UNKNOTTING NUMBERS OF DIAGRAMS OF A GIVEN NONTRIVIAL KNOT ARE UNBOUNDED

KOUKI TANIYAMA（谷山 公規）

概要

任意の非自明結び目 K と任意の自然数 n に対して，K のあるダイアグラム D が存在して D の結び目解消数は n 以上となる。 K の結び目解消数の 2 倍が K の最小交点数から1引いたもの以下であることはよく知られている。ここで等式が成り立つ のは K が $(2, p)$－トーラス結び目であるときに限る。

Let L be a link in the 3 －sphere \mathbb{S}^{3} and D a diagram of L on the 2 －sphere \mathbb{S}^{2} ． It is well known that by changing over／under information at some crossings of D we have a diagram of a trivial link．See for example［3］．Let $u(D)$ be the minimal number of such crossing changes．Namely，there are some $u(D)$ crossings of D such that changing them yields a trivial link diagram，and changing less than $u(D)$ crossings never yields a trivial link diagram．We call $u(D)$ the unlinking number of D ．In the case that D is a diagram of a knot $u(D)$ is called the unknotting number of D ．The unlinking number $u(L)$ of L is defined by the minimum of $u(D)$ where D varies over all diagrams of L ．Namely we have the following equality．

$$
u(L)=\min \{u(D) \mid D \text { is a diagram of } L\}
$$

For a knot $K u(K)$ is called the unknotting number of K ．Then it is natural to ask whether or not the set $\{u(D) \mid D$ is a diagram of $L\}$ is bounded above．In ［1］Nakanishi showed that an unknotting number one knot 6_{2} has an unknotting number two diagram．Then he showed the following theorem in［2］．

Theorem 1 ［2］．Let K be a nontrivial knot．Then K has a diagram D with $u(D) \geq 2$ ．

As an extension of Theorem 1，we have the following theorem．
Theorem 2．Let L be a nontrivial link．Then for any natural number n there exists a diagram D of L with $u(D) \geq n$ ．
That is，the set $\{u(D) \mid D$ is a diagram of $L\}$ is unbounded above．
We note that Theorem 2 is an immediate consequence of the following proposi－ tion．

Proposition 3．Let L be a nontrivial link and D a diagram of L ．Then there exists a diagram D^{\prime} of L with $u\left(D^{\prime}\right)=u(D)+2$ ．

The proof of Proposition 3 is done by using a modification of diagram illustrated in Figure 1 that is essentially the same as that used in［2］．See［4］for the detail．

Figure 1

As an immediate consequence of Proposition 3 we have the following corollary．
Corollary 4．Let L be a nontrivial link．
Then the set $\{u(D) \mid D$ is a diagram of $L\}$ contains a set $\{u(L)+2 m \mid m$ is a non－negative integer $\}$ ．

Question 5．Let L be a nontrivial link．Is the set $\{u(D) \mid D$ is a diagram of $L\}$ equals the set $\{u(L)+m \mid m$ is a non－negative integer $\}$ ？

The following proposition is a partial answer to Question 5.
Proposition 6．Let L be an alternating link with $u(L)=1$ ．Suppose that L has an alternating diagram D_{0} with $u\left(D_{0}\right)=1$ ．
Then the set $\{u(D) \mid D$ is a diagram of $L\}$ equals the set of natural numbers $\{u(L)+m \mid m$ is a non－negative integer $\}$ ．

Let $c(D)$ be the number of crossings in D ．We call $c(D)$ the crossing number of D ．Then the crossing number $c(L)$ of L is defined by the minimum of $c(D)$ where D varies over all diagrams of L ．It is natural to ask the relation between $u(D)$ and $c(D)$ ，or $u(L)$ and $c(L)$ ．For a diagram D of a knot K other than a trivial diagram the following inequality is well－known．See for example［3］．

$$
u(K) \leq u(D) \leq \frac{c(D)-1}{2}
$$

In particular this inequality holds for a minimal crossing diagram D of K where $c(D)=c(K)$ ．Thus for any nontrivial knot K we have the following inequality．

$$
u(K) \leq \frac{c(K)-1}{2}
$$

It is also well known that the equality holds for（ $2, p$ ）－torus knots．Conversely we have the following theorem．

Theorem 7．（1）Let D be a diagram of a knot that satisfies the equality

$$
u(D)=\frac{c(D)-1}{2}
$$

Then D is one of the diagrams illustrated in Figure 2．Namely D is a reduced alternating diagram of some（ $2, p$ ）－torus knot，or D is a diagram with just one crossing．
（2）Let K be a nontrivial knot that satisfies the equality

$$
u(K)=\frac{c(K)-1}{2} .
$$

Then K is a $(2, p)$－torus knot for some odd number $p \neq \pm 1$ ．Namely only 2 －braid knots satisfy the equality．

Figure 2

For links the situation is somewhat different．Let D be a diagram of a link．Then the following inequality is well－known．

$$
u(L) \leq u(D) \leq \frac{c(D)}{2}
$$

Thus for any link L we have the following inequality．

$$
u(L) \leq \frac{c(L)}{2}
$$

The following theorem shows that not only（ $2, p$ ）－torus links but some other links satisfy the equality．

Theorem 8．（1）Let $D=\gamma_{1} \cup \cdots \cup \gamma_{\mu}$ be a diagram of a μ－component link that satisfies the equality

$$
u(D)=\frac{c(D)}{2}
$$

Then each γ_{i} is a simple closed curve on \mathbb{S}^{2} and for each pair i, j ，the subdiagram $\gamma_{i} \cup \gamma_{j}$ is an alternating diagram or a diagram without crossings．
（2）Let L be a μ－component link that satisfies the equality

$$
u(L)=\frac{c(L)}{2}
$$

Then L has a diagram $D=\gamma_{1} \cup \cdots \cup \gamma_{\mu}$ such that each γ_{i} is a simple closed curve on \mathbb{S}^{2} and for each pair i, j ，the subdiagram $\gamma_{i} \cup \gamma_{j}$ is an alternating diagram or a diagram without crossings．

Two examples of such links are illustrated in Figure 3．We note that for a link described in Theorem 8 the unlinking number equals the sum of the absolute values of all pairwise linking numbers．

The detail will appear in［4］．

Figure 3

References

［1］Y．Nakanishi，Unknotting numbers and knot diagrams with the minimum crossings，Math． Sem．Notes，Kobe Univ．， 11 （1983），257－258．
［2］Y．Nakanishi，Union and tangle，Proc．Amer．Math．Soc．， 124 （1996），1625－1631．
［3］M．Ozawa，Ascending number of knots and links，preprint，arXiv：0705．3337．
［4］K．Taniyama，Unknotting numbers of diagrams of a given nontrivial knot are unbounded，to appear in J．Knot Theory Ramifications．

Department of Mathematics，School of Education，Waseda University，Nishi－Waseda 1－6－1，Shinjuku－ku，Tokyo，169－8050，Japan

E－mail address：taniyama＠waseda．jp

