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Abstract

An incompressible two-dimensional flow on a β plane is considered. Rossby waves
are generally expected to dominate the β plane dynamics, and here in this paper
we prove a mathematically rigorous theorem that at a high β, the flow dynamics
are governed exclusively by the resonant interactions of Rossby waves.
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1 Introduction

We consider three-wave interactions of the Rossby waves in an incom-
pressible two-dimensional flow on a β plane, governed by the following equa-
tion,

∂tζ + J(Ψ, ζ) + β∂xΨ = νΔζ, (1)

where ζ = ζ(t, x) (t > 0, x = (x1, x2) ∈ R
2), J(A, B) = (∂x1A)(∂x2B) −

(∂x1B)(∂x2A). Ψ is the streamfunction of the fluid with the fluid velocity
being given by u = (u1, u2) = (−∂x2Φ, ∂x1Φ), and ζ = ΔΨ is the vorticity.
The initial condition is ζ(0, x) = ζ0(x).
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The β-plane approximation was first introduced by meteorologists (see
[3,4]) as a tangent plane of a sphere to approximately describe fluid motion on a
rotating sphere, assuming that the Colioris parameter is a linear function of the
latitude. Conventionally the x1- and x2-axes are respectively taken eastward
and northward, and the x1-direction is often called zonal direction in earth and
planetary sciences. We employ this intuitive terminology in this paper when
convenient. A formal derivation of the β-plane approximation is given in [11].
The equation (1) describes a two-dimensional motion of an incompressible
fluid on the β plane, and it has been known that in its solution, as time goes
on, a zonal pattern, consisting of alternating eastward and westward zonal
flows, similar to the zonal band structure observed on Jupiter, 1 emerges.

The equation (1) has been widely employed in earth and planetary sci-
ences to study the effect of differential rotation (latitudinal variation of the
Coriolis parameter) and the mechanism of zonal flow formation. From a phys-
ical point of view, one of the most important properties of equation (1), in
contrast with non-rotating two-dimensional Navier-Stokes fluid, is that it per-
mits linear waves called Rossby waves. The Rossby wave solution, originates
from the third term of (1), with the dispersion relation,

ω = − βk1

k2
1 + k2

2

, (2)

where ω and (k1, k2) are the angular frequency and the wavenumber vector.
The Rossby wave is known to be an important origin of characteristic behav-
iors of atmosphere and ocean.

Generally in nonlinear dynamics of linear waves, resonant pairs are ex-
pected to give a significant contribution to the nonlinear interactions. Also in
the case of the Rossby waves, the resonant waves have been considered to play
important roles in the dynamics of geophysical fluids [10,13]. Here in this pa-
per, we prove a mathematical theorem which supports the importance of the
resonant pairs of Rossby waves. We consider the time evolution of a flow field
which is governed by (1), but with the nonlinear terms being restricted only
to the resonant pairs of Rossby waves. Our theorem asserts that the flow field
approximates the original flow field as precisely as desired by taking a large
β. The theorem means that under a high rotation rate, the time evolution
of the flow field is governed by the resonant interaction of the Rossby waves.
For pure mathematical analysis of the rotating Navier-Stokes equations, from
which some of mathematical techniques are employed in this paper, refer to
[1,2,5–9,15].

This paper is organized as follows: In section 2, we show the existence of

1 The origin of the zonal band structure on Jupiter is still controversial. Three
dimensional deep convection is another possible origin of the surface zonal bands.
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local-in-time unique solution to (1), where the existence time is independent
of the parameter β. In sections 3, we give a resonant-nonresonant decomposi-
tion, and state the main theorem. The decomposition is discussed in detail in
Section 4. In the last section, we complete the proof of the main theorem.

2 Local existence and uniqueness of the solution

In physical discussions it is almost always assumed that a unique and
smooth solution to (1) exists for 0 ≤ t < ∞ for an appropriate initial condition.
In this section, however, we would like to give a proof for the local-in-time
existence of the solution for the purpose of logical ensuring that our discussion
is not meaningless. Readers who are not interested in the local existence and
uniqueness theorem can skip most of this section.

We will discuss our problem on T
2, i.e. [0, 2π] × [0, 2π] with the periodic

boundary conditions with period 2π in both x1- and x2- directions. We expand
the vorticity ζ into Fourier series which will be employed in the discussions
below. We introduce a space Xs (s ≥ 0) of the vorticity functions by using a
weighted �1 space of Fourier coefficients as

Xs :=

⎧⎨
⎩ζ =

∑
n∈�2

an ein·x ∈ S ′(T2)

for a = {an}n∈�2 : an = a∗
−n (n ∈ Z

2),

‖a‖s := ‖a‖�s
1

:=
∑

n∈�2

(1 + |n|2)s/2|an| < ∞
⎫⎬
⎭ .

Here S ′(T2) is the space of the tempered distributions on T
2 and a∗

n is the
complex conjugate of an. It is well known that X0 is an algebra which is
continuously embedded in BUC, the space of bounded uniformly continuous
functions. Under the periodic boudary condition, we can point out the follow-
ing relationship between Xs(T2) and the Hölder space Cs(T2).

Proposition 1 We have ζ ∈ C∞(T2) if and only if ζ ∈ ∩s≥1X
s. Obviously,

Xs ⊂ Cs (s ≥ 0).

Throughout in this paper, we measure the magnitude of the Fourier co-
efficients a mostly by �1-norm, and we often write ‖a‖0 as ‖a‖. To treat the
Coriolis term β∂xΨ in (1), we need to define the multipliers nj/|n|2 (j = 1, 2)
for n = (n1, n2) ∈ Z

2 as

lim
ε→0

nj

|n|2 + ε
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which gives

nj

|n|2
∣∣∣∣∣
n=0

= 0.

It is clear, by rescaling the quantities, that we can assume ν = 1 without loss
of generality.

Expanding the initial condition and the vorticity into Fourier series as

ζ0(x) :=
∑

n∈�2

a0,nein·x,

ζ(t, x) :=
∑

n∈�2

an(t)ein·x,

we rewrite the evolution equation (1) into the equation in �1(Z
2) for Fourier

coefficients as follow,

an(0) = a0,n,

∂tan(t) + |n|2an(t) + βω(n)an(t)

=
∑

n=k+m

(
k1m2

|k|2 − k2m1

|k|2
)

ak(t)am(t)

=
∑

n=k+m

(
k1n2

|k|2 − k2n1

|k|2
)

ak(t)am(t)

=:Jn(a, a) (3)

for n ∈ Z
2. for n ∈ Z

2 where ω(n) := in1/|n|2.

We now state a local existence theorem in �1(Z
2) as follows:

Theorem 2 Assume that a(0) := {an(0)}n∈�2 ∈ �1(Z
2). Then there is a local

existence time TL and a local-in-time unique solution a(t) := {an(t)}n∈�2 ∈
C([0, TL] : �1(Z

2)) satisfying

TL ≥ C

‖a0‖2
, sup

0<t<TL

‖a(t)‖ ≤ 2‖a0‖,

where C is a positive constant independent of β. Moreover if ‖a(0)‖s < ∞ for
s ≥ 0, then we have the following pointwise estimate:

|an(t)| ≤ C1

(1 + |n|2)s/2
for 0 < t < TL, (4)

where C1 > 0 is independent of β.
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Proof. The solution a(t) satisfies the integral equation,

an(t) = e−(|n|2+βω(n))tan(0) +
∫ t

0
e−(|n|2+βω(n))(t−τ)Jn(a(τ), a(τ))dτ, (n ∈ Z

2).

(5)

A direct calculation shows that

|an(t)| ≤ |an(0)| +
∫ t

0

C

(t − τ)1/2
|Jn(a(τ), a(τ))|dτ, (n ∈ Z

2),

where we have used the following inequality for τ = 1,

sup
t>0,n∈�2

tτ/2|n|τe−|n|2t ≤ C for s > 0. (6)

Evaluation of the convolution in the Jacobian leads to the estimate:

‖a(t)‖ ≤ ‖a(0)‖ + Ct1/2

(
sup

0<τ≤t
‖a(τ)‖

)2

for t > 0,

We obtain the local existence result from the above estimate (see [6] for
example). More precisely, let us define {hj(t)}j∈� = {hj

n(t)}j∈�,n∈�2 induc-
tively as

h0
n(t) = e−(|n|2+βω(n))tan(0), (7)

hj+1
n (t) =h0

n(t) +
∫ t

0
e−(|n|2+βω(n))(t−τ)Jn(hj(τ), hj(τ))dτ. (8)

First we show {hj(t)}j∈� is uniformly bounded with respect to j ≥ 1, i.e.
if h0 ∈ Y and hj ∈ Y , then hj+1 ∈ Y , where

Y :=

{
h ∈ C([0, T ] : �1(Z

2)) : sup
0<t≤T

‖h(t)‖ ≤ 2‖a(0)‖
}

,

in which T will be determined later. A direct calculation leads to

‖hj+1(t)‖ ≤ ‖a(0)‖ + T 1/2

(
sup

0<τ≤T
‖hj(τ)‖

)2

for 0 < t ≤ T.

which yields

‖hj+1(t)‖ ≤ ‖a(0)‖ + T 1/24‖a(0)‖2 for 0 < t ≤ T.

Setting T = 1/(16‖a(0)‖2), we have

sup
0<t≤T

‖hj+1(t)‖ ≤ 2‖a(0)‖

5



which means that hj+1 ∈ Y .

Next we show that {hj}j is a Cauchy sequence, namely, sup0<t≤T ‖hj(t)−
hk(t)‖ tends to zero for j, k → ∞ (j ≤ k). This means the existence of the
local-in-time solution since the function space C([0, T ] : �1(Z

2)) is complete.

Because Jn(hj , hj)−Jn(hj−1, hj−1) = Jn(hj−hj−1, hj)−Jn(hj−1, hj−1−hj),
we have from (7) and (8)

‖hj+1(t) − hj(t)‖ ≤ Ct1/2 sup
0<τ≤t

‖hj(τ) − hj−1(τ)‖
(

sup
0<τ≤t

‖hj(τ)‖ + sup
0<τ≤t

‖hj−1(τ)‖
)

.

and thus

‖hj+1(t) − hj(t)‖ ≤ 4T‖a(0)‖ sup
0<τ≤T

‖hj(τ) − hj−1(τ)‖ for 0 < t ≤ T.

by the use fo the uniform boundedness of hj(τ). Since T = 1/(16‖a(0)‖), we
finally have

‖hj+1(t) − hj(t)‖ ≤ 1

4
sup

0<τ≤T
‖hj(τ) − hj−1(τ)‖ for 0 < t ≤ T. (9)

which shows that {hj(t)}j is a Cauchy sequence in C([0, T ] : �1(Z
2)). Therefore

hj(t) converges to a solution of (5). The uniqueness also follows from the
contraction (9).

In order to obtain the pointwise bound (4), it suffices to show that if
‖a(0)‖s ≤ C where C is independent of β, then there is some TL(> 0) such
that

‖a(t)‖s ≤ C for t ∈ [0, TL], (10)

uniformly for s ≥ 0, because then (10) and the estimate,

sup
n

{
(1 + |n|2)s/2|an(t)|

}
≤ ‖a(t)‖s, (0 < t < TL),

gives the pointwise bound (4). To show (10), we use a bootstrapping argument.
Namely, we first control sup0<t≤TL

‖a(t)‖1/2 by using the integral equation 5.
Then we control subsequently supt ‖a(t)‖1, sup0<t≤TL

‖a(t)‖3/2 and so on. For
the case of s = 1/2, we have from (6),

‖a(t)‖1/2 ≤ ‖an(0)‖1/2 + Ct1/4 sup
0<τ≤t

‖a(τ)‖2 for 0 < t < TL.

which shows that sup0<t≤TL
‖a(t)‖1/2 is controllable. A similar calculation gives

the disired estimates for ‖a(t)‖1, ‖a(t)‖3/2, · · · , in sequence. �
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3 Resonant-nonresonant decomposition and the main theorem

In this section, we give a resonant-nonresonant decomposition and a state-
ment of the main theorem. We define cn(t) := e−βω(n)tan(t) for n ∈ Z

2, which
satisfy the following equation,

cn(0) = an(0), (11)

∂tcn(t) = −|n|2cn(t) + Bn(c(t), c(t)), (12)

where
Bn(c1, c2) := e−βω(n)tJn(etβω(·)c1, e

tβω(·)c2).

We decompose the nonlinear operator Bn into two parts, the resonant
part B0

n(·, ·) which is independent of β, and the nonresonant part B0+
n (βt, ·, ·)

which depends on β (The details are given in Section 4). The former part B0
n

consists of the nonlinear interactions of ck and cm which satisfy the resonance
condition

n = k + m, and ω(n) = ω(k) + ω(m),

while the latter part B0+
n consists of ck and cm which does not satisfy the

resonance condition. The resonant part B0
n depends on time only implicitly

through ck and cn, while the nonresonant part B0+
n does explicitly through βt.

Therefore we have

cn(0) = an(0),

∂tcn(t) = −|n|2cn(t) + B0
n(c(t), c(t)) + B0+

n (βt, c(t), c(t)).

We will give a detailed discussion on these parts in the next section.

Now we define the solution b(t) to the resonant part of the equation as

bn(0) = cn(0) = an(0), (13)

∂tbn(t) = −|n|2bn(t) + B0
n(b(t), b(t)) (14)

which we call the limit equation. The remainder term rn(t) := cn(t) − bn(t)
then obeys the following equation,

∂trn(t) = −|n|2rn(t) + B0
n(c(t), r(t)) + B0

n(r(t), b(t)) + B0+
n (βt, c(t), c(t))

(15)

with rn(0) = 0. Intuitively, the limit equation corresponds to the case of
β → ∞ in (1) as the time dependence of B0+

n is then so fast that the net
contribution of B0+

n is expected to disappear. This kind of decomposition
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has already been done for the rotating 3D-Navier-Stokes/Euler equations (see
[1,2,9,15] for example). It is known by numerical integration that for large
values of β, the flow field is non-isotropic as there arise zonal flows in x1-
direction, which means that a significant part of the energy is concentrated
to the Fourier components of n ∼ (0, n2), suggesting that the solution to the
limit equation is also non-isotropic.

The main result of this paper is now stated: the solution c(t) to (12) tends
to the solution b(t) to the limit equation provided that β tends to infinity. More
precisely,

Theorem 3 For all ε > 0, there is β0 > 0 s.t. ‖r(t)‖ ≤ ε for 0 < t < TL and
|β| > β0, where TL is the local existence time (see Theorem 2).

The proof is given in the following sections.

4 Detailed decomposition of the nonlinear term

We have decomposed the nonlinear term into the resonant part and the
nonresonant part. In this section we further decompose the resonant part and
estimate the resonant and the nonresonant terms.

Theorem 4 Let c1(t) := {c1,n(t)}n∈�2 and c2(t) := {c2,n(t)}n∈�2 are series
in �1(Z2). Also let ωnkm := (1/i)(ω(n) − ω(k) − ω(m)) = n1/|n|2 − k1/|k|2 −
m1/|m|2, and

bnkm(ck, cm) :=

(
k1m2

|k|2 − k2m1

|k|2
)

ck(t)cm(t) =

(
k1n2

|k|2 − k2n1

|k|2
)

ck(t)cm(t),

where n = k + m.

Then the nonlinear term

Bn(c1, c2) := e−βω(n)tJn(etβω(·)c1, e
βω(·)tc2) =

∑
n=k+m

eiβωnkmtbnkm(c1,k, c2,m)

are decomposed into the resonant part,

B0
n(c1, c2) =

∑
n=k+m

ωnkm=0

bnkm(c1,k, c2,m)
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and the nonresonant part

B0+
n (βt, c1, c2) :=

∑
n=k+m

ωnkm 	=0

eiβωnkmtbnkm(c1,k, c2,m).

The resonant part is further decomposed as

B0
n(c1, c2) :=

∑
μ∈D

Bμ
n(c1, c2) (16)

for D = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, where the bilinear forms
Bμ := {Bμ

n}n∈�2 (μ ∈ D) are defined as follows:

B(0,0,0)
n (c1, c2) : =

∑
n=k+m,ωnkm=0

n1=k1=m1=0

bnkm(c1,k, c2,m), (17)

B(0,1,1)
n (c1, c2) : =

∑
n=k+m,ωnkm=0

−k1=m1 	=0

bnkm(c1,k, c2,m), (18)

B(1,0,1)
n (c1, c2) : =

∑
n=k+m,ωnkm=0

n1=m1 	=0

bnkm(c1,k, c2,m), (19)

B(1,1,0)
n (c1, c2) : =

∑
n=k+m,ωnkm=0

n1=k1 	=0

bnkm(c1,k, c2,m), (20)

B(1,1,1)
n (c1, c2) :=

∑
n=k+m,ωnkm=0

n1,k1,m1 	=0

bnkm(c1,k, c2,m). (21)

Moreover the resonant and the nonresonant parts have the following estima-
tion,

‖{e−|n|2tBn(c1, c2)}n∈�2‖≤ (C/t1/2)‖c1‖‖c2‖ (22)

‖{e−|n|2tB0+
n (βt, c1, c2)}n∈�2‖≤ (C/t1/2)‖c1‖‖c2‖, (23)

where C(> 0) is independent of β.

We note that μ = (μ1, μ2, μ3) shows whether each of the x1-components of
the wavenumbers n, k, m vanishes or not; for example, if μ = (1, 1, 0), then
n1 = k1 �= 0 and m1 = 0. Also note that from the inequalities (22) and (23),
we can show the local existence for b and r. The proof is quite similar to that
of Theorem 2, and thus we omit its detail.

For the description of resonant interaction, let us introduce a wavenumber
set of the Fourier coefficients b = {bn}n∈�2 ∈ �1(Z

2) as

9



Fig. 1. The wavenumber set Λ in −500 < n1, n2 < 500. The horizontal and vertical
axes are n1 and n2, respectively. We see that Λ is quite an anisotropic set.

Λb := {n ∈ Z
2 : bn1,n2 �= 0} ∪ {n ∈ Z

2 : b−n1,n2 �= 0}
∪{n ∈ Z

2 : bn1,−n2 �= 0} ∪ {n ∈ Z
2 : b−n1,−n2 �= 0},

and define a trivial resonance as a resonance between the resonant wavenumber
pairs n, k, m with n1k1m1 = 0. The following proposition is then immediately
obtained.

Proposition 5 (Trivial resonance) For any b1, b2 ∈ �1(Z
2), we have

ΛB(1,1,0)(b1,b2) ⊂Λb1, ΛB(1,0,1)(b1,b2) ⊂ Λb2 ,

ΛB(0,0,0)(b1,b2) ⊂Λ0 and ΛB(0,1,1)(b1,b2) ⊂ Λ0.

where Λ0 = {n ∈ Z
2 : n1 = 0}.

Note that B(1,1,0)
n (b1, b2) is not zero only for n which satisfies the resonance

condition. The only possible pair is a pair of trivial resonance, n = (n1, n2), k =

(n1,−n2), m = (0, 2n2), which implies ΛB(1,1,0)(b1,b2) ⊂ Λb1. The rest cases are
similarly shown.

Let us define another wavenumber set consisting of wavenumbers in non-
trivial resonance.

Definition 6 (Wavenumber set of non-trivial resonance) Let Λ be a wavenum-
ber set such that n ∈ Z

2 if and only if there is a wavenumber pair of non-trivial
resonance including n.

The red points in Figure 1 shows wavenumber set Λ. It should be remarked
that the wavenumber set Λ is quite anisotropic with more wavenumbers being
along the x2-axis, suggesting that the flow field arising from within Λ is nearly
zonal. Note that the flow field arising from within Λ0 is purely zonal.
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It is easily seen that if Λb ⊂ Λ, then ΛB(1,1,1)(b,b) ⊂ Λ. Therefore, if Λb ⊂
Λ ∪ Λ0, then the resonant interactions B(1,0,1)(b, b), B(1,1,0)(b, b), B(1,1,1)(b, b)
vanish at wavenumbers outside Λ ∪ Λ0, while B(0,0,0)(b, b) and B(0,1,1)(b, b)
vanish outside Λ0. In other words, if the initial Fourier coefficients c(0) satisfies
Λc(0) ⊂ Λ ∪ Λ0, and if only the resonant nonlinear interactions are taken into
account, then Λc(t) ⊂ Λ ∪ Λ0 for 0 ≤ t < TL.

Here we should make a physical comment. Generally in a turbulent solu-
tion of the governing equation (1), every wavenumber component has nonzero
energy. Suppose that the initial energy distribution in wavenumber space is
isotropic. Two-dimensional turbulence is known to transfer the energy from
small- to large-scale motions (energy inverse cascade). If there is no effect of
rotation, i.e. β = 0, then the energy therefore becomes concentrated isotropi-
cally around the origin in wavenumber space. However, when β �= 0, the energy
transfer becomes governed by the resonant interaction of Rossby waves, and
the number of the resonant triads gives a rough estimate of the strength of
the nonlinear energy transfer. Therefore, roughly speaking, the wavenumbers
in the white area in Figure 1 are then expected to gain less energy compared
with wavenumbers in the red area, consistently with the observed non-isotropic
zonal structure in the flow field.

Proof of Theorem 4. We define a set of resonant wavenumber pairs, K ⊂
(Z2)3, and supplimentary sets (Z2)3

μ, as

K := {(n, k, m) ∈
(
Z

2
)3

: ωnkm = 0}

and

(Z2)3
μ := {(n, k, m) ∈

(
Z

2
)3

: n1 ∈ Zμ1 , k1 ∈ Zμ2 and m1 ∈ Zμ3}

for μ = (μ1, μ2, μ3) ∈ {0, 1}3, where Z0 := {0} and Z1 := Z \ {0}. The set of
nonresonant wavenumber pairs is defined as Kc = (Z2)3 \ K. Then we have a
decomposition of (Z2)3,

(Z2)3 = K ∪ Kc =
⋃

μ∈{0,1}3
(K ∩ (Z2)3

μ) ∪ Kc.

where (
K ∩ (Z2)3

μ

)
∩
(
K ∩ (Z2)3

μ′
)

= ∅ if μ �= μ′.

With K and (Z2)3
μ, we can express the bilinear forms Bμ

n , B0+
n as

11



Bμ
n(c1, c2) : =

∑
n=k+m

(n,k,m)∈K∩(�2)3μ

bnkm(c1,k, c2,m) (resonant part),

B0+
n (βt, c1, c2) : =

∑
n=k+m

(n,k,m)∈Kc

eiβωnkmtbnkm(c1,k, c2,m) (nonresonant part)

for μ ∈ {0, 1}3. We have immediately estimates of these bilinear forms:

|Bμ
n(c1, c2)| ≤

∑
n=k+m

|n||c1,k||c2,m| (24)

and

|B0+
n (βt, c1, c2)| ≤

∑
n=k+m

|n||c1,k||c2,m| (25)

which give (22) and (23) by the use of (6). A straightforward calculation yields

Bn(c(t), c(t)) =
∑

μ∈{0,1}3
Bμ

n(c(t), c(t)) + B0+
n (βt, c(t), c(t)), (26)

and lastly, to show (16), it suffices to have the following three equalities:

B(1,0,0)
n (c, c) = 0, B(0,1,0)

n (c, c) = 0, B(0,0,1)
n (c, c) = 0 for c = {cn}n∈�2

which are easily obtained because, for example, if k1 = m1 = 0 then B(1,0,0)
n

vanishes from (3). The other two equalities are similarly shown, and the proof
is completed. �

5 Proof of the main theorem

In this section we give a proof of the main result, Theorem 3, based on the
results in previous sections. The point of the proof is to control the oscillatory
integral of the nonresonant part, where the frequency mismatch ωnkm is in its
denominator and can take an arbitrary small value. We avoid this point by
dividing the integral into two parts and estimate them separately.

Proof of Theorem 3. First let us define an oscillatory integral of the
nonresonant part as follows:

B̃0+
n (βt, c1, c2) :=

∑
n=k+m

ωnkm 	=0

1

iβωnkm
eiβωnkmtbnkm(c1,k, c2,m),

12



where

bnkm(ck, cm) :=

(
k1m2

|k|2 − k2m1

|k|2
)

ck(t)cm(t) =

(
k1n2

|k|2 − k2n1

|k|2
)

ck(t)cm(t).

We note that

∂t

(
B̃0+

n (βt, c1(t), c2(t))
)

=

B0+
n (βt, c1(t), c2(t)) + B̃0+

n (βt, ∂tc1(t), c2(t)) + B̃0+
n (βt, c1(t), ∂tc2(t)) (27)

and, from (23),

‖{e−|n|2tB̃0+
n (βt, c1, c2)}n∈�2‖ ≤ C

t1/2τβ
‖c1‖‖c2‖, (28)

where τ is the infimum of {|ωnkm|} over all combinations of n, k and m with
n = k+m. The oscillatory integral B̃0+

n would allow us to control the remainder
term since β is in the denominator. However ωnkm is also in the denominator
and there is a subsequence of {|ωnkm|} which converges to 0, meaning that
we cannot control ‖{e−|n|2tB̃0+

n (βt, c1, c2)}n∈�2‖ directly. Therefore in order
to keep τ apart from zero, we need to handle only finite elements of b(t) =
{bn(t)}n∈�2, c(t) = {cn(t)}n∈�2 and r(t) = {rn(t)}n∈�2. Below we first give a
formal calculation, and after that we make it rigorous.

Let B̃0+ := {B̃0+
n }n. For the time being, we assume that B̃0+ have

only finite elements, and explain the outline of the proof. In order to esti-
mate the remainder term r(t) = {rn(t)}n∈�2, it suffices to estimate yn(t) :=
rn(t)− B̃0+

n (βt, c(t), c(t)), since B̃0+ tends to zero in �1-norm when β → ∞ (if
B̃0+ have only finite elements). We see from (15) and (27) that the functions
{yn(t)}n satisfy the following equations:

∂tyn(t) + |n|2yn(t) − Ln(c(t), b(t), y(t)) =
3∑

j=1

Ej
n, (29)

where

Ln(c, b, y) : =B0
n(c, y) + B0

n(y, b),

E1
n : =−B̃0+

n (βt, ∂tc(t), c(t)) − B̃0+
n (βt, c(t), ∂tc(t)),

E2
n : =−|n|2B̃0+

n (βt, c(t), c(t)),

E3
n : =Ln(c(t), b(t), B̃0+(βt, c, c)).

Note that we can also estimate {∂tcn(t)}n and {E2
n}n in �1-norm if they have

only finite elements. Using (28) together with the estimate of the resonant

13



part (22), (23) and Gronwall’s inequality (for the detail, see the next rigorous
calculation), we can control the remainder term.

Now we give a rigorous discussion with more detailed computation. To
control r(t), we split it into two parts: finitely many terms Pηr and small (in
�1(Z2)) remainder terms (I − Pη)r(cf. [1, Theorem 6.3] and [15]), where we
have defined the projection operator,

Pηr := {rn : |n| ≤ η} .

Note that Pηr and (I −Pη)r correspond respectively to a lower and a higher
wavenumber parts, satisfying ‖(I − Pη)r‖ → 0 (η → ∞).

It should be remarked that we have the following estimates:

‖PηB̃
0+(βt,Pηc1,Pηc2)‖≤ α(η)

β
(1 + η2)1/2‖Pηc1‖‖Pηc2‖, (30)

‖PηB
0+(βt,Pηc1,Pηc2)‖≤ (1 + η2)1/2‖Pηc1‖‖Pηc2‖,

‖Pη(| · |2y)‖≤ (1 + η2)‖Pηy‖,
‖∂tPηc‖≤ ‖Pη(| · |2c)‖ + ‖PηB(c, c)‖

≤ (1 + η2)‖c‖ + (1 + η2)1/2‖c‖2

for 0 < t < TL, where | · |y means a series {|n|2yn}n∈�2, and

α(η) := max
{
|ωnkm|−1 : |n|, |k|, |m| ≤ η, n = k + m

}
.

Note that α(η) is always finite, since we now have only a finite number of
nonresonant combinations of n, k and m.

We set ỹn := rn − B̃0+
n (βt,Pηc,Pηc) and L̃n(c, b, ỹ) := B0

n(c, ỹ)+B0
n(ỹ, b).

Note that ỹn(0) = −B̃0+
n (0,Pηc(0),Pηc(0)), and it still have β in the denomi-

nator. For |n| ≤ η, we see that

∂t

(
ỹn + B̃0+

n

)
=−|n|2

(
ỹn + B̃0+

n

)
+ L̃n(c, b,Pη(ỹ + B̃0+))

+L̃n(c, b, (I − Pη)(ỹ + B̃0+))

+B0+
n (βt,Pηc,Pηc) + B0+

n (βt, (I − Pη)c,Pηc)

+B0+
n (βt, c, (I −Pη)c),

and we obtain from (27),

∂tỹn + |n|2ỹn − L̃n(c, b,Pηỹ) =
3∑

j=1

Ẽj
n + Rn (31)

14



for |n| ≤ η, where

Ẽ1
n : =−B̃0+

n (βt, ∂tPηc,Pηc) − B̃0+
n (βt,Pηc, ∂tPηc),

Ẽ2
n : =−|n|2B̃0+

n (βt,Pηc,Pηc),

Ẽ3
n : = L̃n(c, b,PηB̃

0+
n (βt,Pηc,Pηc)),

Rn : = L̃n(c, b, (I − Pη)(ỹ + B̃0+))

+B0+
n (βt, (I −Pη)c,Pηc) + B0+

n (βt, c, (I − Pη)c).

Equation (31) is a linear heat type equation with external forces Ẽ1, Ẽ2,
Ẽ3 and R. We see that for any ε > 0, there is η0 such that if η > η0, then
‖PηR‖ < ε because ‖(1 − Pη)a‖ → 0 as η → ∞ (a ∈ �1(Z

1)). The pointwise
bound (10) permits us to choose η0 independently of β. We can also see from
(30) that for any ε > 0, there is β0 (depending on η0) such that if |β| > β0,
then

∑3
j=1 ‖PηẼ

j‖ < ε. Thus we obtain from the integral equation (5) and
(30), the estimate

‖Pηỹ(t)‖≤ α(η)

β
(1 + η2)1/2‖c(0)‖2+ (32)

∫ t

0

C

(t − τ)1/2

(
(‖c(τ)‖ + ‖b(τ)‖)‖Pη ỹ(τ)‖ + ε

)
dτ

≤ α(η)

β
(1 + η2)1/2‖a(0)‖2+

∫ t

0

C

(t − τ)1/2
(4‖a(0)‖‖Pηỹ(τ)‖ + ε) dτ.

More precisely, let us take t0 (< t) in order to satisfy

∫ t0

0

4C‖a(0)‖
(t − τ)1/2

<
1

2
,

and also let

Ct0 :=
4C‖a(0)‖
(t − t0)1/2

and CT :=
∫ T

0

C

(T − τ)1/2
.

Then we have from (32) that

‖Pηỹ(t)‖≤ α(η)

β
(1 + η2)1/2‖a(0)‖2+

∫ t

t0
2Ct0‖Pηỹ(τ)‖dτ + εCT

≤ α(η)

β
(1 + η2)1/2‖a(0)‖2+

∫ t

0
2Ct0‖Pηỹ(τ)‖dτ + εCT
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for 0 < t ≤ T . Application of Gronwall’s inequality shows that

‖Pηỹ(t)‖ ≤
(

α(η)

β
(1 + η2)1/2‖a(0)‖2 + εCT

)
e2tCt0 for 0 < t ≤ T.

Note that CT and Ct0 are independent of β. Thus for any ε̃ > 0, there is η0

and β0 (depending on η0) such that if η > η0 and |β| > β0, then ‖Pηỹ‖ < ε̃
for 0 < t < TL. Clearly, we can also control (I − Pη)ỹ with sufficiently large
η (independently of β), and PηB̃

0+(βt,Pηc,Pηc) with a sufficiently large β
for fixed η. Therefore we can control r(t) for sufficiently large η and β, which
completes the proof. �

6 Concluding remarks

We have considered the time evolution of two-dimensional incompress-
ible flow on a β plane with the nonlinear terms being restricted to resonant
wavenumbers. We have proved that the nonresonant nonlinear interactions are
negligible when β (the differential rotation rate) is sufficiently large. The res-
onant nonlinear interaction therefore dominates over the flow evolution, and
the distribution of the resonant wavenumbers in wavenumber space (Fig.1) is
quite anisotropic in wavenumber space. We note that the anisotropic energy
spectral form of the β plane turbulence has been discussed by [14].

It should be remarked here that our theorem applies to the flow field
at t ∈ [0, TL], where TL is a local existence time of solution. It is commonly
believed from large-scale numerical study in physics and earth and planetary
sciences, that a smooth and unique solution to the governing equation exists
in t ∈ [0,∞). Even when TL = ∞, however, our proof is valid only in a finite
interval of time although the time interval can taken be as long as desired.

Lastly, in many numerical works, a superviscosity νp(−Δ)pζ (p is a posi-
tive integer) has been employed instead of the normal viscosity νΔζ in (1), in
order to have a sufficiently wide inertial range, without the reduction of the
enstrophy dissipation rate. We note that our main theorem also applies to the
case of the superviscosity 2 .
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2 p > 1/2 is sufficient for our theorem to hold if p is taken as a real number.
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