<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>On a complexity of a spatial graph (Knots and soft-matter physics: Topology of polymers and related topics in physics, mathematics and biology)</td>
</tr>
<tr>
<td>著者</td>
<td>Kawauchi, Akio</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 (2009), 92(1): 16-19</td>
</tr>
<tr>
<td>発行日</td>
<td>2009-04-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/169128</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
On a complexity of a spatial graph

Osaka City University Akio Kawauchi

Abstract: In a research of proteins, molecules, or polymers, it is important to understand geometrically and topologically spatial graphs possibly with degree one vertices including knotted arcs. In this article, we introduce a concept of a complexity and related topological invariants for a spatial graph without degree one vertices, called the \(\gamma \)-warping and warping degrees as well as the \(\gamma \)-unknotting and unknotting numbers generalizing the usual unknotting number of a knot. These invariants define geometric invariants for a spatial graph with degree one vertices, meaningful even for a knotted arc.

1 A spatial graph without degree one vertices and its diagram

For general references of knots, links and spatial graphs, we refer to [3]. First, we consider a compact polygonal graph \(\Gamma \) which does not have any vertices of degrees 0 and 1 and, for simplicity, has at most one component with vertices of degrees \(\geq 3 \). A spatial graph of \(\Gamma \) is a topological embedding image \(G \) of \(\Gamma \) into \(\mathbb{R}^3 \) such that there is an orientation-preserving homeomorphism \(h: \mathbb{R}^3 \to \mathbb{R}^3 \) sending \(G \) to a polygonal graph in \(\mathbb{R}^3 \). We consider a spatial graph \(G \) by ignoring the degree two vertices which are useless in our argument. When \(\Gamma \) is a loop, \(G \) is called a knot, and it is trivial if it is the boundary of a disk in \(\mathbb{R}^3 \). When \(\Gamma \) is the disjoint union of finitely many loops, \(G \) is called a link, and it is trivial if it is the boundary of mutually disjoint disks. A spatial graph \(G \) is equivalent to a spatial graph \(G' \) if there is an orientation-preserving homeomorphism \(h: \mathbb{R}^3 \to \mathbb{R}^3 \) such that \(h(G) = G' \). Let \([G] \) be the class of spatial graphs \(G' \) which are equivalent to \(G \). It is well-known that two spatial graphs \(G \) and \(G' \) are equivalent if and only if any diagram \(D_G \) of \(G \) is deformed into any diagram \(D_{G'} \) of \(G' \) by a finite sequence of the generalized Reidemeister moves, where we call the moves necessary for links the Reidemeister moves (cf. [3]). Let \([D_G] \) be the class of diagrams obtained from a diagram \(D_G \) of \(G \) by the generalized Reidemeister moves, which is identified with the class \([G] \).

2 A monotone diagram and complexity

Our spatial graph \(G \) is obtained from a maximal tree \(T \) (containing all the vertices of degrees \(\geq 3 \) of \(G \)) by adding edges or loops \(\alpha_i \) \((i = 1, 2, \cdots, m) \). Clearly, \(T = \emptyset \) if \(G \) is a link, and \(T \) is

1 E-mail: kawauchi@sci.osaka-cu.ac.jp
one vertex if \(G \) has just one vertex of degree \(\geq 3 \). Let \(D \) be a diagram of \(G \). The subdiagrams of \(D \) corresponding to \(T \) and \(\alpha_i \) are called the \textit{maximal tree diagram} \(DT \) and the \textit{edge or loop diagram} \(D\alpha_i \), respectively. Let \(c_D(DT) \) be the number of crossing points of \(D \) belonging to \(DT \). The diagram \(D \) is a \textit{based diagram} (on \(T \)) and denoted by \((D; T)\) if \(c_D(DT) = 0 \). We can deform every diagram into a based diagram by a finite sequence of the generalized Reidemeister moves. Let \((D; T)\) be a based diagram of \(G \), obtained from \(T \) by adding the edges or loops \(\alpha_i \) \((i = 1, 2, \cdots, m)\). The edge diagram \(D\alpha_i \) is \textit{monotone} if there is an orientation on \(\alpha_i \) such that a point going along the oriented diagram \(D\alpha_i \) from the origin vertex meets first the upper crossing point at every crossing point (see Figure 1). The loop diagram \(D\alpha_i \) is \textit{monotone} if there is an orientation on \(\alpha_i \) such that a point going along the oriented diagram \(D\alpha_i \) from a non-crossing point always meets every upper crossing point first. The based diagram \((D; T)\) on \(T \) is \textit{monotone} if \(\alpha_i \) is monotone for every \(i \) and contains the upper crossing point on every crossing point between \(D\alpha_i \) and \(D\alpha_j \) for any \(j > i \) with respect to an oriented ordered sequence \(\alpha_i \). A similar notion of a monotone diagram was used by W. B. R. Lickorish and K. C. Millett in [5] for an oriented ordered link diagram. The \textit{warping degree} \(d(D; T) \) of a based diagram \((D; T)\) is the least number of crossing changes on the edge or loop diagrams \(D\alpha_i \) \((i = 1, 2, \cdots, m)\) needed to obtain a monotone diagram from \(D \). For \(T = \emptyset \), we denote \(d(D; T) \) by \(d(D) \). When the edges or loops \(\alpha_i \) are previously oriented, we can also define the \textit{oriented warping degree} \(d^+(D; T) \) \((d^+(D) \text{ for } T = \emptyset)\) of \(D \) by considering only the crossing changes on the oriented edge or loop diagrams \(D\alpha_i \) \((i = 1, 2, \cdots, m)\). For an oriented knot diagram \(D \), A. Shimizu in [7] established the inequality \(d^+(D) + d^+(-D) \leq c(D) - 1 \) with \(c(D) \) the crossing number of \(D \), where the equality holds if and only if \(D \) is an alternating diagram. The \textit{complexity} of a based diagram \((D; T)\) is the pair \(cd(D; T) = (c(D; T), d(D; T)) \) together with the dictionary order. This notion was introduced in [4] for an oriented ordered link diagram. A. Shimizu also observed that the dictionary order on \(cd(D; T) \) is equivalent to the numerical order on \(c(D; T)^2 + d(D; T) \) by using the inequality \(d(D; T) \leq c(D; T) \). The complexity \(\gamma(G) \) of \(G \) is the minimum (in the dictionary order) of the complexities \(cd(D; T) \) for all based diagrams \((D; T) \in [DG] \). This topological invariant \(\gamma(G) \) is also denoted by \((c_\gamma(G), \delta_\gamma(G)) \) where \(c_\gamma(G) \) and \(\delta_\gamma(G) \) are called the \textit{\(\gamma \)-crossing number} and the \textit{\(\gamma \)-warping degree} of \(G \), respectively. The minimal crossing number \(c(G) = \min_{D \in [DG]} c(D) \) of \(G \) has the inequality \(c(G) \leq c_\gamma(G) \). The following properties (1) and (2) on \(G \) gives a reason why we call \(\gamma(G) \) the complexity of \(G \): (1) \(c_\gamma(G) = 0 \) if and only if \(c(G) = 0 \), i.e., \(G \) is equivalent to a graph in a plane. If \(c_\gamma(G) > 0 \), then there is a spatial graph \(G' \) with \(c_\gamma(G') < c_\gamma(G) \) by a splice on \(G \), so that \(\gamma(G') < \gamma(G) \). (2) \(\delta_\gamma(G) = 0 \) if and only if \(G \) is equivalent to \(G' \) with a monotone diagram \((D'; T')\) with \(c(D'; T') = c_\gamma(G) \). If \(\delta_\gamma(G) > 0 \), then by a crossing change on \(G \) there is a spatial graph \(G' \) with \(\gamma(G') < \gamma(G) \).

Figure 2: An unknotted plane graph with a Hopf constituent link
3 Warping degree and unknotting number

The warping degree $\delta(G)$ of G is the minimum of the warping degrees $d(D; T)$ for all based diagrams $(D; T) \in [D_G]$. Then $\delta(G)$ is a topological invariant and we have $\delta(G) \leq \delta_r(G)$. A spatial graph G is unknotted if $\delta(G) = 0$, and γ-unknotted if $\delta_r(G) = 0$. A link L is unknotted in this sense if and only if L is a trivial link, and a spatial plane graph G is γ-unknotted if and only if G is equivalent to a graph in a plane. A constituent link of G is a link contained in G. We note that there is an unknotted plane graph with a non-trivial constituent link. For example, the spatial plane graph G in Figure 2 has $\delta(G) = 0$, but has a Hopf constituent link and $\delta_r(G) = 1$. We also note the Conway-Gordon Theorem in [1]: Every spatial 6-complete graph K_6 contains a non-trivial constituent link, and every spatial 7-complete graph K_7 contains a non-trivial constituent knot. Nevertheless, we have the following properties on an unknotted graph: For every graph Γ, there are only finitely many unknotted graphs G of Γ up to equivalences. Further, we have the following properties (1) and (2) on an unknotted graph G: (1) By a sequence of edge reductions illustrated in Figure 3, G is deformed into a maximal tree. In particular, every edge of G is contained in a trivial constituent knot. (2) G is equivalent to a trivial bouquet of circles after some edge contractions. Let $u(D)$ be the minimal number of crossing changes of a diagram D needed to obtain a diagram of an unknotted graph. The unknotting number $\mu(G)$ of G is the minimum of the numbers $u(D)$ for all diagrams $D \in [D_G]$. Let $u_r(D)$ be the minimal number of crossing changes of a diagram D needed to obtain a diagram of a γ-unknotted graph. The γ-unknotting number $\mu_r(G)$ of G is the minimum of the numbers $u_r(D)$ for all diagrams $D \in [D_G]$. The topological invariants $\mu(G)$, $\mu_r(G)$, $\delta(G)$ and $\delta_r(G)$ are mutually distinct topological invariants satisfying the following square:

\[
\begin{align*}
\mu_r(G) & \leq \delta_r(G) \\
\mu(G) & \leq \delta(G)
\end{align*}
\]

For example, the spatial graph G in Figure 2 has $\mu(G) = \delta(G) = 0$ and $\mu_r(G) = \delta_r(G) = 1$. On the other hand, we see that Kinoshita’s θ-curve in Figure 4 has $\mu(G) = \mu_r(G) = 1 < \delta(G) = \delta_r(G) = 2$ and $c(G) = 4 < c_r(G) = 7$. The proof of this assertion is omitted here, but our proof uses H. Moriuchi’s classification of algebraic tangles in [6]. Also, we can show the following result by using a technique in [2]: For every graph Γ and any integer $n \geq 0$, there are infinitely many spatial graphs G of Γ such that $\mu(G) = \mu_r(G) = \delta(G) = \delta_r(G) = n$.

4 A spatial graph with degree one vertices

Let Γ be a finite polygonal graph with degree 1 vertices, for simplicity, which has just one connected component with vertices of degrees ≥ 3. A spatial graph of Γ is a topological embedding image G of Γ into \mathbb{R}^3 such that $h(G)$ is a polygonal graph in \mathbb{R}^3 for an orientation-preserving
homeomorphism \(h : \mathbb{R}^3 \to \mathbb{R}^3 \). Let \(V \) be the set of degree one vertices of \(G \). For the line segment \([a, b] \) between \(a, b \in \mathbb{R}^3 \) and \(x \in G \), let \(S_v(x) = [v, x] \cup (\bigcup_{v',v'' \in V} [v, v'']) \) be a star with origin \(v \). Assume that \(G_v(x) = G \cup S_v(x) \) is a spatial graph without degree one vertices for every \(v \in V \) and \(x \in G \). Then the \textit{warping degree} \(\delta(G, x) \) and the \textit{unknotting number} \(\mu(G, x) \) of \((G, x)\) are defined by \(\delta(G, x) = \max_{v \in V} \delta(G_v(x)) \) and \(\mu(G, x) = \max_{v \in V} \mu(G_v(x)) \), which are called the \textit{warping degree} and the \textit{unknotting number} of \(G \) and denoted by \(\delta(G) \) and \(\mu(G) \), respectively, when \(x \in V \). An example is illustrated in Figure 5. In a similar way, the \textit{\gamma-warping degrees} \(\delta_\gamma(G, x), \delta_\gamma(G) \) and the \textit{\gamma-unknotting numbers} \(\mu_\gamma(G, x), \mu_\gamma(G) \) are defined. Different invariants taking the minimum or the average in place of the maximum are also defined.

\[
\begin{align*}
\delta(G) = \mu(G) &= 0 \\
\delta(G) = \mu(G) &= 1
\end{align*}
\]

Figure 5: Knotted arcs

References

