<table>
<thead>
<tr>
<th>Title</th>
<th>On a complexity of a spatial graph (Knots and soft-matter physics: Topology of polymers and related topics in physics, mathematics and biology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawauchi, Akio</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (2009), 92(1): 16-19</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-04-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/169128</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On a complexity of a spatial graph

Osaka City University Akio Kawauchi 1

Abstract: In a research of proteins, molecules, or polymers, it is important to understand geometrically and topologically spatial graphs possibly with degree one vertices including knotted arcs. In this article, we introduce a concept of a complexity and related topological invariants for a spatial graph without degree one vertices, called the \(\gamma \)-warping and warping degrees as well as the \(\gamma \)-unknotting and unknotting numbers generalizing the usual unknotting number of a knot. These invariants define geometric invariants for a spatial graph with degree one vertices, meaningful even for a knotted arc.

1 A spatial graph without degree one vertices and its diagram

For general references of knots, links and spatial graphs, we refer to [3]. First, we consider a compact polygonal graph \(\Gamma \) which does not have any vertices of degrees 0 and 1 and, for simplicity, has at most one component with vertices of degrees \(\geq 3 \). A spatial graph of \(\Gamma \) is a topological embedding image \(G \) of \(\Gamma \) into \(\mathbb{R}^3 \) such that there is an orientation-preserving homeomorphism \(h : \mathbb{R}^3 \to \mathbb{R}^3 \) sending \(G \) to a polygonal graph in \(\mathbb{R}^3 \). We consider a spatial graph \(G \) by ignoring the degree two vertices which are useless in our argument. When \(\Gamma \) is a loop, \(G \) is called a knot, and it is trivial if it is the boundary of a disk in \(\mathbb{R}^3 \). When \(\Gamma \) is the disjoint union of finitely many loops, \(G \) is called a link, and it is trivial if it is the boundary of mutually disjoint disks. A spatial graph \(G \) is equivalent to a spatial graph \(G' \) if there is an orientation-preserving homeomorphism \(h : \mathbb{R}^3 \to \mathbb{R}^3 \) such that \(h(G) = G' \). Let \([G]\) be the class of spatial graphs \(G' \) which are equivalent to \(G \). It is well-known that two spatial graphs \(G \) and \(G' \) are equivalent if and only if any diagram \(D_G \) of \(G \) is deformed into any diagram \(D_{G'} \) of \(G' \) by a finite sequence of the generalized Reidemeister moves, where we call the moves necessary for links the Reidemeister moves (cf. [3]). Let \([D_G]\) be the class of diagrams obtained from a diagram \(D_G \) of \(G \) by the generalized Reidemeister moves, which is identified with the class \([G]\).

2 A monotone diagram and complexity

Our spatial graph \(G \) is obtained from a maximal tree \(T \) (containing all the vertices of degrees \(\geq 3 \) of \(G \)) by adding edges or loops \(\alpha_i \) \((i = 1, 2, \cdots, m)\). Clearly, \(T = \emptyset \) if \(G \) is a link, and \(T \) is meaningful even for a knotted arc.

1E-mail: kawauchi@sci.osaka-cu.ac.jp
one vertex if \(G \) has just one vertex of degree \(\geq 3 \). Let \(D \) be a diagram of \(G \). The subdiagrams of \(D \) corresponding to \(T \) and \(\alpha_i \) are called the maximal tree diagram \(DT \) and the edge or loop diagram \(D\alpha_i \), respectively. Let \(c_D(DT) \) be the number of crossing points of \(D \) belonging to \(DT \). The diagram \(D \) is a based diagram (on \(T \)) and denoted by \((D; T) \) if \(c_D(DT) = 0 \). We can deform every diagram into a based diagram by a finite sequence of the generalized Reidemeister moves. Let \((D; T) \) be a based diagram of \(G \), obtained from \(T \) by adding the edges or loops \(\alpha_i \) \((i = 1, 2, \ldots, m)\). The edge diagram \(D\alpha_i \) is monotone if there is an orientation on \(\alpha_i \) such that a point going along the oriented diagram \(D\alpha_i \) from the origin vertex meets first the upper crossing point at every crossing point (see Figure 1). The loop diagram \(D\alpha_i \) is monotone if there is an orientation on \(\alpha_i \) such that a point going along the oriented diagram \(D\alpha_i \) from a non-crossing point always meets every upper crossing point first. The based diagram \((D; T) \) on \(T \) is monotone if \(D\alpha_i \) is monotone for every \(i \) and contains the upper crossing point on every crossing point between \(D\alpha_i \) and \(D\alpha_j \) for any \(j > i \) with respect to an oriented ordered sequence of \(D\alpha_i \) \((i = 1, 2, \ldots, m)\). A similar notion of a monotone diagram was used by W. B. R. Lickorish and K. C. Millett in [5] for an oriented ordered link diagram. The warping degree \(d(D; T) \) of a based diagram \((D; T) \) is the least number of crossing changes on the edge or loop diagrams \(D\alpha_i \) \((i = 1, 2, \ldots, m)\) needed to obtain a monotone diagram from \(D \). For \(T = \emptyset \), we denote \(d(D; T) \) by \(d(D) \). When the edges or loops \(\alpha_i \) \((i = 1, 2, \ldots, m)\) are previously oriented, we can also define the oriented warping degree \(d^+(D; T) \) (or \(d^+(D) \) for \(T = \emptyset \)) of \(D \) by considering only the crossing changes on the oriented edge or loop diagrams \(D\alpha_i \) \((i = 1, 2, \ldots, m)\). For an oriented knot diagram \(D \), A. Shimizu in [7] established the inequality \(d^+(D) + d^+(-D) \leq c(D) - 1 \) with \(c(D) \) the crossing number of \(D \), where the equality holds if and only if \(D \) is an alternating diagram. The complexity of a based diagram \((D; T) \) is the pair \(cd(D; T) = (c(D; T), d(D; T)) \) together with the dictionary order. This notion was introduced in [4] for an oriented ordered link diagram. A. Shimizu also observed that the dictionary order on \(cd(D; T) \) is equivalent to the numerical order on \(c(D; T)^2 + d(D; T) \) by using the inequality \(d(D; T) \leq c(D; T) \). The complexity \(\gamma(G) \) of \(G \) is the minimum (in the dictionary order) of the complexities \(cd(D; T) \) for all based diagrams \((D; T) \in [D_G] \). This topological invariant \(\gamma(G) \) is also denoted by \((c_\gamma(G), \delta_\gamma(G))\) where \(c_\gamma(G) \) and \(\delta_\gamma(G) \) are called the \(\gamma \)-crossing number and the \(\gamma \)-warping degree of \(G \), respectively. The minimal crossing number \(c(G) = \min_{D \in [D_G]} c(D) \) of \(G \) has the inequality \(c(G) \leq c_\gamma(G) \). The following properties (1) and (2) on \(G \) gives a reason why we call \(\gamma(G) \) the complexity of \(G \):

(1) \(c_\gamma(G) = 0 \) if and only if \(c(G) = 0 \), i.e., \(G \) is equivalent to a graph in a plane. If \(c_\gamma(G) > 0 \), then there is a spatial graph \(G' \) with \(c_\gamma(G') < c_\gamma(G) \) by a splice on \(G \), so that \(\gamma(G') < \gamma(G) \).

(2) \(\delta_\gamma(G) = 0 \) if and only if \(G \) is equivalent to \(G' \) with a monotone diagram \((D'; T') \) with \(c(D'; T') = c_\gamma(G) \). If \(\delta_\gamma(G) > 0 \), then by a crossing change on \(G \) there is a spatial graph \(G' \) with \(\gamma(G') < \gamma(G) \).

Figure 2: An unknotted plane graph with a Hopf constituent link.
3 Warping degree and unknotting number

The warping degree \(\delta(G) \) of \(G \) is the minimum of the warping degrees \(\delta(D; T) \) for all based diagrams \((D; T) \in \mathcal{D}_G \). Then \(\delta(G) \) is a topological invariant and we have \(\delta(G) \leq \delta_r(G) \). A spatial graph \(G \) is unknotted if \(\delta(G) = 0 \), and \(\gamma \)-unknotted if \(\delta_\gamma(G) = 0 \). A link \(L \) is unknotted in this sense if and only if \(L \) is a trivial link, and a spatial plane graph \(G \) is \(\gamma \)-unknotted if and only if \(G \) is equivalent to a graph in a plane. A constituent link of \(G \) is a link contained in \(G \). We note that there is an unknotted plane graph with a non-trivial constituent link. For example, the spatial plane graph \(G \) in Figure 2 has \(\delta(G) = 0 \), but has a Hopf constituent link and \(\delta_\gamma(G) = 1 \).

We also note the Conway-Gordon Theorem in [1]: Every spatial 6-complete graph \(K_6 \) contains a non-trivial constituent link, and every spatial 7-complete graph \(K_7 \) contains a non-trivial constituent knot. Nevertheless, we have the following properties on an unknotted graph: For every graph \(\Gamma \), there are only finitely many unknotted graphs \(G \) of \(\Gamma \) up to equivalences. Further, we have the following properties (1) and (2) on an unknotted graph \(G \): (1) By a sequence of edge reductions illustrated in Figure 3, \(G \) is deformed into a maximal tree. In particular, every edge of \(G \) is contained in a trivial constituent knot. (2) \(G \) is equivalent to a trivial bouquet of circles after some edge contractions. Let \(u(D) \) be the minimal number of crossing changes of a diagram \(D \) needed to obtain a diagram of an unknotted graph. The unknotting number \(\mu(G) \) of \(G \) is the minimum of the numbers \(u(D) \) for all diagrams \(D \in \mathcal{D}_G \). Let \(u_\gamma(D) \) be the minimal number of crossing changes of a diagram \(D \) needed to obtain a diagram of a \(\gamma \)-unknotted graph. The \(\gamma \)-unknotting number \(\mu_\gamma(G) \) of \(G \) is the minimum of the numbers \(u_\gamma(D) \) for all diagrams \(D \in \mathcal{D}_G \). The topological invariants \(\mu(G) \), \(\mu_\gamma(G) \), \(\delta(G) \) and \(\delta_\gamma(G) \) are mutually distinct topological invariants satisfying the following square:

\[
\begin{align*}
\mu_\gamma(G) & \leq \delta_\gamma(G) \\
\mu(G) & \leq \delta(G)
\end{align*}
\]

For example, the spatial graph \(G \) in Figure 2 has \(\mu(G) = \delta(G) = 0 \) and \(\mu_\gamma(G) = \delta_\gamma(G) = 1 \). On the other hand, we see that Kinoshita's \(\theta \)-curve in Figure 4 has \(\mu(G) = \mu_\gamma(G) = 1 < \delta(G) = \delta_\gamma(G) = 2 \) and \(c(G) = 4 < c_\gamma(G) = 7 \). The proof of this assertion is omitted here, but our proof uses H. Moriuchi's classification of algebraic tangles in [6]. Also, we can show the following result by using a technique in [2]: For every graph \(\Gamma \) and any integer \(n \geq 0 \), there are infinitely many spatial graphs \(G \) of \(\Gamma \) such that \(\mu(G) = \mu_\gamma(G) = \delta(G) = \delta_\gamma(G) = n \).

4 A spatial graph with degree one vertices

Let \(\Gamma \) be a finite polygonal graph with degree 1 vertices, for simplicity, which has just one connected component with vertices of degrees \(\geq 3 \). A spatial graph of \(\Gamma \) is a topological embedding image \(G \) of \(\Gamma \) into \(\mathbb{R}^3 \) such that \(h(G) \) is a polygonal graph in \(\mathbb{R}^3 \) for an orientation-preserving

Figure 3: An edge reduction
homeomorphism $h : \mathbb{R}^3 \rightarrow \mathbb{R}^3$. Let V be the set of degree one vertices of G. For the line segment $[a, b]$ between $a, b \in \mathbb{R}^3$ and $x \in G$, let $S_v(x) = [v,x] \cup (\bigcup_{v' \in V} [v,v'])$ be a star with origin v. Assume that $G_v(x) = G \cup S_v(x)$ is a spatial graph without degree one vertices for every $v \in V$ and $x \in G$. Then the warping degree $\delta(G,x)$ and the unknotting number $\mu(G,x)$ of (G,x) are defined by $\delta(G,x) = \max_{v \in V} \delta(G_v(x))$ and $\mu(G,x) = \max_{v \in V} \mu(G_v(x))$, which are called the warping degree and the unknotting number of G and denoted by $\delta(G)$ and $\mu(G)$, respectively, when $x \in V$. An example is illustrated in Figure 5. In a similar way, the γ-warping degrees $\delta_{\gamma}(G,x)$, $\delta_{\gamma}(G)$ and the γ-unknotting numbers $\mu_{\gamma}(G,x)$, $\mu_{\gamma}(G)$ are defined. Different invariants taking the minimum or the average in place of the maximum are also defined.

\begin{align*}
\delta(G) = \mu(G) &= 0 \\
\delta(G) = \mu(G) &= 1
\end{align*}

Figure 5: Knotted arcs

References

