Boundary Operator in the Matrix Product States

Isao Maruyama

Graduate School of Engineering Science，Osaka University
1－3 Machikaneyama－cho，Toyonaka，Osaka 560－8531，JAPAN

The direct product state is written as $\Pi_{i}|\psi\rangle_{i}$ ，where $|\psi\rangle_{i}$ is a local state at the i th cluster．To represent quantum entanglement between decoupled clusters，one of natural generalizations is the matrix product state $(\mathrm{MPS})|\Psi\rangle=\operatorname{Tr} \Pi_{i} A_{i}$ with matrix elements $\left(A_{i}\right)_{m m^{\prime}}=\left|\psi_{i ; m m^{\prime}}\right\rangle_{i}$ ．The translationally invariant MPS under the periodic boundary condition in one dimensional systems is written as $|\Psi\rangle=\operatorname{Tr} \prod_{i} A$ with a single uniform matrix A ．To include the boundary effect，one can consider the boundary matrix Q with matrix elements $(Q)_{m m^{\prime}}=\left|\phi_{m m^{\prime}}\right\rangle_{0}$ and $|\Psi\rangle=\operatorname{Tr}\left[Q \Pi_{i} A\right]$ ，where the arti cial Hilbert space $|\phi\rangle_{0}$ is set to be one－dimensional generally［1］．Does not the translationally invariant MPS have the boundary operator Q ？

Our studies show the importance of Q for the MPS．We have derived a MPS repre－ sentation of the Bethe ansatz state for spin－1／2 Heisenberg chain［2］and the Lieb－Liniger model［3］，from the algebraic Bethe ansatz using the factorizing F－matrices．The uniform matrix A obtained for the Heisenberg chains is the same as that in the matrix product ansatz［4］apart from normalization factors．For the Lieb－Liniger model describing the Bose gas with delta－function interaction in one－dimension，a＂continuous＂extension of the matrix product state is obtained．The exact MPS has both translationally invariance and the boundary operator Q ．The latter comes from the domain wall boundary condi－ tions［5］．In fact，for the MPS in the Bose gas，Q plays a role in xing the number of particles．From a numerical point of view，Q is also important to consider the spontaneous symmetry breaking of the translational symmetry and long－period super－lattices for the magnetic plateau［6］．

References

［1］S．Östlund and S．Rommer，Phys．Rev．Lett．75， 3537 （1995）．
［2］H．Katsura and I．Maruyama，J．Phys．A 43， 175003 （2010）．
［3］I．Maruyama and H．Katsura，J．Phys．Soc．Jpn．79， 073002 （2010）．
［4］F．C．Alcaraz，J．M．Lazo，J．Phys．A：Math．Gen．39， 11335 （2006）．
［5］V．Korepin，Commun．Math．Phys．86， 391 （1982）．
［6］H．Ueda and I．Maruyama，unpublished

