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Abstract : We consider the number of embeddings of almost unknotted 8k-graphs, 3 ~ k ~ 6, 
in the simple cubic lattice Z 3 . We show that to exponential order this number is the same 
as· the number of unknotted 8k-graphs. This implies that almost unknotted 8k-graphs are 
exponentially rare in the set of embeddings of 8k-graphs. We construct almost unknotted 
surfaces in Z 4 by spinning and show that to exponential order the numbers of almost unknotted 
spun ek are equal to the numbers of unknotted spun ek, 4 ~ k::::; 6. The case of k = 3 is open. 

1 Introduction 

In the early 1960s Frisch and Wasserman [1] and independently Delbriick [2] conjectured that 
sufficiently long ring polymers would be knotted with high probability. This became known 
as the Frisch-Wasserman-Delbriick conjecture and was settled for a lattice model [3, 4) and for 
two continuum models [5, 6] in a set of papers published about twenty five years later. For the 
lattice case, suppose that Pn is the number of polygons (embed dings of simple closed curves in 
the simple cubic lattice, Z 3 ) with n edges, where polygons are counted up to translation. For 
instance, P4 = 3, P6 = 22 and pg = 207. It is known [7] that the limit 

lim ·n-1 logpn = K 
n-+oo 

(1) 

exists and it is easy to establish that log 3 ::::; K ~ log 5. If p~ is the number of unknotted polygons 
with n edges than it is known [3, 4] that the limit 

1. -11 0 1m n ogpn = Ko 
n-+oo 

(2) 

and that 
KQ < K. (3) 

This establishes the Frisch-Wasserman-Delbriick conjecture for the lattice polygon model. There 
are some extensions in the literature to knotted embeddings of graphs [8, 9] and to linking of 
lattice polygons [10]. 

A theta graph (actually a 83-graph) is a multipy connected graph with two vertices of 
degree 3 and three edges, resembling the Greek letter e. We shall sometimes call any graph 
homeomorphic to this graph a theta graph. We can extend this to a 8k-graph which is a multiply 
connected graph with two vertices of degree k and k edges. A rather complicated embedding 
in R 3 of a 84-graph is shown in Figure 1. Embeddings of theta graphs in R3 can be knotted 
(eg if any cycle is knotted) or unknotted (ambient isotopic to a planar embedding). Kinoshita 
[11] gave an example of an embedding of a theta graph which is not ambient isotopic to the 
planar embedding but has no knotted cycle. It becomes unknotted if any edge is deleted. Such 

· em beddings are called almost unknotted embeddings. Examples for 8 k, k > 3 ·have been given 
by Suzuki [12} and an important theorem about the existence of almost unknotted embeddings 
was established by Kawauchi [13]. Figure 1 shows an almost unknotted embedding of 8 4 . 
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2 Almost unknotted embeddings of theta graphs 

If we think of embedding ek, 3 s k s 6, in Z 3 we can choose to stratify the embeddings by 
the total number of edges ( n) in the embedding. An embedding of e k has k sequences of edges 
with the first and l~st edge in each sequence incident on a vertex of degree k. If there is the 
same number of edges in each sequence of edges we say that the embedding is uniform [9]. If we 
restrict ourselves to uniform embeddings then the total number of edges, n, must be divisible 
by k. We shall consider only uniform embeddings. The results for non-uniform embeddings are 
very similar [14, 15]. 

Figure 1: An almost unknotted 84 graph. 

Let (h(n) be the number of uniform embeddi~gs of ek in Z 3 with a total of n edges. Recall 
that ()k(n) = 0 unless k divides n. Let OZ(n) be the number of unknotted uniform embeddings 
of e k and let ()k ( n) be the number of almost unknotted uniform em beddings of e k with n edges. 
It is known [9] that 

(4) 

and that 
(5) 

From (3) this implies that unknotted uniform embeddings are exponentially rare. 
This raises the interesting question as to whether almost unknotted embeddings are rare 

with respect to unknotted embeddings. It has been proved [14, 15] that 

(6) 

for 3 ::; k ::; 6 so almost unknotted embeddings and unknotted embeddings are equinumerous to 
exponential order. 

The proof uses explicit lower and upper bounds on Bk(n). The lower bound uses a result 
about polygons confined to wedges and to explain the idea we consider the square lattice Z 2 . 

Consider the vertices of Z 2 with integer coordinates (x, y) such that 

1. X~ 0, 

2. y ~ 0 and 

3. y S 1 + ax, a > 0. 
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These constraints define a wedge~ W (a). If we write Pn (W) for the number of polygons containing 
the edge (0, 0)- (0,1), confined toW= W(a) then Hammersley and Whittington [16] proved 
that 

(7) 

independent of a for a > 0~ where }'l,2 is the connective constant of the square lattice. This result 
also works for Z 3 and has been extended to more general wedges [10, 16]. In three dimensions 
essentially the same argument works to show that liffin_.00 n - 1 log p~ (W) = Ko ~ where p~ (W) is 
the number of unknotted n-edge polygons in a suitably defined wedge W. 

To construct a lower bound we construct an almost unknotted embedding of 8k which fits 
in a box (the shaded region in Figure 2) and has one edge from each of the k branches in the 
right most plane of the box. We then construct k disjoint wedges (see Figure 2) incident on 
this box and put unknotted polygons in each wedge. With the original embedding of 8 k fixed 
we allow the numbers of edges of each of the unknotted polygons to grow. These objects are 
almost unknotted embeddings of 8k and can be constructed to have njk edges in each of the k 
branches [15]. This yields the lower bound 

(8) 

Figure 2: A set of disjoint wedges. 

To construct upper bounds we first look at the cases where k is even ( ie k = 2 and 4). In 
these cases the graph is Eulerian. Consider a cubic box of side L = 2n. Embed k/2 circles as 
unknotted polygons each with 2n / k edges in all possible ways in the box. The number of ways 
to do this is [pgn/k]kl2e0 (n) where the eo(n) term accounts for the number of ways to translate 
the polygons within the box. This gives an upper bound on the number of almost unknotted 
embeddings so · 

(9) 

This, together with (8), gives the required result fork= 2 and 4. For k odd this approach does 
not work but a proof can be constructed [14, 15] based on the Loomis-Whitney inequality 117]. 
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3 Spun theta graphs and almost unknotted surfaces 

One can ask if something similar happens in higher dimensions. If an unknotted 83 is spun up 
a dimension to give a surface in R4 then the surface is a 2-sphere with a disc sewn along its 
equator. The spinning operation is as follows. One of the vertices of degree 3 is removed to give 
three vertices each of degree 1. These vertices sit in a plane and the remainder of the graph 
is in the half-space bounded by this plane. This object is then spun about this plane to give 
a surface in R4 . If the original 83 was knotted then the surface in R4 is knotted, ie it is not 
ambient isotopic to the standard 2-sphere with a disc sewn along its equator. If the original 8 3 
is almost unknotted then the resulting surface is also almost unknotted. This is clear because 
none of the 2-spheres will be knotted but, since 1r1 is invariant under spinning, the resulting 
surface is knotted. Of course, the situation is essentially the same for spun 84 (see Figure 3), 
85 and 86. For instance a 84 gives two 2-spheres with coincident equators. 

Figure 3: A spun 84 can be obtained by spinning a 84 graph. If the 84 graph is almost 
unknotted so is the resulting spun 84. 

An analogous spinning operation can be carried out for the lattice case, ensuring that the 
resulting surface is embeddable in Z 4 [15). 

We write Sk(n) for the number of embeddings of spun 8k in Z 4 with n plaquettes and 
S£(n) and S'k(n) for the numbers of embeddings of spun 8k in Z 4 which are unknotted or 
almost unknotted. The same kinds of argument as those described in Section 2 work in higher 
dimension [15] to prove that 

(10) 

for 4 :::; k :::; 6. The case k = 3 is still open [15]. Note the non-strict inequality in higher 
dimension. This is because we lack a pattern theorem for dimensions higher than 3. 

Spinning to give hypersurfaces in ZP, p > 4, works in an analogous way [15]. 

Acknowledgment. 

This research was supported by NSERC of Canada. 

-14-



References 

[1] H. Frisch and E. Wasserman, J.~Ain. Chern. Soc. 83 (1961), 3789. 

[2J M. Delbriick, Proc. Symp. Appl. Math. 14 (1962), 55. 

[3] D.W. Sumners and S.G. Whittington, J. Phys. A: Math. Gen. 21 {1988), 1689. 

[4] N. Pippenger, Discrete Appl. Math. 25 (1989), 273. 

[5] Y. Diao, D. Pippenger and D.W. Sumners, J. Knot Theory and its Ramifications 3 (1994), 
419. 

[6) Y. Diao, J. Knot Theory and its Ramifications 4 (1995), 189. 

[7] J.M. Hammersley, Proc. Camb. Phil. Soc. 57 (1961), 516. 

[8] C. E. Soteros, D.W. Sumners and S.G. Whittington, Math. Proc. Camb. Phil. Soc. 111 
(1992), 75. 

[9} C.E. Soteros, J. Phys. A: Math. Gen. 25 (1992), 3153. 

[10] C. E. Soteros, D.W. Sumners and S.G. Whittington, J. Knot Theory and its Ramifications 
8 (1999), 49. 

[11) S. Kinoshita, Pacific J. Math. 42 (1972), 89. 

[12] S. Suzuki, Kobe J. Math. 1 (1984), 19. 

[13] A. Kawauchi, Osaka J. Math. 26 (1989), 743. 

[14] N. Madras, J. Phys. Conf. Series 42 (2006), 213. 

[15] N. Madras, D.W. Sumners and S.G. Whittington, J. Knot Theory and its Ramifications 
(in press). 

[16] J.M. Hammersely and S.G. Whittington, J. Phys. A: Math. Gen. 18 (1985), 101. 

[17] L.H. Loomis and H. Whitney, Bull. Amer. Math. Soc. 55 (1949), 961. 

-15-


