低い抽出剤濃度で起こることを意味し、これは高い界面活性を示すことを意味することと考えられる。表5.1で見られた場合、ベンゼン＞オーキシレン＞シクロヘキサン＞n-ヘプタンの順でCaiが減少しているが、特にベンゼンやオーキシレンの芳香族化合物とn-ヘプタンおよびシクロヘキサンとの差が顕著に表れている。この原因を希釈剤の影響として定性的に考えると、ベンゼンやオーキシレンは、π電子帯が存在するため、n-ヘプタンやシクロヘキサンに比べて極性が強く、DZEHPA分子の極性基を拒む傾向が小さい。そのため、DZEHPAを比較的強く溶媒化することができるため、界面領域からDZEHPA分子を有機相へ引き込む傾向が小さくなり、その結果、界面への吸着の減少が起こることが原因の一つと考えられる。また、DZEHPAへの溶媒化能力の観点から考えると、オーキシレンやベンゼンのn-ヘプタンやシクロヘキサンより強い溶媒化能力は、DZEHPAの分子体の安定を低める結果、単体抽出剤濃度の増加による界面でのより低い界面活性を示すはずであるが、実験結果からそのような傾向は見られない。したがって、この影響は、前者の影響に比べてそれほど重要ではないと考えられる。

表5.1から分かるように、CaiとA1の増加順序（またはΓ1∞の減少順序）が一致され、CaiだけでなくA1の値も抽出剤の界面活性を評価するパラメータとして考慮する必要があると考えられる。いずれにしても、極性の低い希釈剤ほど、DZEHPAの界面活性は大きいと考えることが可能と考えられる。

次に、見かけの吸着定数K'を界面活性を示すパラメータとして考えると、n-ヘプタンとシクロヘキサンでK'の大きさに逆の傾向が見られるが、傾向としては界面活性と考えられる希釈剤ほど大きい値を示していると言える。特に、n-ヘプタンとシクロヘキサンのK'は芳香族化合物に比べて大きな値を示している。n-ヘプタンやシクロヘキサンに比べてオーキシレンやベンゼンで小さな値を示す傾向が見られる原因を考えると、K'は式(5.20)から分かりように、吸着定数KとDZEHPAの二量体化定数K2の関係で決まる定数である。Kは、界面におけるDZEHPAの吸着の強さまたはエネルギーに関するものであるが、これまでの実験結果より界面においてオーキシレンおよびベンゼンのKの値は、n-ヘプタンおよびシクロヘキサンより小さい傾向である。また、K2は、極性の大きな希釈剤中ほど小さな値を示すと考えられることから、式(5.20)における(C2)1/2の値は、n-ヘプタンやシクロヘキサンに対してオーキシレンおよびベンゼンに比べてオーキシレンおよびベンゼンは、大きな値を示すと考えられる。したがって、オーキシレンとベンゼンの小さなK'の値は、それぞれの吸着定数Kの小さな値が大きく影響した結果と考えられる。また、表5.3において検討したゾンロ、DZEHPAに比べてCai、A1（またはΓ1∞）およびK'の値から考えて、DZEHPAより界面活性を示すことを示しており、DZEHPAより界面活性であると考えられる。また、第3章および第4章で検討した希釈剤の溶液パラメータの小さな希釈剤ほど、DZEHPAの界面活性は大きいと言える。

表5.3 n-ヘプタンおよびCo(II)の抽出性

<table>
<thead>
<tr>
<th></th>
<th>Dr**</th>
<th>Kco**</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>2.44</td>
<td>2.29×10^-5</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>1.86</td>
<td>1.38×10^-5</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>0.223</td>
<td>3.02×10^-6</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.132</td>
<td>2.04×10^-6</td>
</tr>
<tr>
<td>[DZEHPA]:4.49×10^-3mol dm^-3; [Fe(III)]:1.79×10^-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.80×10^-3mol dm^-3; [HNO3]:1.10mol dm^-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** apparent thermodynamic extraction constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. (10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-66-
5.4 結言

D2EHPAおよびEHPAをn-ヘプタン、シクロヘキサン、o-キシレンおよびベンゼンで希釈した有機相と0.1mol·dm⁻³の硝酸を含む水相との界面張力を測定し、得られた結果を検討した結果、以下の結論を得た。

(1) D2EHPAとEHPAを比較した結果、有機相/水相界面を吸着飽和するのに必要なEHPAの有機相体の最小濃度（C_{min})はD2EHPAのそれより小さな値を示した。これは、抽出剤分子中のC=O-P結合がC-P結合に置き換えられたことによる、二重体の生成が減少したことが原因と考えられた。

(2) D2EHPAの界面吸着状態はn-ヘプタン、シクロヘキサン、o-キシレン、ベンゼンの順序で、界面に対してアルキル基を垂直にした状態から平行にした状態に移行する。芳香族化合物であるo-キシレンやベンゼンの場合、D2EHPAがそのアルキル基を界面に平行にした吸着する傾向を示すのは、界面におけるこれらの有機化合物のπ電子雲と水の相互作用が原因と考えられた。

(3) 抽出剤の界面活性を評価するパラメーターとして、界面に吸着飽和するのに必要な有機相体の最小抽出剤濃度（C_{min})だけでなく界面に吸着した抽出剤分子によって占められる1分子当たりの界面積（A_{1})または飽和界面過剰量（Γ_{sat})も考慮する必要があると考えられる。また、見かけの吸着定数K'は、界面活性と考えられる希釈剤ほど大きな値を示す傾向が見られた。また、EHPAは、D2EHPAより界面化学的には活性であると考えられた。

(4) 種類の違い希釈剤（または溶解パラメーターの小さい希釈剤）中ほど、D2EHPAは界面活性であると考えられた。

(5) 界面活性とFe(III)またはCo(II)の抽出性との間に相関性が見られた。

5.5 文献

(3) H. Matsuyama, Y. Miyake, Y. Izuno and M. Teramoto: Hydrometallurgy, 24 (1990), 37
(4) S. J. Lyle and D. B. Smith: J. Colloid Interface Sci., 61 (1977), 405
(5) 厚村浩司, 芝田卓次, 佐野誠, 西村正治: 昭和61年度日本鉱業会春季大会研究・業績発表講演要旨集, (1986), 233
(8) A. F. M. Barton: Chem. Rev., 75 (6) (1975), 731
(10) 新原正和, 斎藤勇, 坂本宏, 中廣政直, 若松貴英: 日本金属学会誌, 55 (3) (1991), 310
第6章 混合抽出剤を用いた場合の
希釈効果の検討

6.1 研究目的

溶媒抽出法において、目的とする金属の抽出性および分離性を大きく改善する有効な方法として、特に有機相に注目した場合、種類の異なる2つ以上の抽出剤を混合することにより誘起される協同効果（synergismまたはsynergetic effect）の利用が、Brownら(1)によって初めて報告されて以来、広く知られるようになった。協同効果とは、例えば、抽出剤AおよびBを同時に用いた場合の分配係数が、AおよびBを単独で用いた場合の分配係数の和よりも大きい時、抽出剤AとBで協同効果があるという。また、その逆の現象、つまり、協同効果は見られず、Bの添加によって分配係数の減少だけが見られる抽出妨害（antagonism）をいう現象も知られている。(2)

協同効果および抽出妨害が単独の抽出剤では相互分離が困難であるため、本章においては、協同効果を有する抽出剤を用いた研究例である。抽出剤としてFe(III)イオンを加えた酸性性チオ尿素溶液からの溶出抽出によるAuの抽出分離を検討した。従来より、Auの製造法としては還元製造法が広く利用されているが、使用されるシアン化合物の強い毒性、環境汚染に気づかれる傾向があり、そのため、これに代わる無害な製造法の開発が望まれている。近年、還元法に比べ、無害であるが、Auの製造速度が大きく、また、鉱石中のCu、As、Pb等がAuの製造に影響を及ぼすため、還元法の選択が検討されている。チオ尿素法によるAuの製造には、酸化剤としてはFe(III)イオンが、酸は硫酸が有効であるという報告されている(3)。(4)

酸性性チオ尿素溶液からのAuの溶出に関する方法は、酸化剤としてFe(III)イオンの水酸化物によるAuの共沈の可能性があり、適切な抽出剤とは言えないと報告されている。

そこで、Fe(III)イオンの水酸化物の沈殿が生成しない酸性領域の酸性性チオ尿素溶液に対し、D2EHPAとtri-n-butyl phosphate (TBP) またはtriocetyl phosphate oxide (TOPO) およびTOAとTBPまたはTOPOとの混合抽出剤を用い、D2EHPAおよびTOAによるAuの抽出分離性の改善および希釈剤の影響について検討した。

6.2 実験方法

有機相は、抽出剤として、D2EHPA（東京化成（株）製）、tri-n-octylamine（TOA、東京化成（株））、tri-n-butyl phosphate（TBP、和光純薬（株）製）、triocetyl phosphate oxide（TOPO、北興化学（株）製）、D2EHPAとTBP、D2EHPAとTOPO、TOAとTBPおよびTOAとTOPOの混合物を使用し、ベンゼン、n-ヘプタンまたはクロロホルムにより所定濃度に希釈して使用した。ただし、TOA、アラジン抽出剤の硫酸と接触させたものを使用した。

供試水相は、所定の酸性性チオ尿素溶液により金パウダー（純度99.99%）を、固液濃度0.05g・dm⁻³、温水で3時間浸出したものを使用した。3時間の浸出で金パウダーを完全に浸出することができなかった。金パウダーの酸化剤として硫酸鉄(III)をFe濃度で8.85×10⁻³mol・dm⁻³一定量を加えた。また、特に断らない限り、硫酸濃度0.1mol・dm⁻³、チオ尿素濃度1.29×10⁻³mol・dm⁻³とした。なお、有機溶液、硫酸鉄(III)およびチオ尿素等は、すべて試薬特級品（半井化学（株）製）を使用した。

抽出操作は、有機相および水相をそれぞれ15cm³ずつ、容量50cm³の共栓三角フラスコに入れ、25℃一定に調整した恒温水槽で15分間静置した後、30分間振とうし平衡化させた。予備実験より、30分間に揺している十分抽出に達していることが分かった。振とう後、恒温水槽中で1時間静置した後、所定量の水相を分取した。供試水相および平衡水相中のAuおよびFe濃度は原子吸光法により定量した。

6.3 実験結果および考察

6.3.1 単成分系抽出剤によるAuおよびFeの抽出

-70-

-71-
D2EHPAを使用した場合のAuおよびFe (Fe(III)イオンとAuの抽出時に還元されたFe(II)イオンが一部共存するため、単にFeとして取り扱っているが、主成分はFe(III)イオンである)の抽出率と初期のD2EHPA濃度（二量体濃度）の関係を図6.1に示す。ただし、希釈剤としてペンゼンを使用した。図6.1から、D2EHPA濃度の増加とともにAuの抽出率が増加することが分かる。しかしながら、D2EHPA濃度が多いとAuの抽出率は約33％であり、しかもこれ以上D2EHPA濃度を高くすると分離性の悪化が観察された。また、浸出時に酸化剤として加えたFeの抽出率も増加し、AuとFeとの分離能の観点からも好ましい結果は得られなかった。

次に、ペンゼンで希釈したTOAを使用した場合のAuおよびFeの抽出率を図6.2に示す。D2EHPAの場合と同様に、初期のTOA濃度の増加とともにAuの抽出率が増加した。しかし、TOA濃度が1.03mol·dm⁻³においても、Auの抽出率は約60％であり、しかも、TOAの高い粘性のため、D2EHPAの場合と同様に、分離性の悪化が観察された。ただし、Feの抽出率はTOA濃度の増加にほとんど関係なく低い値を示し、Feとの分離に対しては効果的であることが分かった。また、TBPおよびTOPOについても同様の検討を行った結果、TBPおよびTOPOとともにAuの抽出率は低い。TBPの場合、TBP濃度が2.49mol·dm⁻³まではAuの抽出率は10％以下で、それ以上の濃度でAuの抽出率は急激に増加する傾向が見られ、しかし辛酸を使用せず、TBP単独でAuの抽出を行った場合でも、Auの抽出率は約58％と低いものであった。また、TOPOの場合、辛酸への溶解度の問題もあり、それほど高濃度のTOPOを使用しての実験は行っていないが、TBPの場合と同様の傾向を示し、TOPO濃度0.75mol·dm⁻³においてもAuの抽出率は約43％であった。ただし、Feの抽出に関しては、TBPおよびTOPOとともに、抽出剤濃度の増加にともなってわずかに増加傾向が見られるだけで、いずれにしてもその抽出率は10％以下と低い値を示した。
6.3.2 混合抽出剤によるAuおよびFeの抽出

次に、D2EHPAおよびTOAによるAuの抽出性、Feとの分離性および分離性を改善することを目的として、TBPまたはTOPOとの混合抽出剤によるAuおよびFeの抽出を検討した。図6.3に、ペシソで希釈した0.445mol·dm⁻³D2EHPA / TBPおよび0.445mol·dm⁻³D2EHPA / TOPO混合抽出剤によるAuおよびFeの抽出率とTBPまたはTOPO濃度との関係を示し、また図6.4に、0.543mol·dm⁻³TOA / TBPおよび0.543mol·dm⁻³TOA / TOPO混合抽出剤によるAuおよびFeの抽出率とTBPまたはTOPO濃度との関係を示す。また、表6.1および表6.2に、それぞれの場合のAuの協同効果係数（$S_{Cu} = D$（混合抽出剤によるAuの分離係数）/（D（D2EHPAまたはTOAによるAuの分離係数）+ D（TBPまたはTOPOによるAuの分離係数）））およびFeとの分離係数（$SF = D_{Cu}/D_{Fe}$）を示す。図6.3および図6.1から、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤を用いた場合、TBPまたはTOPOとの協同効果によりAuの抽出性は増加している。これは、混合抽出剤を用いた場合に生成するAuの抽出化学種が、単成分系抽出剤による抽出化学種よりも吸着性であることが原因の一つと考えられる。Feの抽出性は、逆に抑制されており、いわゆる抽出妨害と呼ばれる現象が見られ、Auの抽出およびFeとの分離において効果的であることが分かる。Feの抽出が抑制されることは、協同効果を示すようなFeの抽出化学種の生成定数より、D2EHPAとTBPまたはTOPOとの相互作用が強いため、協同効果が見られず、逆にその抽出が抑制されたものと考えられる。

次に、図6.4および図6.2から、TOA / TBPおよびTOA / TOPO混合抽出剤を用いた場合も同様に、TBPまたはTOPOとの協同効果によりAuの抽出性は増加しているが、Feに対しては、ほとんど変化が見られず、その抽出性は低く、Auの抽出およびFeとの分離に対して効果的であることが分かる。また、Na₂SO₄の添加により、Auの抽出性およびFeとの分離性が良くなることが分かる。この原因として、Na₂SO₄の添加による塩析効果も一つの原因と考えられるが、主因はやはり、これら混合抽出剤を用いた場合の協同効果によるAuの抽出にSO₄²⁻が関与しているものと考えられる。また、D2EHPA系混合抽出剤およびTOA系混合抽出剤ともに、等モル濃度で比較した場合、TOPOの方がTBPよりAuの抽出およびFeとの分離に対して効果的であることが分かる。これは、TBPとTOPOの塩基性的強さの順序（TOPO > TBP（90））と一致する。また、いずれの混合抽出剤を用いた場合も、分離性は良好であった。
6.1 Auに対する協同効果およびAuとFeの分離に与えるTBPおよびTOPO濃度の影響
D2EHPA: 0.445 mol·dm⁻³一定

<table>
<thead>
<tr>
<th>TBP (mol·dm⁻³)</th>
<th>SCₐ</th>
<th>SF</th>
<th>TOPO (mol·dm⁻³)</th>
<th>SCₐ</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0.100</td>
<td>0.10</td>
<td>1.89</td>
<td>0.391</td>
<td></td>
</tr>
<tr>
<td>0.355</td>
<td>5.04</td>
<td>2.20</td>
<td>3.66</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>0.710</td>
<td>9.82</td>
<td>5.50</td>
<td>7.85</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>23.6</td>
<td>23.4</td>
<td>17.5</td>
<td>61.7</td>
<td></td>
</tr>
<tr>
<td>1.78</td>
<td>64.8</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2 Auに対する協同効果およびAuとFeの分離性に与えるTBPおよびTOPO濃度の影響
TOA: 0.543 mol·dm⁻³一定

<table>
<thead>
<tr>
<th>H₂SO₄ (mol·dm⁻³)</th>
<th>TBP (mol·dm⁻³)</th>
<th>SCₐ</th>
<th>SF</th>
<th>TOPO (mol·dm⁻³)</th>
<th>SCₐ</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.04</td>
<td>2.20</td>
<td>3.66</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>73.0</td>
<td>10.4</td>
<td>23.6</td>
<td>23.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>56.2</td>
<td>8.4</td>
<td>19.4</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>32.5</td>
<td>3.5</td>
<td>12.5</td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.3 硫酸濃度およびチオ尿素濃度の影響

次に、浸出時の硫酸濃度およびチオ尿素濃度の影響を検討した。表6.3に、ベンゼンで
希釈した0.445 mol·dm⁻³D2EHPA / 1.07 mol·dm⁻³TBP、0.445 mol·dm⁻³D2EHPA / 0.2 mol·
dm⁻³TOPO、0.543 mol·dm⁻³TOA / 1.07 mol·dm⁻³TBPおよび0.543 mol·dm⁻³TOA / 0.2 mol·
dm⁻³TOPO混合抽出剤を用いた場合の、AuおよびFeの抽出性およびFeとの分離性に与える硫
酸濃度の影響を例として示す。

D2EHPA / TBPおよびD2EHPA / TOA混合抽出剤では、浸出時の硫酸濃度の増加とともに
AuおよびFeの抽出率が大きく減少しているが、これは、D2EHPAが酸性抽出剤であることか
ら予想される結果である。また、硫酸濃度の減少とともに、Auの協同効果も大きくなる傾

<table>
<thead>
<tr>
<th>H₂SO₄ (mol·dm⁻³)</th>
<th>0.445 mol·dm⁻³ D2EHPA / 1.07 mol·dm⁻³ TBP</th>
<th>0.445 mol·dm⁻³ D2EHPA / 0.2 mol·dm⁻³ TOPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>92.4</td>
<td>67.7</td>
</tr>
<tr>
<td>0.050</td>
<td>81.7</td>
<td>57.2</td>
</tr>
<tr>
<td>0.10</td>
<td>73.0</td>
<td>10.4</td>
</tr>
<tr>
<td>0.20</td>
<td>56.2</td>
<td>8.4</td>
</tr>
<tr>
<td>0.50</td>
<td>32.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H₂SO₄ (mol·dm⁻³)</th>
<th>0.543 mol·dm⁻³ TOA / 1.07 mol·dm⁻³ TBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>66.9</td>
</tr>
<tr>
<td>0.050</td>
<td>67.2</td>
</tr>
<tr>
<td>0.10</td>
<td>66.3</td>
</tr>
<tr>
<td>0.20</td>
<td>63.7</td>
</tr>
<tr>
<td>0.50</td>
<td>58.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H₂SO₄ (mol·dm⁻³)</th>
<th>0.543 mol·dm⁻³ TOA / 0.2 mol·dm⁻³ TOPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>66.9</td>
</tr>
<tr>
<td>0.050</td>
<td>67.2</td>
</tr>
<tr>
<td>0.10</td>
<td>66.3</td>
</tr>
<tr>
<td>0.20</td>
<td>63.7</td>
</tr>
<tr>
<td>0.50</td>
<td>58.1</td>
</tr>
</tbody>
</table>
向が見られるが、同時に、Feとの分離性は薄くなる傾向にある。また、TOA / TBPおよびTOA / TOPO混合抽出剤においても、硫酸濃度の増加とともに、Auの抽出率は若干減少する傾向が見られるが、Feは硫酸濃度に関係なく低い抽出率を示した。硫酸濃度の増加によりAuの抽出率は若干減少するのみ、水相中のHSO₄⁻の増加による金チオ尿酸錯イオンとのイオン対形成がその原因と考えられる。また、浸出時のチオ尿酸濃度を6.44×10⁻³mol·dm⁻³から2.57×10⁻³mol·dm⁻³まで変化させて検討した結果、D2EHPA / TOPO混合抽出剤を用いた場合に、浸出時のチオ尿酸濃度の減少により、Feの抽出率に若干の増加が見られた以外は、AuおよびFeの抽出性にほとんど影響は見られなかった。

6.3.4 混合抽出剤によるAuの抽出機構の推定

まず、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤によるAuの抽出機構について推定を行った。ただし、希釈剤としてペンゼンを使用した。チオ尿酸溶液からのD2EHPAと中性抽出剤の混合抽出剤によるAuの抽出は、次のように示すことができる。

Au(TU)z⁺⁺ + n(RH)z⁺ + nS₀ ≜ Au(TU)z⁺⁺(2m - 1)RH·nS₀ + H⁺。 (6.1)

ここで、TU、RHおよび(RH)zは、それぞれチオ尿酸、D2EHPAおよびその二重体を示している。また、Sは、TBPまたはTOPOを示している。添字のzおよびmは、それぞれ水相および有機相を示している。

式(6.1)で示される抽出反応の抽出定数(K)は、次式で示される。

K = [Au(TU)z⁺⁺(2m - 1)RH·nS₀]⁺⁺ / [Au(TU)z⁺⁺][RH]z⁺⁺[nS]n⁺⁺。 (6.2)

ここで、抽出係数を示すAuの分配係数(D)を次のように定義する。

D = (D2EHPAによるAuの分配係数) - (D2EHPAによるAuの分配係数) - (TBPまたはTOPOによるAuの分配係数) (6.3)

したがって、式(6.3)で定義された分配係数Dを用いることにより、式(6.2)を次式で示すことができる。

K = D[H⁺]⁺⁺ / [(RH)z⁺⁺][S]n⁺⁺。 (6.4)

図6.5 D2EHPA濃度と分配係数の関係
TBP: 1.07mol·dm⁻³一定；TOPO: 0.2mol·dm⁻³一定
図6．5に、TBP濃度0.07mol·dm$^{-3}$およびTOPO濃度0.2mol·dm$^{-3}$一定とした場合の結果を示す。ただし、初期のD2EHPA濃度は無視できるため、初期のD2EHPA濃度に対してプロットを行った。図6．5から、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤とともに、nの値は2であることが分かる。次に、D2EHPA濃度一定と仮定した場合で、中性抽出剤（S）濃度を変化させ、logDとlog[S]の関係を求め、その傾きからnを求めることができる。

図6．6に、D2EHPA濃度0.445mol·dm$^{-3}$一定の場合の結果を示す。ただし、先に同様に、初期のTBPおよびTOPO濃度に比べ、AuおよびFeの抽出係数は無視できるため、初期のTBPおよびTOPO濃度に対してプロットを行った。図6．6から、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤とともに、nの値は2であることが分かる。したがって、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤によるチオ尿素溶液からのAuの抽出は、次式のように表されるものと推察される。

\[
\begin{align*}
\text{Au(TU)H}_2S_2O_8 + 2(RH)H_2S_2O_8 + 2TBP & = \text{Au(TU)H}_2S_2O_8·3RH·2TBP + H^+ \quad (6.7) \\
\text{Au(TU)H}_2S_2O_8 + 2(RH)H_2S_2O_8 + 2TOPO & = \text{Au(TU)H}_2S_2O_8·3RH·2TOPO + H^+ \quad (6.8)
\end{align*}
\]

図6・6に、D2EHPA濃度0.445mol·dm$^{-3}$一定とした場合の結果を示す。ただし、先と同様に、初期のTBPおよびTOPO濃度に比べ、AuおよびFeの抽出係数は無視できるため、初期のTBPおよびTOPO濃度に対してプロットを行った。図6・6から、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤とともに、nの値は2であることが分かる。したがって、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤によるチオ尿素溶液からのAuの抽出は、次式のように表されるものと推察される。

\[
\begin{align*}
\text{Au(TU)H}_2S_2O_8 + 2(RH)H_2S_2O_8 + 2TBP & = \text{Au(TU)H}_2S_2O_8·3RH·2TBP + H^+ \quad (6.7) \\
\text{Au(TU)H}_2S_2O_8 + 2(RH)H_2S_2O_8 + 2TOPO & = \text{Au(TU)H}_2S_2O_8·3RH·2TOPO + H^+ \quad (6.8)
\end{align*}
\]

図6.6に、D2EHPA濃度0.445mol·dm$^{-3}$一定とした場合の結果を示す。ただし、先と同様に、初期のTBPおよびTOPO濃度に比べ、AuおよびFeの抽出係数は無視できるため、初期のTBPおよびTOPO濃度に対してプロットを行った。図6.6から、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤とともに、nの値は2であることが分かる。したがって、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤によるチオ尿素溶液からのAuの抽出は、次式のように表されるものと推察される。

\[
\begin{align*}
\text{Au(TU)H}_2S_2O_8 + 2(RH)H_2S_2O_8 + 2TBP & = \text{Au(TU)H}_2S_2O_8·3RH·2TBP + H^+ \quad (6.7) \\
\text{Au(TU)H}_2S_2O_8 + 2(RH)H_2S_2O_8 + 2TOPO & = \text{Au(TU)H}_2S_2O_8·3RH·2TOPO + H^+ \quad (6.8)
\end{align*}
\]
抽出剤において、m'およびn'の値は、それぞれ2および1であり、TOA / TOPO混合抽出剤において、m'およびn'の値はともに1であることが分かる。そこで、TOA / TBPおよびTOA / TOPO混合抽出剤によるAuの抽出に対して、次式のような簡単な抽出機構が推察される。

\[
\begin{align*}
(Au(TU)_2)_{\text{SO}_4} \cdot 2R_3NH_2SO_4 \cdot \text{TBP} \\
\Rightarrow (R_3NH_2SO_4)_{\text{TBP}} \cdot (Au(TU)_2)_{\text{SO}_4} \\
(Au(TU)_2)_{\text{SO}_4} \cdot \text{R}_3NH_2SO_4 \cdot \text{TOPO} \\
\Rightarrow (R_3NH_2SO_4)_{\text{TOPO}} \cdot (Au(TU)_2)_{\text{SO}_4}
\end{align*}
\]

(6.12)

図8. 8 TBPまたはTOPO濃度と分配係数の関係

TOA: 0.543mol・dm⁻³一定

8.3.5 希釈剤の影響

次に、Auの抽出およびFeとの分離に与える希釈剤の影響を検討した。図8. 4に、0.445 mol・dm⁻³D2EHPA / 1.07mol・dm⁻³TBP、0.445mol・dm⁻³D2EHPA / 0.4mol・dm⁻³TOPO、0.54 mol・dm⁻³TOA / 0.88mol・dm⁻³TBPおよび0.54mol・dm⁻³TOA / 0.5mol・dm⁻³TOPO混合抽出剤を用いた場合を例として示す。ただし、D2EHPA / TOPO、TOA / TBPおよびTOA / TOP
0混合抽出剤において、n-ヘプタンを希釈剤として用いなかったのは、TOPOおよびTOAのn-ヘプタンへの低い溶解度のためである。表6.4から分かるように、いずれの混合抽出剤においても、極性の低い希釈剤ほど、Auの抽出およびFeとの分離に対して良好な結果を示している。ただし、D2EHPA／TBP混合抽出剤において、Auの抽出順序とFeとの分離順序において、n-ヘプタンとベンゼンで逆になっているの、ベンゼンを希釈剤として用いた場合の方がn-ヘプタンを用いた場合と比べて、Feの抽出性がかなり低くなっているためである。これは、D2EHPAとFeとの抽出化学種が、ベンゼンよりn-ヘプタン中で生成しやすいため、TBPを混合した場合でもベンゼンよりFeの抽出率が高くなったものと考えられる。

クロロホルムを希釈剤として用いた場合、いずれの混合抽出剤においても、Auの抽出率が低くなっているのは、TBPまたはTOPOとクロロホルムとの相互作用の結果、TBPおよびTOPOが、D2EHPAまたはTOAによるAuの抽出化学種に配位し難くなるため、協同効果によるAuの抽出反応が起こり難くなるためと考えられる。また、クロロホルムを希釈剤として用い

表6.4 Auの抽出およびAuとFeの分離性に与える希釈剤の影響

<table>
<thead>
<tr>
<th>Diluent</th>
<th>E_{Au} (%)</th>
<th>E_{Fe} (%)</th>
<th>SCAU</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-ヘプタン</td>
<td>83.2</td>
<td>37.6</td>
<td>24.6</td>
<td>8.22</td>
</tr>
<tr>
<td>BENZENE</td>
<td>73.0</td>
<td>10.4</td>
<td>23.6</td>
<td>23.4</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>42.6</td>
<td>45.8</td>
<td>5.41</td>
<td>0.876</td>
</tr>
<tr>
<td>0.445mol dm⁻³ D2EHPA / 1.07mol dm⁻³ TBP</td>
<td>60.6</td>
<td>11.6</td>
<td>7.85</td>
<td>11.7</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>16.0</td>
<td>50.2</td>
<td>1.33</td>
<td>0.189</td>
</tr>
<tr>
<td>0.445mol dm⁻³ D2EHPA / 0.40mol dm⁻³ TOPO</td>
<td>59.5</td>
<td>3.9</td>
<td>1.98</td>
<td>36.7</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>18.5</td>
<td>8.6</td>
<td>1.70</td>
<td>2.39</td>
</tr>
<tr>
<td>0.543mol dm⁻³ TOA / 0.886mol dm⁻³ TBP</td>
<td>85.0</td>
<td>5.4</td>
<td>6.12</td>
<td>99.7</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>16.4</td>
<td>7.5</td>
<td>1.78</td>
<td>2.42</td>
</tr>
</tbody>
</table>

た場合、D2EHPA／TBPおよびD2EHPA／TOPO混合抽出剤においてFeの抽出率が高くなっていくのも、TBPまたはTOPOとクロロホルムとの相互作用の結果、D2EHPAとTBPまたはTOPOとの相互作用が弱くなるため、抽出妨害の程度が弱められることが原因の一つと考えられる。したがって、Auの抽出性だけから考えの場合、極性の低い希釈剤ほど良好と考えられるが、Feとの分離という観点から見た場合、Feに対する抽出妨害の程度を考慮して希釈剤を選択する必要があると考えられる。また、D2EHPA／TBP、TOPO、TBPおよびTOA／TOPO混合抽出剤を用いる場合は、その希釈剤への溶解度も考慮する必要がある。本実験で検討した結果では、Auの抽出性、Feとの分離性および抽出剤の溶解性の面から考えて、希釈剤としては、ベンゼンが適当と考えられる。

6.4 結論

2種類の抽出剤を混合した場合抽出剤を用いることにより挑起される協同効果または抽出効果は、溶媒抽出法による銅の分離精製において、非常に重要な問題である。そこで、協同効果または抽出効果に与える希釈剤の影響を検討する目的で、D2EHPAとTBPまたはTOPOおよびTOAを用いて、酸化剤として加えたFe(III)イオンの水中の生成しない酸性領域の硫酸酸性トリオキサン溶液からのAuの抽出分離を試して検討し、以下の結果を得た。

(1) 抽出剤としてD2EHPAおよびTOAを用いた場合、Auの抽出性は低く、Auの抽出性を高めるために抽出剤濃度を高くすると、分相性が悪化した。また、TOAの場合、Feの抽出性は低く、Feとの分離に対しては効果的であった。

(2) D2EHPAとTBPまたはTOPOとの混合抽出剤およびTOAとTBPまたはTOPOとの混合抽出剤を用いた場合、Auの抽出に対して協同効果が見られ、Auの抽出性向上に効果的であった。また、D2EHPA／TBPおよびTOPO／TOPO混合抽出剤を用いた場合、Feの抽出は逆に抑制され、Feとの分離に効果的であった。これは、D2EHPAとTBPまたはTOPOとの相互作用により、Feの抽出性が減少したものと考えられる。TOA／TBPおよびTOA／TOPO混合抽出剤を用いた場合、Feの抽出性は低く、Feとの分離に効果的であった。また、D2EHPA系混合抽出剤およびTOA系混合抽出剤いずれにおいても、等モル濃度で比較した場合、TOPOの方がTBPよりもAuの抽出およびFeとの分離に対して効果的であった。これは、TBPとTOPOの塩基性の強さの順序（TOPO＞TBP）と一致する。また、いずれの混合抽出剤を用いた場合も分相性は良好
(3) D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤を用いた場合、浸出時の硫酸濃度が減少すると、Auの抽出性は増加するが、同時にFeの抽出性も増加し、Feとの分離性は悪くなった。TOA / TBPおよびTOA / TOPO混合抽出剤を用いた場合、Auの抽出性は、浸出時の硫酸濃度が減少することも若干増加する傾向が見られるが、Feの抽出性は、硫酸濃度に関係なく低かった。また、Na2SO4の添加は、Auの抽出およびFeとの分離に効果的であった。いずれにしても、Auの抽出およびFeとの分離という観点から見ると、浸出時の硫酸濃度の選択は重要な因子と考えられる。また、浸出時のチョルタス濃度の影響はあまり見られなかった。

(4) D2EHPA / TBP、D2EHPA / TOPO、TOA / TBPおよびTOA / TOPO混合抽出剤を用いた場合の協同効果によるAuの抽出機構を推察し、簡単な抽出機構を提案した。

(5) いずれの混合抽出剤においても、極性の低い烐薬剤ほど、Auの抽出およびFeとの分離に対して良好な結果を示した。また、クロロホルムを烐薬剤として用いた場合、いずれの混合抽出剤においても、Auの抽出率が低くなっており、これは、TBPまたはTOPOとクロロホルムとの相互作用の結果、TBPおよびTOPOが、D2EHPAまたはTOAによるAuの抽出化学種に配位し難くなり、協同効果によるAuの抽出反応が起こり難くなるためと考えられる。また、クロロホルムを烐薬剤として用いた場合、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤においてFeの抽出率が高いなっているのと、TBPまたはTOPOとクロロホルムとの相互作用の結果、D2EHPAとTBPまたはTOPOとの相互作用が弱くなるため、抽出妨害の程度が弱められたことが原因の一つと考えられる。いずれにしても、本実験においては、Auの抽出性、Feとの分離性および抽出剤の溶解性の面から考えて、烐薬剤としてはベンゼンが適当と考えられた。
第7章 結論

溶媒抽出法は、金属の分離精製技術として、近年、特に注目されており、基礎的および応用的・研究が盛んに行われているにもかかわらず、まだまだ十分に検討されているとは言えない。特に希釈剤の影響、その複雑さのために系的に検討されていないというのが現状である。

本研究では、抽出剤として酸性抽出剤であるdi-(2-ethylhexyl)phosphoric acid (D2EHPA) を主として使用し、過酸化物の分離では低極性希釈剤が主として使用されるという点を考慮して、主に極性の低い希釈剤を用いてその影響を系的に検討した結果、以下の結論を得ることができた。

すなわち、本論文の第1章では、溶媒抽出法がいかに金属の分離精製技術として重要かを示し、特に希釈剤の影響に関する研究が欠如していることを指摘し、希釈剤の影響を検討することの重要性を過去の研究事例を示しながら解説し、検討すべき事項および問題点を明らかにし、さらに、本研究での研究の目的および内容についての概観も行った。

第2章において、D2EHPAによる強酸性溶媒からのCoの抽出に与える低極性希釈剤の影響を、その抽出性、塩基効果およびCoの抽出において重合体生成の面から検討し、Coの抽出性と希釈剤の溶液パラメーター（δ）の間に関係があること、その影響を正則溶媒論的に説明できる可能性を示した。また、塩基パラメーターの小さなn-ヘプタンと比較的大きなペンゼンの混合溶液で希釈した場合、n-ヘプタンの割合の増加とともにCoの抽出性は理論的に良好となった。また、過酸アミノラウロ酸濃度を変化させた結果、Coの抽出性はすべての希釈剤において酸性側にずれ、いわゆる塩基効果が見られた。また、塩基効果の程度は、希釈剤によって違いが見られ、特に、n-ヘプタンとジクロヘキサンで希釈した場合の塩基効果の程度は、ペンゼン、トルエン、o-キシレンおよびn-キシレンで希釈した場合と比べて小さいことが分かった。また、n-ヘプタンとペンゼンの混合溶液で希釈した場合、塩基効果の程度は、ペンゼンの割合の増加とともに連続的に増加する傾向が見られた。

また、重合体抽出化学種の生成は、n-ヘプタンでは、Loading比（= L/ [Co]**2）/ [(RB)]_{0} = 0.08 ～ 0.07、ジクロヘキサンでは、L = 0.07 ～ 0.08、また、ペンゼン、トルエン、o-キシレンおよびn-キシレンでは、L = 0.08 ～ 0.1の領域からCoの重合体抽出化学種が生成することが分かった。また、n-ヘプタンとペンゼンの混合溶液で希釈した場合、ペンゼンの割合の増加とともに、Coの重合体抽出化学種の生成する

Loading比の値は、連続的に増加することが分かった。いずれにしろも、極性の低い有機溶媒でD2EHPAを希釈する場合、常に、低いLoading比の値でのCoの重合体抽出化学種の生成を考慮する必要があることが分かった。

第3章において、第2章の検討結果をふまえて、D2EHPAによる弱酸性溶液からのCoの抽出挙動および希釈剤の影響を正則溶媒論に基づいて定量的に検討することを試みた結果、D2EHPAの抽出定数（logK_{2,0}）は、D2EHPAの初期の体積分率に依存せず、ほとんど一定値を示した。このことは、理論式におけるD2EHPAの初期の体積分率（φ_{i}）の一次および二次の項が無視できるものと考えられた。また、見かけの熱力学的抽出定数（logK^{*}）、基準は無限希釈状態、または、抽出定数（logK_{2,0}）および分配係数（logD）を希釈剤の解離パラメーター（δ）を用いて、2次関数で表現できることが分かった。さらに、中級アンモニアーマウム塩であるtri-n-octylmethylenammonium chloride（TOMAC）による塩基溶液からのCoの抽出に対してテトラクロホルカルバントリオは抽出されるという簡単な抽出機構を仮定し、その抽出挙動および希釈剤の影響を正則溶媒論的に考察することを試みた。検討の結果、TOMACの見かけの抽出定数（logK_{2,0}）は、TOMACの初期の体積分率を用いて簡単に2次関数で表現することが可能であった。また、見かけの熱力学的抽出定数（logK^{*}）、基準は無限希釈状態、見かけの抽出定数（logK_{2,0}）および分配係数（logD）を希釈剤の解離パラメーター（δ）を用いて、簡単な2次関数で表現できることが分かった。

第4章においては、第2章において、極性の低い2種類の有機溶媒を混合した混合希釈剤を用いた場合、混合希釈剤の組成比とCoの抽出性との間に、連続的に変化する関係が見られた。また、第3章において、希釈剤の影響を正則溶媒論に基づいて説明できる可能性を見出した。そこで、これらの結果をふまえて、極性の低い2種類の有機溶媒を混合した混合希釈剤を用いた場合の希釈剤の影響を重合体生成に対する影響を目的として、n-ヘプタンとペンゼンの混合溶液で希釈したD2EHPAによる弱酸性溶液からのCoの抽出に対して、正則溶媒論に基づいて定量的に検討した結果、抽出定数（logK_{2,0}）は、D2EHPAの初期の体積分率に依存せずほとんど一定値を示した。このことは、理論式におけるD2EHPAの初期の体積分率の1次および2次項が無視できるものと分かった。次に、見かけの熱力学的抽出定数（logK^{*}）、基準は無限希釈状態の、または、抽出定数（logK_{2,0}）に与える希釈剤組成の影響を検討し、予想された2次関数的な関係は見られず、直線関係を示した。このことは、n-ヘプタンまたはペンゼンのどちらか一方による溶質の選択性の重合体、または、n-ヘプタンとペンゼンの相互作用が影響されるから、体積分率から見積もった混合希釈剤
溶解パラメーター（δ′ = δ_{1}^{0}+δ_{2}^{0}）では、定量的な説明には至らなかった。しかし、正則溶液論に基づいて定性的には説明が可能なが、極性の低い2種類の希釈剤を用いた場合、理論式における希釈剤組成またはδ′の2次項が無視できると仮定することにより、希釈剤組成またはδ′の1次項を半經驗式として利用できるのではないかと考えられた。また、分配係数Kの対数値も、希釈剤組成およびδ′の1次項で表すことが可能であった。

次に、四塩化炭素とクロロベンゼンの混合溶媒で希釈した場合のトマックによる塩酸溶媒からのCoの抽出に対して、同様の検討を試みた結果、本実験条件下では、簡単な、トマックの初期の体験分率（φ_{T})を用いて、2次関数で表現することが可能であった。また、単一のD2EHPAの場合と同様に、希釈剤組成の影響を正則溶液論に基づいて定量的に表現することはできなかった。このことは、D2EHPAの場合と同様に、四塩化炭素とクロロペンゼンのどちらか一方による溶質の選択性の相溶和または四塩化炭素とクロロペンゼンの相互作用が原因と推察された。しかし、D2EHPAの場合と同じく、正則溶液論に基づいて定量的に説明できなかったが、極性の低い2種類の希釈剤を用いた場合、Coの抽出性と希釈剤組成または体験積分率から見出した希釈剤の溶解パラメーター（δ′）の間に、半理論的な関係を導くことが可能であった。

第5章において、希釈剤の影響を界面化学の立場から実験的に検討することの目的として、抽出剤として主としてD2EHPAを用い、各種希釈剤中での抽出剤の界面活性と金属の抽出性の関の関係を基礎的に検討することを試みた。まず、D2EHPAに2つのC-0-P結合のうちの1つをC-P結合に置き換え分子構造をもつモノエステルである2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (EHPA)を用い、D2EHPAとの比較検討をした結果、EHPAの界面を飽和するのに必要な有機相本体の最少抽出剤濃度（C_{min}）はD2EHPAのそれより小さかった。これは、C-0-P結合がC-P結合に置き換えられたことをによる。非心的生成が減少したことが原因と考えられた。n-ヘプタン、クロヘキサン、o-キシレン、ベンゼンで希釈したD2EHPAを用いて希釈剤の影響を検討した結果、n-ヘプタン、クロヘキサン、o-キシレン、ベンゼンの順で、界面においてアルキル基を垂直に並べた状態から平行に並べた状態へ移行していることが分かった。o-キシレンやベンゼンのような芳香族化合物でアルキル基を平行に並べる傾向が強く見られたのは、界面におけるこれら芳香族化合物のπ電子雲と水の相互作用が原因と考えられた。また、D2EHPAの界面活性を評価するパラメーターとして、界面を飽和するのに必要な有機相本体の最少抽出剤濃度（C_{min}）だけでなく界面に吸着した抽出剤分子によって占められる1分モル当りの吸着面積（A_{ads})または飽和界面濃度（I_{C})も利用でき、極性の低い希釈剤（または溶解パラメーターの小さい希釈剤）ほど、D2EHPAは界面活性である傾向を示した。また、見かけの吸着定数K_{F}は、界面活性と考えられる希釈剤ほど大きな値を示す傾向が見られた。また、EHPAは、D2EHPAよりも界面化学的には活性であると考えられた。さらに、第3章および第4章で検討した希釈剤の溶解パラメーターと抽出剤の界面活性の間の相関性があることが分かった。また、D2EHPAの界面活性とFe(III)の抽出性の間に相関性が見られ、さらに、第2章または第3章で示したCoの抽出性もD2EHPAの界面活性の順に一致することが分かった。

第6章において、溶液抽出法による金属の抽出分離において非常に重要な現象である協同効果に与える希釈剤の影響を検討する目的で、D2EHPAとtri-n-butyl phosphate (TBP)またはtri-octylphosphine oxide (TOPO)およびtri-n-octylamine (TOA)とTBPまたはTOPOの混合抽出剤を用い、硫酸酸性チオ尿素溶液からのAuの抽出分離を例として検討を試みた結果、抽出剤としてD2EHPAおよびTOAを用いた場合、Auの抽出性は低く、Auの抽出性を高めるために抽出剤濃度を高くすることにより、相分離の懸念が観察された。また、D2EHPAの場合、抽出剤として加えたFeの抽出率も増加し、AuとFeとの分離性の観点からも好ましい結果が得られなかった。TOAの場合、Feの抽出性は低く、Feとの分離に対しては効果的であることが分かった。次に、D2EHPAとTBPまたはTBPとの混合抽出剤およびTOAとTBPまたはTBPとの混合抽出剤を用いた場合、Auの抽出に対して協同効果が見られ、Auの抽出性向上に効果的であった。また、D2EHPA/TBPおよびD2EHPA/TOPO混合抽出剤を用いた場合、Feの抽出は逆に抑制され、Feとの分離に効果的であった。これら、D2EHPAとTBPまたはTOAとの相互作用により、Feの抽出性が減少したものと考えられた。TOA/TBPおよびTOA/TOPO混合抽出剤を用いた場合、Feの抽出性は低く、Feとの分離に効果的であった。また、D2EHPA系混合抽出剤およびTOA系混合抽出剤いずれにおいても等モル濃度で比較した場合、TOAの方がTBPよりAuの抽出およびFeとの分離に対して効果的であった。これらは、TBPとTOPOの特異性の強さの順序（TOPO > TBP）と一致した。また、いずれの混合抽出剤を用いた場合も、分離性は良好であった。また、浸出時の硫酸酸性がAuの抽出およびFeとの分離に大きな影響を与えることが分かった。しかし、一方、チオ尿素濃度の影響はあまり見られなかった。また、D2EHPA/TBP、D2EHPA/TOPO、TOA/TBPおよびTOA/TOPO混合抽出剤を用いた場合の協同効果によるAuの簡単な抽出機構の提案を試みた。
次に、希釈剤の影響を検討した結果、極性の低い希釈剤ほどAuの抽出およびFeとの分離に対して良好な結果を示した。クロロルムを希釈剤として用いた場合、いずれの混合抽出剤においても、Auの抽出率は低く、これは、TBPまたはTOPとクロロルムとの相互作用の結果、TBPおよびTOPが、D2EHPAまたはTOAによるAuの抽出化学種に配位し難くなり、協同効果によるAuの抽出反応が起こり難くなるためと考えられた。また、クロロルムを希釈剤として用いた場合、D2EHPA / TBPおよびD2EHPA / TOPO混合抽出剤において、Feの抽出率が高くなっているのに対し、TBPまたはTOPとクロロルムとの相互作用の結果、D2EHPAとTBPまたはTOPとの相互作用が弱くなるため、抽出妨害の程度が弱められたことが原因の一つと考えられた。本実験においては、Auの抽出性、Feとの分離性および抽出剤の溶解性の面から考えて、希釈剤としては、ペンゼンが適当と考えられた。

本論文を完成するに際して、また、研究を推進するに当たり貴重なる御助言と御教示を頂きました京都大学工学部教授加藤資英先生並びに京都大学工学部助教授中島吉孝先生に感謝の意を表します。また、本論文をまとめるに際して、貴重なる御助言と御教示を頂きました京都大学工学部教授朝木善次郎先生並びに京都大学工学部教授小野勝敏先生に感謝の意を表します。

本研究は、工業技術院公害資源研究所（現、工業技術院資源環境技術総合研究所）および京都大学工学部資源工学教室において遂行したものであり、公害資源研究所在職当時、懇切なる御教示、御鞭撻を頂いた当時材料資源部分離精製研究室長坂本宏工学博士（現、素材資源部）、材料資源部レアメタル系資源研究室長黒田喜久工学博士（現、（株）カネテック）、材料資源部レアメタル系資源研究室主任研究員亀戸男氏並びに材料資源部の研究員諸氏に感謝の意を表します。また、長期に渡り本研究を遂行することを許された、当時材料資源部長茂呂雄次氏（現、（財）日本産業技術振興協会）に改めて感謝致します。

また、京都大学工学部資源工学教室におきまして、本研究の遂行にご協力頂きました当時大学院学生小編直弘君（現、（株）住友金属工業）、学部学生竹中由香君（現、（株）住友電気工業）、また、現在大学院学生の古屋伸茂樹君並びに京都大学資源工学教室精製工学講座および同大学院環境地球工学専攻資源循環工学講座の関係諸氏に対し改めて感謝致します。