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UNKNOTTING NUMBERS OF DIAGRAMS OF A GIVEN
NONTRIVIAL KNOT ARE UNBOUNDED
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Let L be a link in the 3-sphere S and D a diagram of L on the 2-sphere S2.
It is well known that by changing over/under information at some crossings of D
we have a diagram of a trivial link. See for example [3]. Let u(D) be the minimal
number of such crossing changes. Namely, there are some u(D) crossings of D
such that changing them yields a trivial link diagram, and changing less than u(D)
crossings never yields a trivial link diagram. We call w(D) the unlinking number of
D. In the case that D is a diagram of a knot u(D) is called the unknotting number
of D. The unlinking number u(L) of L is defined by the minimum of u(D) where
D varies over all diagrams of L. Namely we have the following equality.

-u(L) = min{w(D) | D is a diagram of L}.

For a knot K u(K) is called the unknotting number of K. Then it is natural to
ask whether or not the set {u(D) | D is a diagram of L} is bounded above. In
[1] Nakanishi showed that an unknotting number one knot 6, has an unknotting .
number two diagram. Then he showed the following theorem in [2].

Theorem 1 [2]. Let K be a nontrivial knot. Then K ‘hds a diagram D with
u(D) > 2.

. As an extension of Theorem 1, we have the following theorem.

Theorem 2. Let L be a nontrivial link. Then for any natural number n there
exists a diagram D of L with w(D) > n.
That is, the set {u(D) | D is a diagram of L} is unbounded above.

We note that Theorem 2 is an immediate consequence of the following proposi-
tion. ‘

Proposition 3. Let L be a nontrivial link and D a diagram of L. Then there exists
a diagram D' of L with w(D') = (D) + 2.

The proof of Proposition 3 is done by using a modification of diagram illustrated
in Figure 1 that is essentially the same as that used in [2]. See [4] for the detail.
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Figure 1

As an immediate consequence of Proposition 3 we have the following corollary.

Corollary 4. Let L be a nonirivial link.
Then the set {u(D) | D is a diagram of L} contains a set
{u(L) + 2m | m is a non-negative mtege’r}

Question 5. Let L be a nontrivial link. Is the set {u(D) | D is a dmgmm of L}
equals the set {u(L) +m | m is a non-negative integer} ?

The following proposition is a partial answer to Question 5.

Proposition 6. Let L be an alternating link with u(L) = 1. Suppose that L has
an alternating diagram Do with u(Dg) = 1.

Then the set {u(D) | D is a diagram of L} equals the set of natural numbers
{u(L) +m | m is a non-negative integer}.

Let ¢(D) be the number of crossings in D. We call ¢(D) the crossing number of
D. Then the crossing number ¢(L) of L is defined by the minimum of ¢(D) where
D varies over all diagrams of L. Tt is natural to ask the relation between u(D) and
e(D), or u(L) and ¢(L). For a diagram D of a knot K other than a trivial diagram
the following inequality is well-known. See for example [3].

(D) -1
—

In particular this inequality holds for a minimal crossing diagram D of K where
¢(D) = ¢(K). Thus for any nontrivial knot K we have the following inequality.

c(K)—1
T2

w(K) <u(D) <

u(K) <

It is also well known that the equality holds for (2, p)-torus knots. Conversely we
have the following theorem.

Theorem 7. (1) Let D be a diagram of a knot that satisfies the equality
e(D)—1
5 .

Then D is one of the diagrams illustrated in Figure 2. Namely D is a reduced
alternating diagram of some (2 p)-torus knot, or D is a diagram with just one
crossing.

u(D) =
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(2) Let K be a nontrivial knot that satisfies the equality

w(r) = EI =1
2
Then K is a (2,p)-torus knot for some odd number p # £1. Namely only 2-braid

knots satisfy the equality.

Figure 2

For links the situation is somewhat different. Let D be a diagram of a link. Then
the following inequality is well-known.
(D)

u(L) <u(D) < 5

- Thus for any link L we have the following inequality.
L
u(L) < E%l

The following theorem shows that not only (2, p)-torus links but some other links
satisfy the equality.

Theorem 8. (1) Let D = v U--- U+, be a diagram of a p-component link that
satisfies the equality :
D
u(D) = 0(2 ).

Then each v; is a simple closed curve on S? and for each pair i, j, the subdiagram
vi Uy; is an alternating diagram or a diagram without crossings.
(2) Let L be a p-component link that satisfies the equality

u(L) = E(—2L—)—

Then L has a diagram D =y, U --- U+, such that each vy; is a simple closed curve
on S? and for each pair i,j, the subdiagram ~y; U v; 18 an alternating diagram or a
diagram without crossings. '

Two examples of such links are illustrated in Figure 3. We note that for a link
described in Theorem 8 the unlinking number equals the sum of the absolute values
of all pairwise linking numbers.

The detail will appear in [4].
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