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We have numerically investigated the probability PL ( r) for a pair of self-avoiding ran
dom polygons (SAPs) being link L such that each of them have the trivial knot type 
and they have no overlaps among the segments where they are placed with a distance 
r between the centers of mass. We call it the linking probability of link L. We propose 
the foll<?wing fitting formula: PL(r) = exp( -arv)- C exp{ -f3rM), where a, v, C, f3 and 
p, are parameters. For example, P02(r) denotes the probability of the trivial link. We 
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apply the formula also to the data of liink(r), where it is given by Plink(r) = 1- P02 (r). 
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With respect to the x2 values, the formula gives good fitting curves to the values of 
IlinkjL(r) versus r obtained by simulation for rd :::; 0.20. In the simulation wegener
ate SAPs consisting of N spherical segments of radius rd, where the bond length, i.e 
the distance between adjacent segments, is fixed to 1. We have numerically obtained 
IlinkfL(r) for the cases of N = 32, 64, 128 and 256 for rd = 0.00, 0.05, · · · , 0.30. 
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1 Introduction 
Recently, a number of experimental techniques have been developed and ring polymers and cate
nanes have been synthesized by various researchers (see [1], for instance). In the systems of ring 
polymers conservation of the topology plays an important role in the statistical and dynamical 
properties. The linking probability should be fundamental to understand the entropic behavior of 
topologically restricted polymers such as ring polymers. 

Suppose that we have a pair of SAPs that have no overlaps among the segments when the centers 
of mass are separated by a distance r, and also that each of the SAPs has the trivial knot type. 
We define the linking probability PL(r) by the probability that such a pair of SAPs has link type 
L. Here, r is normalized by the root-mean-square radius of gyration of the SAP. We denote by P0z 
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the probability of the trivial link. We also define the linking probability liink(r) by the probability 
that two such SAPs make a non-trivial link. In other words, we have Plink = L.:L-t-oz PL = 1 - P 0z. 
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Although various formulas of Plink/ L as functions of r have been suggested (see [2] and [3], for 
instance), they do not give good fitting curves to the simulation results of FlinkjL(r} with sufficiently 
small x2 values. In this paper, we propose a new formula: 

Flink/dr) = exp( -arv)- C exp( -,Bri-L), a, v, C, j3 and p,: fitting parameters. (1) 

We also show numerically how linking probability Plink/L(r) depends on the excluded-volume. 
In Section 2, we explain numerical methods of the present work in detail. The validity of the 

formula is confirmed in Section 3. Finally, the main results and conclusions are summarized in 
Section 4. 

2 Procedure of simulations 

We generate SAPs using the crank-shaft algorithm. It is similar to the pivot algorithm on a 
lattice [4]. The procedure is given as follows. Let us begin with a regular polygon of N nodes. 
In the polygon, the beads of radius rd are located at all nodes and the bond length is given by 1. 
Under the self-avoiding conditions, the beads are not allowed to overlap with each other. First, we 
randomly choose two nodes of the polygon. Next, we rotate a sub-chain between the two nodes 
around the axis through them. Here the rotation angle is given by a random number. We then 
check all nodes whether they overlap or not. If the nodes have no overlaps, the conformation is 
accepted as a new one. On the other hand, if a pair of the nodes has an overlap, we return the 
polygon to the state before the deformation. Vve repeat the procedure many times. Finally, we 
employ the polygon as a member of an ensemble of SAP when it has an effectively independent 
conformation from the initial one. We should comment that an independent conformation can be 
practically obtained if successful deformation is repeated about N times. In the present work, we 
perform such deformation 2N times to generate a SAP. 

We define a self-avoiding random link by such a pair of two SAPs that have no overlaps and are 
put at a normalized distance r between the centers of mass. Here, we assume that the two SAPs 
have the same N and r d and both of them have the trivial knot type. They are randomly chosen 
from an ensemble of such SAPs. We produce 105 self-avoiding random links to estimate PL(r). 

The linking probability PL(r) with link type Lis calculated by 

ML 
PL(r) = .lvf (2) 

where ML is the number of self-avoiding random links with link type Land M is the total number 
of all self-avoiding links, which is given by 105 in our simulation. 

To detect the link types of the 105 self-avoiding random links, we use two link invariants: the 
linking number and the Alexander polynomial. By the invariants, we have practically classified the 
link types such as Oi, 2I, 4I and 5i (Fig 1). 
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Figure 1: Some link types 
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3 Results 
The simulation results of l1inkfL(r) as a function of r are plotted in Fig. 2 for the case of N = 256 
for rd = 0.0, 0.1, 0.2 and 0.3. The solid lines are fitting curves given by formula (1). Fig. 2 shows 
that formula (1) is consistent with the data. 
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Figure 2: Linking probabilities Pnnk/L(r) with N = 256 Data points of "all non-trivial 
links" denote those of linking probability Plink ( r). P22 ( r), P42 ( r) and P52 ( r) are the probabilities 
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of link types 2t, 4I and 5t. And Pother types ( r) denotes the probability that a given self-avoiding 
random link is equivalent to a non-trivial link other than 2!, 4! and sr. 

The x2 values are listed in Table 1. Note that there are 31 points on each curve. The x2 values 
are sufficiently small for all the cases of rd :::; 0.20. Furthermore, simulation results for the cases 
of N = 32, 64 and 128 are also approximated by the formula (1) with small x2 values. From the 
results, we conclude that formula (1) gives good fitting curves to the estimates of l1ink;L(r) as a 
function of r with respect to the x2 values for rd :::; 0.20. 
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L rd = 0.00 rd = 0.05 rd = 0.10 rd = 0.15 rd = 0.20 rd = 0.25 rd = 0.30 
link 43.4 33.3 13.0 12.2 51.3 143. 267. 
2i 16.7 17.4 10.1 13.4 37.1 153. 233. 
4i 8.00 9.20 33.5 42.6 21.8 15.5 7.80 
5i 12.2 9.20 13.8 8.60 5.60 - -

Table 1: x2 values of Punk/L(r) foz: N = 256 From the fitting curves of Plink;L{r) given 
by formula (1), we obtain the x2 values for the case of N = 256 for rd = 0.00, 0.05, · · · , and 0.30. 
It was not possible to evaluate the x2 values for the case of L = 5I for rd = 0.25 and 0.30 because 
the numerical values of P52 (r) are almost 0. 
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We have investigated the excluded-volume dependence of liinkjL(r). In Fig. 2, we found that 
PL(r) of L = 4i, 5t and othertypes decrease quickly for all values of r when rd increases for 
rd 2: 0.20. However, only P2i(r) does not vanish when rd is large such as rd = 0.30. That is, almost 
all the self-avoiding random links of non-trivial link types have the link type 2I for rd ~ 0.30. 

Furthermore, we found that the graph of P22(r) has a peak for all values of rd, and also that 
1 

the peak position approaches r ~ 0.5 as r d increases for r d ~ 0.20. 

4 Conclusions 
We proposed formula (1) to express linking probabilities Plink and PL as a functions of r for some 
link types such as L = 2!, 4I and 5t. With respect to the x2 values, formula (1) is consistent with 
the simulation data at least in the case of rd ~ 0.20. 

\.:Ve found that when the excluded-volume is very large, probabilities PL of non-trivial links L 
vanish except for P 22. Moreover, the value of P22 remains constant when rd increases for rd > 0.20. 1 1 -
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