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Abstract We consider basic M/M/c/c (c ≥ 1) retrial queues where the number of busy

servers and that of customers in the orbit form a level-dependent quasi-birth-and-death

(QBD) process with a special structure. Based on this structure and a matrix continued

fraction approach, we develop an efficient algorithm to compute the joint stationary

distribution of the numbers of busy servers and retrial customers. Through numerical

experiments, we demonstrate that our algorithm works well even for M/M/c/c retrial

queues with large value of c.
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1 Introduction

This paper considers M/M/c/c retrial queues, in which if an arriving customer finds

an idle server, he starts to be served, otherwise he moves to a virtual orbit, stays there

for an exponentially distributed time and retries to get service. Retrial queues arise in

various systems such as telecommunications, computer networks and call centers [1,6,7,

21,22,27,31]. Aguir et al. [1] investigate the impact of retrials on the performance of call

centers, using a fluid approximation. Artalejo and Pla [6] further evaluate the effect of

customer retrials on operations of telecommunication systems, by a retrial queue with
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infinite waiting room and orbit. The authors in [6] propose two truncation methods to

analyze the underlying Markov chain of the retrial queue. Koole and Mandelbaum [21],

and Gans et al. [22] present extensive surveys on queueing models of call centers in

which the retrial phenomenon is taken into account.

Considerable attention has been paid to applications of retrial queueing models

for the performance evaluation of cellular mobile and computer networks [2,7,12,24,

27,31]. Tran-Gia and Mandjes [31] use some retrial queueing models to analyze the

performance of cellular mobile networks and claim that retrial phenomenon should be

taken into account in a careful design of these systems. Marsan et al. [24] propose an

approximation for the blocking probability of a retrial queue presented in [31]. Alfa

and Li [2] and Choi et al. [12] consider the design and analysis of cellular mobile

networks with correlated arrival processes. Artalejo and Lopez-Herrero [7] evaluate

the performance of cellular mobile networks operating under a random environment.

Phung-Duc et al. [27] develop a multiserver retrial queueing model with random server

selection to study the influence of retransmissions due to the contention of bursts on

Optical Burst Switched Networks (OBS) with wavelength conversion.

Analytical solutions for multiserver retrial queues have been obtained for a few

special cases. An explicit solution for the joint stationary distribution of the numbers

of busy servers and customers in the orbit is obtained only for the M/M/1/1 retrial

queue. For the case of c = 2, the joint stationary distribution is expressed in terms of

hypergeometric functions [14,18,29]. As for the cases of c = 3 and 4, Phung-Duc et

al. [28] show that the joint stationary distribution is expressed in terms of continued

fractions. The same authors in [29] further derive analytical solutions for the joint

stationary distribution of state-dependent M/M/c/c + r retrial queues with Bernoulli

abandonment, where c + r ≤ 4.

For general M/M/c/c retrial queues, many approximation methods have been de-

velopped so far. The basic idea of these methods is that the original M/M/c/c retrial

queue is approximated by some other analytically tractable models. A direct trunca-

tion method for the M/M/c/c retrial queue, assumes that the number of customers

in the orbit does not exceed some truncation point, under which a blocked customer

that sees the orbit full is lost [14]. Stepanov [32] considers some truncation methods

which disregard the states whose stationary probabilities are considered to be small.

Falin and Templeton [14] introduce a generalized truncation method which assumes

that all the servers are always busy due to retrials from the orbit when the number of

customers in the orbit exceeds some sufficiently large level.

Artalejo and Pozo [4] propose an extension of [14] assuming that there is at most one

idle server when the number of customers in the orbit exceeds some level. The authors

claim that it is difficult to make a further extension due to the same difficulty as in the

derivation of an analytical solution for the M/M/c/c retrial queue with c > 2. It should
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be noted that in these truncation methods [4,14], the number of retrial customers is not

necessarily assumed to be finite. Anisimov and Artalejo [3] present a unified approach to

prove that the stationary distributions of these generalized truncation models converge

to those of the original models.

Matrix analytic approaches to mutiserver retrial queues are extensively studied by

many researchers. For a detailed list of papers on this research direction, the readers

are referred to a survey paper by Gomez-Corral [17] and a recently published book by

Altalejo and Gomez-Corral [5]. Breuer et al. [9] and Klimenok and Dudin [20] consider

a BMAP/PH/N retrial queue, which is more general than the model of this paper. The

authors formulate the dynamics of the queue as a level-dependent M/G/1 type Markov

process with the so-called quasi-Toeplitz structure. The computational algorithm in [9,

20] is based on G-matrices, which do not have a sparse structure.

Neuts and Rao [25] propose an approximation method which assumes that the

retrial rate is constant when the number of customers in the orbit exceeds a trunca-

tion point. Under this assumption, the level-dependent QBD process becomes a level-

independent QBD process from the truncation point. As a result, the authors obtain

a level-independent QBD process with multiple boundary conditions for which some

efficient algorithms are available. The authors show that their approximation outper-

forms the direct truncation method in [14] when the traffic intensity is low. However,

under a high traffic intensity the approximation by Neuts and Rao [25] has a large error

because the dynamics of the approximation model is changed. Domenech-Benlloch et

al. [13] improve the method of Neuts and Rao by adjusting the retrial rate.

Hanschke [19] analyzes a mutiserver retrial queue, in which arriving customers are

blocked with some positive probabilities depending on the number of busy servers.

In this retrial queue, the number of busy servers and that of customers in the orbit

form a level-dependent QBD process with some special structure, which enables us to

calculate the rate matrices by a forward-type algorithm. However, it is reported by

Baumann and Sandmann [8] that the forward type algorithm in [19] is numerically

unstable due to the mix of positive and negative terms in calculation. Furthermore,

the approach in [19] cannot be applied to the M/M/c/c retrial queue of this paper. It

should be noted that the approach by Hanschke [19] is different from those presented

in [4,14,25,32] in the sense that the author directly analyzes the original retrial queue.

Liu and Zhao [23] use a censoring technique and a level-dependent QBD approach to

derive analytical solutions for the cases of c = 1 and 2 and show the asymptotic behavior

for the stationary distribution of the general case. Bright and Taylor [10] develop

a computational algorithm for the rate matrices and the stationary distributions of

level-dependent QBD Markov processes, which can be used to analyze the M/M/c/c

retrial queue. The authors also propose a method to determine the truncation level,

however, the method unfortunately cannot be applied for the level-dependent QBD
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process arising from the M/M/c/c retrial queue. It should be noted that an efficient

estimation of the truncation point for level-dependent QBD processes plays a crucial

role in the computation of their stationary distributions.

Recently, some progress has been made in the development of computational al-

gorithms for level-dependent QBD processes. Baumann and Sandmann [8] propose a

backward algorithm for level-dependent QBD processes. Through numerical experi-

ments, the authors show that their algorithm outperforms several conventional numer-

ical methods such as Gaussian elimination method, Jacobi iteration method, Gauss-

Seidel iteration method, and the power method on uniformized discrete-time level-

dependent QBDs. However, in [8] a comparison with the most competitive algorithm

by Bright and Taylor [10] has not been carried out yet. Phung-Duc et al. [30] in-

dependently develop a similar algorithm to that of Baumann and Sandmann [8] for

level-dependent QBD processes. The authors in [30] theoretically show that their al-

gorithm outperforms the algorithm by Bright and Taylor [10] in memory usage, while

the computational complexities of both algorithms are the same.

In this paper, we propose an efficient algorithm to compute the joint stationary

distribution of the M/M/c/c retrial queue, based on the backward algorithms presented

in [8,30]. First, using a special structure of the QBD process, we show that only the

last row vector of the rate matrices is nonzero and thus the computation of the rate

matrices is reduced to that of their last row vectors. Second, we propose an algorithm

to compute the last row vectors efficiently in both memory usage and computational

complexity. A remarkable feature of the proposed algorithm is that it does not require

the computation of any inverse matrix.

Furthermore, we use the analytical result of an M/M/1/1 retrial queue to determine

the truncation point for the level-dependent QBD process of the M/M/c/c retrial

queue. Using this truncation point, we compute a numerical solution for the joint

stationary distribution of the M/M/c/c retrial queue. It should be noted that the

truncation methods in [4,14,23,25] aim at minimizing the truncation point. In contrast,

our truncation method aims at finding a sufficiently large truncation point. In addition,

the same as Hanschke [19], we also directly analyze the original M/M/c/c retrial queues.

An important remark is that the computational complexity has not been shown in the

literature [13,19,25] on matrix analytic approaches to multiserver retrial queues. In

this paper, we show that the computational complexity of the algorithm is linear with

respect to the number of servers. We further show that our algorithm is numerically

stable because it manipulates positive numbers.

The rest of the paper is organized as follows. Section 2 presents the M/M/c/c retrial

queueing model and some preliminary results. The main contribution of this paper is

presented in Section 3. Section 4 is devoted to an extensive presentation of numerical

examples for various scenarios. Finally, Section 5 concludes the paper.
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Fig. 1 M/M/c/c retrial queue.

2 Model Description and Preliminary Results

We first describe the M/M/c/c retrial queue. The primary customers arrive at the

servers according to a Poisson process with rate λ > 0 and the service time of each

server follows an exponential distribution with mean 1/ν. An arriving primary customer

either occupies one of idle servers if any or moves to the orbit if all the servers are busy.

A customer in the orbit is called a retrial customer hereafter. Each retrial customer

stays in the orbit for an exponentially distributed time with finite positive mean 1/µ

independently of other customers. After the sojourn time in the orbit, a retrial customer

retries to get service. The retrial customer is served immediately if there is an idle server

upon arrival, otherwise it joins the orbit again. See Fig. 1 for details.

Let X(t) = (C(t), N(t)) (t ≥ 0), where C(t) and N(t) denote the numbers of busy

servers and customers in the orbit, at time t, respectively. It is easy to see that the

bivariate process {X(t); t ≥ 0} is a Markov chain with the state space {0, 1, . . . , c}×Z+,

where Z+ = {0, 1, 2, . . .}. Throughout the paper, we assume that {X(t)} is ergodic.

It is shown in the book by Falin and Templeton [14] that the necessary and sufficient

condition for the ergodicity of {X(t)} is ρ = λ/(cν) < 1.

It is easy to confirm that {X(t)} is a level-dependent QBD process whose infinites-

imal generator is given by
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where O denotes a matrix of an appropriate dimension with entries being zeros and

Q
(n)
0 , Q

(n)
1 and Q
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The diagonal components of Q
(n)
1 are given by b

(n)
i = −(λ + iν + nµ(1 − δi,c)) for

i = 0, 1, . . . , c, where δi,c denotes the Kronecker delta. Let πi,n = limt→∞ Pr{C(t) =

i, N(t) = n} denote the joint stationary probability of the numbers of busy servers

and customers in the orbit. Let ın = (π0,n, π1,n, . . . , πc,n) and ı = (ı0, ı1, . . .). The

stationary distribution ı is the solution of the following system of equations.

ıQ = 0, ıe = 1, (1)

where vectors e and 0 denote a column vector and a row vector with an appropriate

dimension whose entries are ones and zeros, respectively. Equation (1) is rewritten in

a vector form as follows.

ın−1Q
(n−1)
0 + ınQ

(n)
1 + ın+1Q

(n+1)
2 = 0, n ∈ N, (2)

ıe = 1, (3)

where N = {1, 2, . . .}. The solution of (2) and (3) is given by

ın = ın−1R(n), n ∈ N,

where {R(n); n ∈ N} is the minimal nonnegative solution of

Q
(n−1)
0 + R(n)Q

(n)
1 + R(n)R(n+1)Q

(n+1)
2 = O, n ∈ N,
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and the boundary vector ı0 is the solution of

ı0(Q
(0)
1 + R(1)Q

(1)
2 ) = 0,

ı0(I + R(1) + R(1)R(2) + . . .)e = 1.

Matrix I denotes an identity matrix with an appropriate dimension.

Proposition 1 We have the following backward recursive equation.

R(n) = Rn(R(n+1)), n ∈ N,

where Rn(X) is defined as

Rn : M −→ M,

Rn(X) = Q
(n−1)
0

“

−Q
(n)
1 − XQ

(n+1)
2

”−1
, n ∈ N.

Here, M denotes a set of (c + 1) × (c + 1) matrices in which Rn(·) is well defined.

Definition 1 For k, n ∈ N, we define the sequence R
(n)
k as follows.

R
(n)
0 = O, n ∈ N,

and

R
(n)
k = Rn(R

(n+1)
k−1 ) = · · · = Rn ◦ Rn+1 ◦ ◦ ◦ Rn+k−1(O), n, k ∈ N, (4)

where f ◦ g(·) = f(g(·)).

Proposition 2 (Proposition 2.4 in [30]) For k, n ∈ N, we have

lim
k→∞

R
(n)
k = R(n).

Remark 1 According to Proposition 1 and (4), R(n) can be regarded as an infinite

matrix continued fractions, and R
(n)
k is the k-th approximation of R(n). For the general

notion of continued fractions, the readers are referred to [15,16,26].

3 Computation of the Stationary Distribution

In this section, we develop an algorithm to compute an approximation to the stationary

distribution of the level-dependent QBD process arising from the M/M/c/c retrial

queue. The algorithm is divided in three stages. The first stage is devoted to the

computation of a fundamental step of the backward formula (4). The second stage is

concerned with the computation of an approximation to the stationary distribution
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of the level-dependent QBD process, provided that the truncation point is given in

advance. The final stage presents a method to determine the truncation point, based

on the explicit solution of an M/M/1/1 retrial queue.

3.1 Fundamental step

According to Definition 1, we have to compute k inverse matrices in order to obtain

R
(n)
k . The computational cost for each inverse matrix is equal to O(c3), where f(x) =

O(xn) (n ∈ N) implies that there exists some finite κ > 0 such that limx→∞ |f(x)|/xn =

κ. Instead of directly computing the inverse matrix, we propose an efficient method to

obtain R
(n)
k and an approximation to R(n), based on a sparse structure of these rate

matrices. The computational complexity of the proposed method is only O(c). Indeed,

the first c rows of R
(n)
k and R(n) are all zeros, due to the special structure of Q

(n−1)
0 .

Therefore, the computation of R
(n)
k and R(n) is reduced to that of r

(n)
k and r(n),

where r
(n)
k (k ∈ Z+) and r(n) denote the last rows of R

(n)
k and R(n), respectively. Let

r
(n)
k =

“

r
(n)
k,0 , r

(n)
k,1 , . . . , r

(n)
k,c

”

, r(n) =
“

r
(n)
0 , r

(n)
1 , . . . , r

(n)
c

”

, n, k ∈ N.

Remark 2 The sparse structure of the rate matrices is also used by Liu and Zhao [23],

who exploit the special structure of R(n) to derive explicit solutions for the M/M/c/c

retrial queues with c = 1, 2, and some asymptotic results for the general case. In

this paper the sparse structure of the rate matrices is used in order to reduce the

computational complexity of a numerical algorithm.

Theorem 1 For n, k ∈ N, r
(n)
k is expressed in terms of r

(n+1)
k−1 by

r
(n)
k,i = αi + βir

(n)
k,c , i = 0, 1, . . . , c − 1,

where {αi, βi; i = c − 1, c − 2, . . . , 1} and r
(n)
k,c are determined as follows.

αc = 0, βc = 1, αc−1 = −1, βc−1 = −
b
(n)
c + (n + 1)µr

(n+1)
k−1,c−1

λ
,

αi−1 = −
b
(n)
i αi + (i + 1)ναi+1

λ
, i = c − 1, c − 2, . . . , 1

βi−1 = −
b
(n)
i βi + (i + 1)νβi+1 + (n + 1)µr

(n+1)
k−1,i−1

λ
, i = c − 1, c − 2, . . . , 1

and

r
(n)
k,c = −

b
(n)
0 α0 + να1

b
(n)
0 β0 + νβ1

.
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Proof Let U
(n)
k denote

U
(n)
k = Q

(n)
1 + R

(n+1)
k−1 Q

(n+1)
2 , n, k ∈ N.

Matrix U
(n)
k is the defective infinitesimal generator of the restricted process of {X(t)}

on level n, under the taboo of levels n − 1 and n + k. Due to the special structure of

R
(n+1)
k−1 and of Q

(n+1)
2 , we have

U
(n)
k = Q

(n)
1 +

 

O

er
(n+1)
k−1

!

, n, k ∈ N, (5)

where

er
(n)
k = nµ

“

0, r
(n)
k,0 , r

(n)
k,1 , . . . , r

(n)
k,c−1

”

, n, k ∈ N.

We also have

R
(n)
k = Q

(n−1)
0

“

−U
(n)
k

”−1
, n, k ∈ N,

which is equivalent to

R
(n)
k U

(n)
k = −Q

(n−1)
0 , n, k ∈ N. (6)

Because the first c rows of both sides of (6) are zero vectors, (6) is equivalent to

(x0, x1, . . . , xc)U
(n)
k = (0, 0, . . . , 0,−λ), (7)

where (x0, x1, . . . , xc) is used instead of r
(n)
k for convenience. From (5), we can solve

(7) efficiently. Indeed, we rewrite (7) as the following system of equations.

b
(n)
0 x0 + νx1 = 0, i = 0, (8)

λxi−1 + b
(n)
i xi + (i + 1)νxi+1 + (n + 1)µr

(n+1)
k−1,i−1xc = 0, i = 1, 2, . . . , c − 1, (9)

λxc−1 +
“

b
(n)
c + (n + 1)µr

(n+1)
k−1,c−1

”

xc = −λ, i = c. (10)

We assume that xi (i = 0, 1, . . . , c) can be expressed in terms of xc as

xi = αi + βixc, i = 0, 1, . . . , c. (11)

Substituting (11) into (9) and (10) yields

λαi−1 + b
(n)
i αi + (i + 1)ναi+1 = 0, (12)

λβi−1 + b
(n)
i βi + (i + 1)νβi+1 + (n + 1)µr

(n+1)
k−1,i−1 = 0, (13)
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for i = c − 1, c − 2, . . . , 1. It follows from (10) and (11) with i = c that

αc = 0, βc = 1, αc−1 = −1, βc−1 = −
b
(n)
c + (n + 1)µr

(n+1)
k−1,c−1

λ
. (14)

Substituting (11) into (8) yields

b
(n)
0 (α0 + β0xc) + ν(α1 + β1xc) = 0. (15)

Theorem 1 can be proved by using equations (11) to (15).

Corollary 1 The solution of the system of equations:

x0(Q
(0)
1 + R(1)Q

(1)
2 ) = 0, x0e = 1, (16)

is given by

xc,0 =
1

β0 + β1 + · · · + βc−1 + 1
,

xi,0 = βixc,0, i = 0, 1, . . . , c − 1,

where x0 = (x0,0, x1,0, . . . , xc,0).

Proof We observe that the system of linear equations:

x0(Q
(0)
1 + R(1)Q

(1)
2 ) = 0,

expresses a special case of (7) with n = 0 and the λ in the right hand side being equal

to 0. Note that for this case, αc−1 = 0 and thus αi = 0 (i = 0, 1, . . . , c). Therefore,

from xi,0 = βixc,0 and x0e = 1, Corollary 1 is proved.

Because {αi, βi; i = 0, 1, . . . , c} grow fast and the order of αi and βi is the same, we

confirm that the computation of xi (i = 0, 1, . . . , c−1) by (11) is numerically unstable.

Instead of using (11), we use the following theorem to determine xi (i = 0, 1, . . . , c−1)

provided that xc is given.

Theorem 2 If xc is given, then xi (i = 0, 1, . . . , c − 1) can be determined by

xi =
(i + 1)νxi+1 + Di

Bi
, i = 0, 1, . . . , c − 1, (17)

where the sequences {Bi, Di; i = 0, 1, . . . , c − 1} are recursively defined by

B0 = λ + nµ, D0 = 0,

Bi = (λ + iν + nµ) − λiν

Bi−1
, Di = (n + 1)µr

(n+1)
k−1,i−1xc +

λDi−1

Bi−1
. (18)
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Furthermore, we have

Bi > λ, Di > 0, i = 0, 1, . . . , c − 1. (19)

Proof Equation (17) is easily proved using mathematical induction. We show (19) also

by mathematical induction. We confirm that (19) is true for i = 0. Assuming that (19)

is true for all i = 0, 1, . . . , m, where m = 0, 1, . . . , c − 2, we prove that (19) is also true

for i = m + 1. Indeed, it follows from (18) that

Bm+1 = λ + (m + 1)ν + nµ − λ(m + 1)ν

Bm

> λ + (m + 1)ν + nµ − λ(m + 1)ν

λ

= λ + nµ > λ,

where Bm > λ is used in the first inequality. It follows from (18) and

r
(n+1)
k−1,i−1 > 0, xc > 0, Bi > 0,

that Di > 0 (i = 0, 1, . . . , c − 1).

Remark 3 According to Falin and Templeton [14], recursive formulae (17) and (18)

have been used in analyses of not only retrial queues but also numerical solutions

of boundary value problems of second-order differential equations. However, to the

best of our knowledge, the inequalities in (19) have not been rigorously proven yet.

For example, Artalejo and Pozo [4] use a similar procedure as in Theorem 2, where

Bi, Di > 0 (i = 0, 1, . . . , c − 1) is claimed without a proof.

Definition 2 Let rn denote a function such that

rn(x) = Lr (Rn(X(x)) , n ∈ N,

where

X(x) =

 

O

x

!

.

In the above, x is a row vector with an appropriate dimension and Lr(Y ) denotes the

last row of matrix Y .

It follows from Theorems 1, 2 and Definition 2 that

r(n) = rn(r(n+1)), r
(n)
k = rn(r

(n+1)
k−1 ) = rn ◦ rn+1 ◦ ◦ ◦ rn+k−1(0), (20)

for all n, k ∈ N.
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3.2 Algorithm

In this section, first we propose an algorithm to compute the rate matrices. Then,

we compute an approximation to the joint stationary distribution, provided that the

truncation point is given in advance.

3.2.1 The rate matrices

Recently, Phung-Duc et al. [30] proposed an algorithm to compute an approximation

bR
(n)

to R(n). Based on (20), we modify the algorithm in [30] to efficiently compute

br(n), which is the last row of bR
(n)

. In Algorithm 1, {kl; l ∈ Z+} is a strictly increasing

sequence of non-negative integers, and ||x||∞ denotes the infinity norm of vector x,

whose definition is given by

||x||∞ = max
j

|xj |,

where xj represents the jth entry of x.

Table 1 Computation of r(n).

Begin Algorithm 1

Input: {Q
(n)
0 , Q

(n)
1 , Q

(n)
2 , kn; n ∈ Z+, ϵ}.

Output: {br(n)}.
l = 1;

Compute r
(n)
k1

and r
(n)
k0

using Theorems 1, 2 and (20).

while ||r(n)
kl

− r
(n)
kl−1

||∞ > ϵ do

l := l + 1;

Compute r
(n)
kl

and r
(n)
kl−1

using Theorems 1, 2 and (20).

end

br(n) := r
(n)
kl

;

End Algorithm 1

Corollary 2 The computational complexity of each step in Algorithm 1 and of the

boundary equation (16) is O(c).

Proof This corollary is a direct consequence of the proofs of Theorems 1 and 2.

3.2.2 Stationary distribution

In the general case, no closed form for {ın; n ∈ N} exists. Therefore, we present

an algorithm to compute an approximation {bın; n = 0, 1, . . . , N0} to the stationary

distribution {ın; n ∈ N}, where N0 is a natural number given in advance. See Table 2
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for details of the algorithm, which is modified from Algorithm 3 in [30]. In Table 2, xn

is given by

xn = (x0,n, x1,n, . . . , xc,n), n = 0, 1, . . . , N0,

which corresponds to ın. We also use

xn−1
bR

(n)
= xc,n−1br

(n),

to simplify the algorithm. A careful choice of N0 for the M/M/c/c retrial queue will

be discussed in Section 3.3.

Table 2 The stationary distribution.

Begin Algorithm 2

Input: λ, µ, ν, c, {kn; n ∈ N}, ϵ, N0.

Output: {bın; n = 0, 1, . . . , N0}.
Compute br(N0) using Algorithm 1 with {kn} and ϵ.

for n = 1 to N0 − 1 do

br(N0−n) = rN0−n(br(N0−n+1));

end

Compute x0 by Corollary 1.

for n = 1 to N0 do

xn = xc,n−1br
(n);

end

for n = 0 to N0 do

bın := xn
PN0

n=0 xne
;

end

End Algorithm 2

3.3 Choice of the truncation level N0

In Algorithm 2, the truncation level N0 is given in advance. It is desired that N0 is

the level where the tail probability is small enough to be neglected. In other words, we

need an N0 such that
∞
X

n=N0+1

ıne < ϵ0.

However, since ın is unknown, it is difficult to directly determine such N0 for a general

ergodic M/M/c/c retrial queue.

Recall that an explicit solution for the joint stationary distribution of an M/M/1/1

retrial queue is obtained in [14]. We consider an M/M/1/1 retrial queue with an arrival

rate λ/c, a service rate ν and a retrial rate µ. This M/M/1/1 retrial queue is also
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stable because ρ = λ/(cν) < 1. Let pi,n (i = 0, 1, n ∈ Z+) denote the joint stationary

probability that there are i busy server and n customers in the orbit. According to [14],

we have the following result.

p0,n =
ρn

n!
(1 − ρ)

λ
cµ +1

„

λ

cµ

«

n

, p1,n =
ρn+1

n!
(1 − ρ)1+

λ
cµ

„

1 +
λ

cµ

«

n

,

for all n ∈ Z+, where (φ)n (−∞ < φ < ∞, n ∈ Z+) denotes the Pochhammer (see e.g.

page 222 in [11]), whose definition is given by

(φ)n =

(

1, n = 0,

φ(φ + 1) · · · (φ + n − 1), n ∈ N.

The truncation point is determined by

N0 = inf{n |
n
X

i=0

(p0,i + p1,i) > 1 − ϵ0}, (21)

for any ϵ0 > 0. According to numerical results in [29], it seems that the tail probability

of the M/M/1/1 retrial queue is greater than that of the M/M/c/c retrial queues

(c = 2, 3 and 4) with the same traffic intensity. Based on these observations, we further

expect that the tail probability of an M/M/c/c (c ≥ 2) is also smaller than that of the

M/M/1/1 retrial queue. In particular,

∞
X

n=N0+1

ıne <

∞
X

n=N0+1

(p0,n + p1,n) < ϵ0.

This supports the choice of N0 by (21). The ergodic condition of the M/M/1/1 retrial

queue is the same as that of the M/M/c/c retrial queue. Therefore, we can obtain N0

for any λ and ν satisfying λ < cν, which is equivalent to the ergodic condition ρ < 1.

4 Performance Measures and Numerical Examples

In this section, we derive some performance measures and then provide some numerical

results.

4.1 Performance measures

Let πn denote the probability that there are n customers in the orbit in the steady

state. We have

πn =
c
X

i=0

πi,n, n ∈ Z+.
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Let E[C], Var(C), E[N ] and B denote the average and the variance of the number of

busy servers, the average number of customers in the orbit and the blocking probability,

respectively. We have

E[C] =
X

n∈Z+

c
X

i=0

πi,ni, E[N ] =
X

n∈Z+

nπn, B =
X

n∈Z+

πc,n.

and

Var(C) =

∞
X

n=0

c
X

i=0

πi,ni2 − E[C]2.

Remark 4 The blocking probability B is defined as the probability that an arriving

primary or retrial customer finds all the servers busy.

Let Bwor denote the blocking probability of the M/M/c/c Erlang loss system with

arrival rate λ and service rate ν. We have

Bwor =

(cρ)c

c!
Pc

i=0
(cρ)i

i!

.

Let Bwr denote the blocking probability of the M/M/c/c Erlang loss system with

arrival rate λ∗ and service rate ν, where

λ∗ = λ + µE[N ].

λ∗ expresses the average arrival rate of the primary customers and retrial customers.

We have

Bwr =

(cρ∗)c

c!
Pc

i=0
(cρ∗)i

i!

,

where

ρ∗ =
λ∗

cν
.

Let bπn, bE[C], bE[N ] and bB denote the approximations to πn, E[C], E[N ] and B, respec-

tively, i.e.,

bπn =
c
X

i=0

bπi,n, bE[C] =

N0
X

n=0

c
X

i=0

bπi,ni, bE[N ] =

N0
X

j=0

nbπn, bB =

N0
X

n=0

bπc,n,

and further let

dVar(C) =

N0
X

n=0

c
X

i=0

bπi,ni2 − bE[C]2,
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denote an approximation to Var(C). According to Falin and Templeton [14], we have

some explicit formulae as follows:

E[C] = λ, E[N ] =
1 + µ

µ

λ − Var(C)

c − λ
, (22)

provided that ν = 1. We define the absolute errors eC and eN by

eC =
˛

˛

˛

bE[C] − λ
˛

˛

˛

, eN =

˛

˛

˛

˛

˛

bE[N ] − 1 + µ

µ

λ −dVar(C))

c − λ

˛

˛

˛

˛

˛

,

provided that ν = 1, in order to evaluate the accuracy of our algorithm.

4.2 Numerical examples

In this section, we present some numerical examples to show the efficiency of our

algorithm and to evaluate the performance of the M/M/c/c retrial queue.

4.2.1 Influence of ϵ in Algorithm 1

We consider an example where c = 10, µ = 1 and ν = 1 to investigate the influence

of ϵ on the stationary distribution obtained by Algorithm 2. Fig. 2 shows the absolute

error eC against the truncation point N0 in Algorithm 2. In Fig. 2, the four pairs of

curves from the left to the right correspond to the cases of ρ = 0.5, 0.7, 0.9 and 0.95,

respectively. In all the curves, eC decreases with N0. In each pair (for example, the

pair of ρ = 0.9), the left and the right curves correspond to the case where rN0+1 = 0,

and the case where rN0 is computed using Algorithm 1 with kl = 2l − 1 and ϵ = 10−7,

respectively. We observe that the absolute error of the latter is smaller than that of

the former, although the difference between both curves is small. This implies that the

impact of ϵ on the stationary distribution is small and that the accuracy brought by

Algorithm 2 is insensitive to ϵ.

The truncation points computed by the procedure in Section 3.3 with ϵ0 = 10−7

are 24, 49, 177 and 368 for the cases of ρ = 0.5, 0.7, 0.9 and 0.95, respectively. Fig. 2

shows that at these truncation points, even for the cases where rN0+1 = 0, eC is

in the order of 10−6. This implies that for the N0 computed by the procedure in

Section 3.3, the simple method where rN0+1 = 0 has a sufficient accuracy. Therefore,

in Section 4.2, instead of computing rN0 with high accuracy, we choose the N0 as

presented in Section 3.3 with ϵ0 = 10−7 and use rN0+1 = 0. The validation of the N0

will be presented in details in Section 4.2.6
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4.2.2 Optimal number of servers

In the following, we use ϵ0 = 10−7 to determine the truncation point N0 by the

procedure presented in Section 3.3 and ν = 1. Now we compare three types of blocking

probabilities Bwor, B and Bwr.
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Figs. 3 and 4 demonstrate Bwor, B and Bwr against the number of servers for two

cases: ρ = 0.7 and 0.9. In these figures, the blocking probability without retrials Bwor

is the smallest. We observe that under the same number of servers, B and Bwr increase

with µ as expected.

We compare the curves of Bwr and B with the same µ. When µ is small, e.g.,

µ = 0.01, both curves are almost the same. The difference between them increases

with µ. In the case where µ is large, e.g. µ = 100, we observe that there exists some c0

such that B ≤ Bwr and B ≥ Bwr provided that c ≤ c0 and c ≥ c0, respectively. The

reason for this can be explained as follows.

In case of a small c, the probability that all the servers are busy is large. Thus, in

the M/M/c/c retrial queue, blocking is easily observed by retrial customers repeatedly.

On the other hand, in M/M/c/c loss model, primary customers and retrial customers

observe the same congested situation. These reasons explain why Bwr > B. In the case

of a large c, the probability that all the servers are busy is small. Therefore, Bwr is

small due to the fact that in the Erlang loss model, customers are assumed to arrive

at the servers randomly. In the M/M/c/c retrial queue, if a customer is blocked, the

customer retries immediately. Thus, the arrival process of retrial customers is likely to

have a bursty nature which results in a high blocking probability B.

We consider an optimal design problem using Bwor, Bwr and B. Let cϵ denote the

minimum number of servers such that the blocking probability is less than or equal to

ϵ. In the case where µ = 100, we find from the curves of Bwor and Bwr in Fig. 3 that
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c0.1 ≈ 8 and 33, respectively, while the curve of B shows that c0.1 = 18. These results

show that Bwor underestimates and Bwr overestimates the optimal number of servers.

The difference between the curves of B and Bwr for the case of ρ = 0.9 is even

larger than that for the case of ρ = 0.7. We find from Fig. 4 that c0.1’s for the curves of

B and Bwr are roughly 180 and 280, respectively. As for the case of c0.001, the answers

given by B and Bwr are about 800 and 620, respectively. Therefore, Bwr overestimates

c0.1 and underestimates c0.001.

From the observations on Figs. 3 and 4, our conclusion is as follows. For the case

of a small retrial rate, e.g. µ < 1, the Erlang B formula gives a good estimation of

the optimal number of servers. However, when the retrial rate is large, e.g. µ > 1, the

estimation by the Erlang B formula has a large error. Therefore, in applications such as

call centers, cellular mobile networks, etc., where the retrial interval is short, a retrial

queueing model should be used instead of a conventional Erlang loss model.

4.2.3 Influence of the retrial rate

Figs. 5 and 6 show B and Bwr against µ for the cases of ρ = 0.9 and 0.95, respectively.

In these figures, the curves for c = 10, 50, 100, 500 and 1000 are plotted.

First, we compare B and Bwr in a wide range of µ. We observe in all the cases that

there exist some µ0 and µ1 (µ0 ≤ µ1) such that B ≈ Bwr, B ≥ Bwr and B ≤ Bwr

provided that µ ≤ µ0, µ0 ≤ µ ≤ µ1 and µ ≥ µ1, respectively. In particular, Figs. 5 and

6 show that when µ is large B is insensitive to µ while Bwr is sensitive to µ, and that

both B and Bwr are insensitive to µ when µ is small.

Second, we consider the characteristics of B for M/M/c/c retrial queues. For ex-

ample, Fig. 5 shows that B is insensitive to µ when µ < 1. This suggests that we can

use the result of B for µ = 1 to obtain an approximation of B for a smaller µ. This

saves on computational cost because a small µ causes a large N0. We further observe

that B comes closer to the probability that a customer has to wait in the conventional

M/M/c queue as shown in [14].

4.2.4 Average number of customers in the orbit

Fig. 7 demonstrates the average number of customers in the orbit against the num-

ber of servers for the case of ρ = 0.95. In Fig. 7, the curves of the cases, where

µ = 0.01, 0.1, 1, 10 and 100 are plotted. We observe in these curves that the average

number of retrial customers decreases with the number of servers. This is due to the

collaboration among the servers. It should be noted that the vertical axis of the graphs

is in log-scale. In this scale we observe that the average number of customers in the

orbit is asymptotically linear with the number of servers. As a result, we can predict

E[N ] for the case of a large number of servers using the E[N ] obtained for the case of a
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relatively small number of servers due to the fact that a line is completely characterized

by a point and a slope.

We investigate the influence of µ on the average number of retrial customers. We

observe in Fig. 8 that the average number of retrial customers decreases with the retrial

rate and is asymptotic to the average number of waiting customers in the corresponding
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conventional M/M/c queue without retrial. Note that Fig. 8 is plotted in log-scale. In

this scale, the curves show a linear tendency when µ < 1, which agrees with the fact

that E[N ] is proportional to µ−1 as µ → ∞ as shown in [14]. Based on this fact, we

can use the E[N ] obtained for the case of µ = 1 in order to obtain an approximation

to the E[N ] for the case of a smaller µ.
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4.2.5 Asymptotic behavior

Fig. 9 shows the asymptotic behavior of the distribution of the number of busy servers

when the arrival rate and the service rate are kept constant, λ = 70 and ν = 1. We

observe that the stationary distribution of the number of busy servers in M/M/c/c

retrial queues is asymptotically the same as the stationary distribution of the number

of busy servers in an M/M/∞ queue with the same arrival and service rates. The

reason for this is that customers are not blocked when the number of servers is large

enough. Therefore, the retrial queue behaves like the M/M/∞ queue. This suggests

that if the number of servers is large enough, we can use an M/M/∞ queue instead of

a multiserver retrial queue.

4.2.6 Validation of the truncation point N0

In this section, we show the validation of the determination of N0 presented in 3.3.

Fig. 10 represents the absolute error eN against the traffic intensity for the cases of

µ = 1 and c = 10, 100 and 500. The figure shows that the absolute error is small when

the traffic intensity is small, while they become larger as ρ approaches to 1. However,

under such a heavy traffic condition, the number of retrial customers is also large, thus,

the relative errors are small.

Fig. 11 shows bE[C] against the number of servers for the cases of ρ = 0.7, 0.9 and

0.95. We observe that in all the cases, bE[C] does not depend on µ. We also confirm
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that the curves of bE[C] conform with the line y = ρc, where ρ is kept constant. These

results agree with (22).
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5 Conclusion

In this paper, we have presented an algorithm to compute the stationary distribution

of the M/M/c/c retrial queue. The algorithm is based on a matrix continued fraction

representation of the rate matrices of the level-dependent QBD underlying the queue.

One of the most notable features of the algorithm is that it does not need to compute

inverse matrices. The computational complexity of the algorithm is only O(c) instead

of O(c3) as in conventional matrix analytic methods [30]. Furthermore, we have shown

that the algorithm manipulates positive numbers and thus it is numerically stable.

This enables us to analyze M/M/c/c retrial queues with large c. We believe that the

algorithm can be applied to some variant models such as state-dependent multiserver

retrial queues with abandonments.
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