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Abstract : We offer an application of linking probability, which is defined by the probability 
that two random polygons are entangled each other, to the problem of the nonlinear behavior 
in rubber elasticity. By taking account of topological constraint that the topological state of 
the network does not vary under deformation, we prove that the total entropy of the network is 
decomposed into two terms: the entropy of the clqssical theory and that due to the topological 
constraint. We show that the linking probability is naturally introduced in the entropy due to 
the topological constraint and the entropic force derived from the topological entropy behaves 
like the C2 term of the Mooney-Rivlin equation. 
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1 Introduction 

The entanglements of polymer chains cause several non-trivial effects in many polymer systems. 
Although the entanglements are a matter of great importance, it is very difficult to take those 
into account accurately. One of elegant methods to treat the entanglements will use the topology 
developed in the knot theory. \Ve expect that the topologies of closed random walks, random 
polygons, may help us in understanding many aspects of the entanglements. Thus, the linking 
and knotting probabilities for the random polygons, which are defined as probabilities that two 
random polygons are mutually entangled and one random polygon is entangled by itself, have 
been numerically estimated [1 ],[2]. From the behaviors of these probabilities, we can imagine 
how the random walks make complicated entanglements as increasing the step number N of the 
polygon and how the entanglements are dissolved by the excluded volume effect. 

Unfortunately, the linking and knotting probabilities can not be directly introduced into most 
linear polymer systems even if the chains are apparently entangled. From the topological point 
of view, every linear chain is always equivalent to a line .. Therefore, we need to coimect both 
ends of the linear chains artificially to calculate the topological invariants. It is not, however, 
easy to develop such skillful manners. 

In this paper, we offer an example that the linking probability is applied to a polymer system, 
network (rubber). For most actual rubbers, the relation between tensile force (f) and extension 
ratio (.A) can be expressed by the following Mooney-Rivlin (MR) equation 

!(A) = c1 (A- A~) + c2 ( 1 - ;3 ) . (1) 

Here, the first term, C1 term, is explained by the classical rubber theory [3]. On the other 
hand, the cause of the second term, C2 term, is not trivial. One of the major ideas is that the 
entanglements between the polymers seem to generate some complicated effects, which lead to 
the C2 term since the value of C2 decreases as the rubber swells in the solvent. Although a lot of 
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Figure 1: Illustration of topological structure of network supposed in our theory. 

theories have been proposed, they are insufficient to explain all behaviors on the MR relations 
without supposing any fitting paral;Ileter. The most important problem is that the physical 
substance of the c2 term has been ambiguously understood. 

' We show that the C2 term can be definitely derived from topological constraint for a network, 
which is a condition that the topological structure of the network is unchanged from an initial 
one under the deformation (see Fig. 1). Our theory is based on the classical work of Graessley 
and Peason [4J in many aspects. The basic picture on the origin of the C2 term is, however, 
completely different. Although they discussed the nonlinear behavior of the rubber elasticity in 
terms of the entanglements of the chains in the network, the results disagree with the proper 
behaviors of the rubber elasticity. By considering not the entanglements but the topological 
constraint, we demonstrate that an additional terms appears in the entropy of the rubber and 
it behaves like the c2. term. 

2 Topological force in rubber elasticity 

For the simplicity, we shall consider the entropy of a network with a simple mesh-like structure 
consisting of elementary loops without any entanglement. Let us focus on a pair of loops in the 
network, A and B, as shown in Fig.l. The conditional probability nA,B(R) that the two loops 
are disentangled and separated by a distance R(= jRI) is given by 

nA,B(R) =I I ~L=o(A, B)8(R- IRA- RBI)V(A)V(B). (2) 

where RA and V( A) denote the position of the center of mass and the path integral with the 
Wiener measure for the loop A, respectively. The topological invariant .1.L=o(A, B) is 1 if the 
loop pair of A and B is topologically equivalent to the trivial link L = 0. 

Neglecting boundary effects, we may estimate that the total entropy of the network is given 
by the summation of eq. ( 2) for every pair of the loops in the network, 

(3) 

where e and V are the number of loops and the volume of the network, respectively. The pair 
correlation function p(R) is the density of the loops at a distance R. 

It is easily proved that eq. (3) is decomposed into two terms: the entropy of the classical 
theories and that due to the topological constraint: 

Snet = Sclas. + Stopo. + const. (4) 

-116-



where Sclas. and Btopo. are given by 

Sclas. - ~~KB fvp(R)lnr(R)dR, (5) 

I J o(R- IRA - RBI)D(A)D(B) 
J IV(A)D(B) 

r(R) _ (6) 

and 

Stopo. - ~eKB fvp(R) lnPL=o(R)dR, {7) 

I I .6-L=o(A, B)o(R - IRA - RB l)D(A)D(B) 
I I J(R- IRA- RB I)D(A)V(B) 

(8) 

By comparing with the classical theory, we find that C1 is given by C1 = ~KB. 
Vve should note that eq. (8) is equivalent to unlinking probability PL=o(R) that the rings A 

and B are disentangled at the distance R. The relation of the linking probability l1ink and the 
unlinking probability PL=O is given by l1ink = 1 - PL=O. 

For the present, we concentrate our attention on the term of Stopo. derived from the topo­
logical constraint. We assume that after deformation arbitrary vector R in the network and 
corresponding p(R) change into R' and p'(R'), respectively. Supposing that the change in R 
is proportional to the macroscopic deformation of the network, so-called affine deformation, the 
distance R is related with R' by 

{ ( 1) 1 }1/2 
R' = )._2- -:\ cos2 

() +-:\ R = a(B, A.)R (9) 

where () is the angle between the directions of the extension and R. By the conservation condition 
of the number of the loops, p(R)dR = p'(R')dR', the topological entropy after deformation by 
.A becomes 

Stopo. = ~~KB fv p(R) In (1 -l1ink(aR)) dR. {10) 

Then, the topological force ftopo. is calculated by the following formula 

f (.A) = -ToStopo. 
topo. LooA. (11) 

where Lois the initial length of the rubber. Of course ftopo: satisfies ftopo.(.A = 1) = 0. 
Substituting eq. (9) and eq. (10) into eq. (11) we obtain 

( ) eKBT 3 l 00 
3 ) ln Pf_=0 (a~) da . 

ftopo. A = L 1f R 9 ~ p(R p ( ) d, Sill BdOd~ 
0 0 0 L=O a<; A 

(12) 

where R9 is the radius of gyration for the random polygon and <;- is the reduced distance <;- = 

R/ R9 . Actually, it is convenient to divide ftopo. by C1 in order to omit the unknown prefactor 
eKBT/Lo. 

Provided that the network is homogeneous and the loops are uniformly distributed, the 
function of p(R) will be well represented by the simplest Gaussian approximation 

e ( 3 ) 
3

;

2 

( 3 R2) 
p(R) = V - 21rR~ exp -2 R~ . (13) 

Note that p(R) is normalized as Iv 41f R2p(R)dR = e- 1. 
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Figure 2: Mooney-Rivlin plots of reduced topological forces ftopo. for N=33,129,257 and 513. 

Fig. 2 shows the Mooney-Rivlin plots of the reduced topological forces ftopo. = ftopo./Cl * 
(A - A - 2 ) for several polygon lengths. Here we used numerical data of the linking probability 
given in Ref. (2]. This results agree with the experimental observations of the C2 term that the 
reduced elastic force increases linearly in the region of the extension, 1/A < 1, and gradually 
decreases in the region of compression,1/ A > 1 [3]. 

3 Summary 

In this pftper, we have discussed the nonlinear behavior of the rubber elasticity from the topo­
logical point of view. It should be emphasized that the C2 term of the Mooney-Rivlin equation 
is derived without any adjustable fitting parameter as a consequence of the topological con­
straint. We have already investigated the N-dependence of C2/C1 and the excluded volume 
effect, which correspond to experiments Ref. [5] and Ref. [6]. Our results are almost consistent 
with the experiments although the values of the C2/ C1 are a little smaller. From all our results, 
we conclude that the topological constraint of network will offer a key to solve the problem of 
the rubber elasticity. 
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