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Abstract : Advanced stochastic sampling techniques are used to probe the configuration 
space of self-avoiding flexible rings subject to spatial confinement. The sampled ring conforma
tions are next processed by algorithms that exactly classify knots in rings that are not excessively 
confined. The physical parameters of the rings, i.e. contour length, bending rigidity and steric 
hindrance, are properly chosen to mimic the properties of DNA of the P4 bacteriophage, while 
the radius of the smallest sphere used to confine the model rings is about 2.5 times larger than 
the P4 capsid radius. By comparing the computed knot spectrum with the P4 one we establish 
that the consideredmodel correctly predicts an increase of the occurrence of chiral knots with 
progressive confinement but does not account for the bias of torus versus twist knots observed 
in P4 experiments. 

1 Introduction 

Since the early work of Michels and Wiegel [1 J the characterization of the knot spectrum in cir
cular chains subject to spatial confinement has represented a challenging and attractive problem 
[2, 3, 4, 5]. In recent years, the interest in this problem has been stimulated by experiments on 
the genome of the P4 bacteriophage. In tailless mutants of P4, DNA can circularise inside the 
viral capsid giving rise to knotted molecules [3, 6]. The analysis of the relative abundance of the 
simplest DNA knots has revealed a prevalence of chiral versus achiral knots and of torus over 
twist knots[6]. 

These observed biases are inconsistent with those found for freely-jointed rings ("phantom" 
equilateral polygons) subject to high space confinement, which we have previously characterised 
in ref. [4]. The salient experimental features were instead qualitatively reproduced by spatially
confined freely-jointed rings sampled with a certain bias on the writhe[6]. 

The results are interesting and stimulate the search for the physical source of the observed 
bias. As the writhe bias cannot be enforced by local rules governing the chain relaxation inside 
the capsid we wondered whether, upon addition of physical ingredients in the model such as DNA 
steric hindrance and bending rigidity, would automatically produce the observed topological bias 
in confined configurations. This question is motivated by previous observations that imposing 
suitable spatial confinement conditions on thick polymers is sufficient to promote the selection 
of ordered and chiral configurations [7, 8, 9, 10, 11, 12]. 

In the following we shall briefly outline the model: the methodology used to sample the ring 
configurations and to classify their topology (knotting) and finally discuss the salient features 
of the knot spectrum. A more detailed account of the study has recently appeared in Ref. [5]. 
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2 Methods 

2.1 The model 

The P4 DNA is modeled as a flexible ring of 200 cylinders of equal length and diameter. Following 
the spirit of the simplified DNA models introduced and studies in refs. [13, 14, 15], the statistical 
weight of a configuration, r is given by the Boltzmann weight: 

(1) 

where tis the ith length-normalised) segment (cylindrical axis) of the ring, !'i. is a parameter 
capturing the bending rigidity, do is the diameter of the cylinders, di,j is the minimum distance 
of the ith and jth segments (the prime over the summation index is used to indicate that ne~est 
neighbour segments, i = j±1, are excluded from the sum) and r is a very large positive quantity. 
While the first termis used to model the ring as a closed Kratky-Porod chain (discrete version 
of the worm-like chain) [16], the second one is used to enforce the finite thickness of the chain 
by disallowing overlaps of the cylinders constituting the chain. In our study !'i. and do have been 
set to values appropriate to model the P4 DNA, which has a contour length of 3.4 J-Lm, do= 2.5 
nm, and the nominal DNA persistence length (50 nm). 

2.2 Biased sampling and multiple Markov chains 

A stochastic sampling scheme, based on the Metropolis acceptance/rejection criterion, was used 
to sample ring configurations according to the canonical weight given by eqn. (1). For entropic 
reasons, however, most of the sampled configurations will not he compact [17]. To explore effi
ciently the configuration space of spatially confined rings, an additional pressure-like parameter, 
P 2: 0, was introduced to modify the weight in eqn. (1) into: 

(2) 

where R is the hull radius of the configuration. For computational convenience the latter is 
defined as the distance from the ring center of mass of the fartherst vertex of the ring. By using 
increasing values of P the sampling is biased towards more and more compact conformations. 
The correct canonical weight of the configurations collected through the biased sampling can then 
be recovered a posteriori with standard reweighting techniques [18]. In our study 16 different 
pressures were used and a Multiple Markov chain scheme [19} was used for the parallel stochastic 
evolution of the 16 ''replicas" of the system. 

2.3 Knot simplification and identification 

For each pressure, tens of thousands of independent configurations were collected. To identify 
their knot type, the configurations were first smoothed and shrunk (without altering their topol
ogy) so to reduce the average numbers of crossings in a two-dimensional projection. The Dowker 
code [20] of each simplified configuration was finally used as input for the Knotfind algorithm 
which, if the projection is not excessively complicated, can identify knots with prime compo
nents up to 16 crossings [21]. In Fig. la it is shown, as a function of the confining (hull) radius, 
the fraction of configurations for which we obtain an exact knot classification. It is seen that, 
as confinement increases, the complexity of the knots projections increases and, consequently, 
the fraction of configurations for which the knot type can be exactly identified decreases very 
rapidly. 
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Figure 1: (a) Probability of unknots and of unclassified knots as a function of the inverse radius 
of the confining sphere, 1/ R, for circular chains of N = 200 cylinders. (b) Probability profiles 
of the simplest knot types. Dashed and dotted lines refer to statistics in which the fraction of 
unclassified knots is respectively between 10 and 50% and above 50%. 

3 Results and conclusions 

The occurrence probability of the simplest knot types are shown in Fig. lb). To remind of the 
progressive uncertainty on the knot spectrum as confinement is increased, the data are shown 
with dashed abd dotted lines when the fraction of unclassified knots is respectively between 10 
and 50% and above 50%. 

We analysed the effect of confinement on the chirality of the knots and the torus versus 
twist bias. The simplest situation for assessing the effect of chirality bias is to consider the 
case of knots with 6 minimal crossings. Chiral knots are 61, 62 and the composite granny knot 
while achiral ones are 63 and the composite square knot. Fig. 2a portrays the trend of the 
chiralfachiral balance within this group of knots having the same "complexity". Note that, 
though chiral knots do not significantly outweight achiral ones, there is a growing fraction of 
chiral knots induced by confinement, which is qualitatively consistent with the observations and 
conclusions in the P4 experiments. 

We next analysed the populations of two types of 5-crossing knots: the 51 torus knot and 
the 52 twist knots. This represents the simplest context for examining the effect of confinement 
on the abundance of torus knots. The probability profiles of the two populations are shown in 
Fig. 2b. Up to the considered confining radii, the population of the 52 twist knots is about 
twice the one of the 51 torus knot. This result is consistent with what observed for confined 
non-self-avoiding rings [4] but represents an opposite bias to that observed in P4 experiments. 

This latest result poses the question of what might be the source for the discrepancy between 
the experimental data and the computational results. On one hand, it cannot be excluded that 
the experimentally-observed unbalance between the 51 and 52 populations sets in at higher levels 
of confinement. In fact, it should be bourne in mind that the tightest confining radii reached 
here exceed the P4 capsid radius by a factor of 2.5. On the other hand, it cannot be ruled 
out that the knot spectrum under high confinement may be affected by physical details not 
considered here, such as interaction with the capsid interior walls, the shape of the capsid, level 
of coarse-graining of DNA and its phenomenological elastic parameters etc. Finally, it is possible 
that out-of-equilibrium effects, reflecting the progressive insertion of DNA inside the capsid by 

-40-



0.06 
Vl .-JP.F: ...... 

,{\ ]0.72 0.05 

.! ?~ - 00.04 ~ 0.68 0\ ..... ..... -..Q . .-( 

0 ~ 0.03 ~5_1 ~0.64 ~ ]' .. \ 0 *-*5_2 ' I 

~ ~ .. 6'.1 \ 
0 ~ 0.02 r \ ·. ..... 

0.6 ~\ ...... 
0 .:0.,0 \ I ro .l'' &' ~ 

~ .,~- 0 
0.56 ~ -

0.0025 0.005 0.0075 0.01 0.0125 0.015 00 0.005 0.01 0.015 

(a) 
-1 

1/R (nm ) (b) 1/R (nm-1
) 

Figure 2: (a) Dependence upon confinement of the fraction of chiral knots (6 1 , 62 and granny 
knots) within the knots with 6 minimal crossings (61, 62, 63, granny and square knots). (b) 
Probability profiles for the 5t and 62 knots. 

the virus portal motor, may not be negligble as one might expect by simple considerations on 
the diffusion and reptation time of the confined DNA chain. An investigation of these aspects 
is currently in progress. 
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