結び目，絡み目及び空間グラフの準射影図について

アブストラクト：本研究の目的は，射影像から結び目，絡み目及び空間グラフの自明性を調べ ることである．一部の二重点に上下の情報を与えた射影像を準射影図と名づけ，それについて研究する．この研究を始める契機には，DNA 結び目がある．

Pseudo Diagrams of Knots，Links and Spatial Graphs

Graduate School of Education，Waseda University Ryo Hanaki ${ }^{1}$

Abstract

Our purpose in this research is to investigate triviality of knots，links and spatial graphs from projections．We introduce a pseudo diagram which is a projection with over／under information at some double points of it and study them．We have DNA knots as a trigger to start this research．

1 Introduction

A knot，a link and a spatial graph are an embedded circle，an embedded disjoint union of some circles，an embedded graph in the 3 －sphere \mathbf{S}^{3} ．A projection P is the image of natural projection of a knot，a link and a spatial graph to the 2 －sphere \mathbf{S}^{2} such that its multiple points are only finitely many transversal double points away from vertices．A diagram D is a projection P with over／under information at each double point．A diagram D uniquely represents a knot，a link or a spatial graph up to ambient isotopy．Here a double point with over／under information is called a crossing，in contrast a double point without over／under information is called a pre－crossing．

Question 1 Can we determine from P whether the original knot（link，spatial graph）is trivial or knotted？

We cannot determine it except some special cases．Because we do not know over／under information at each pre－crossing of P ．For example，let P be a projection of a knot with 3 pre－ crossings as illustrated in Fig．1．Then we have 2^{3} diagrams obtained from P ．Two diagrams represent nontrivial knots and six diagrams represent the trivial knots．

In this paper，we study the following question．We have DNA knots as a trigger to have this question，namely we cannot determine over／under informaition at some crossings in some photos of DNA knots．

Question 2 Which pre－crossings of P and which over／under information at them should we know in order to determine that the original knot（link，spatial graph）is trivial or knotted？

[^0]

Figure 1：Projection and diagrams obtained from it

We give new definitions．A pseudo diagram Q is a projection P with over／under information at some pre－crossings of P ．Here we allow the possibility that a pseudo diagram is a projection or a diagram．We say that a pseudo diagram Q^{\prime} is obtained from a pseudo diagram Q if each crossing of Q has the same over／under information as Q^{\prime} ．Then Q is said to be trivial if for any diagram D obtained from Q, D represents a trivial knot（link，spatial graph）．In contrast，Q is said to be knotted if for any diagram D obtained from Q, D represents a nontrivial knot（link， spatial graph）．For example，in Fig．2，（a）is trivial，（b）is knotted and（c）is neither trivial nor knotted．

Figure 2：Pseudo diagrams
We define that the trivializing number of P is the minimal cardinality of C_{Q} where Q is a trivial pseudo diagram obtained from P and C_{Q} is the set of crossings of Q ．Then we denote the trivializing number of P by $\operatorname{tr}(P)$ ．In contrast，we define that the knotting number of P is the minimal cardinality of C_{Q} where Q is a knotted pseudo diagram obtained from P ．Then we denote the knotting number of P by $k n(P)$ ．For example，let P be the projection as illustrated in Fig．1，then $\operatorname{tr}(P)=2$ and $k n(P)=3$ ．

2 A Theorem and Propositions

Theorem 2．1 Let P be a projection of a knot．Then $\operatorname{tr}(P)$ is always even．
Proposition 2．2 For any nonnegative even number n，there exists a projection of a knot with $\operatorname{tr}(P)=n$ ．

Proposition 2．3 There does not exist a projection of a knot whose knotting number is less than 3．For any natural number $n \geq 3$ there exists a projection P of a knot with $k n(P)=n$ ．
Proposition 2．4 For any integer z ，there exists a projection P of a knot with $\operatorname{tr}(P)-k n(P)=z$ ．
In addition，we characterize a projection P_{1} of a knot with $\operatorname{tr}\left(P_{1}\right)=p\left(P_{1}\right)-1$ ，a projection P_{2} of a link with $\operatorname{tr}\left(P_{2}\right)=2$ ，a projection P_{3} of a link with $\operatorname{tr}\left(P_{3}\right)=p\left(P_{3}\right)$ and a projection P_{4} of a link with $k n\left(P_{4}\right)=p\left(P_{4}\right)$ where $p(P)$ is the cardinality of the set of pre－crossings of P ．

References

［1］R．Hanaki，Pseudo Diagrams of Knots，Links and Spatial Graphs，preprint．

[^0]: ${ }^{1}$ E－mail：r．t＠fuji．waseda．jp

