Title
Hidden Order and Dynamics of Supersymmetric VBS models (New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations)

Author(s)
Hasebe, Kazuki; Totsuka, Keisuke

Citation
物性研究 (2011), 95(6): 627-627

Issue Date
2011-03-05

URL
http://hdl.handle.net/2433/169441

Type
Departmental Bulletin Paper

Publisher
Kyoto University
Hidden Order and Dynamics of Supersymmetric VBS models
Kazuki Hasebe\textsuperscript{1} and Keisuke Totsuka\textsuperscript{2}

\textsuperscript{1} Department of General Education, Takuma National College of Technology, Takuma-cho, Mitoyo-city, Kagawa 769-1192, Japan
\textsuperscript{2} Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto 606-8502, Japan

We present a detailed analysis of properties of supersymmetric valence bond solid (VBS) states. The supersymmetric VBS states realize hole-doping into the well-known pure spin VBS (or AKLT) states and are known to possess (formal) similarity to the BCS wavefunction of superconductivity. By using a supersymmetric extension of matrix-product representation, we show that there is a kind of hidden order in our supersymmetric VBS states. With the supersymmetric matrix product formalism, hole-doping dependent behaviors of various physical quantities, such as the spin- and the charge excitation, the superconducting order parameter etc., are exactly evaluated. Several extensions of our VBS states will be discussed as well.