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1 Introduction 

I met Professor Shuichi Tasaki for the first time at a summer school held at Trento, Italy, in 1999, 

when I was a doctor-course student at Waseda University. Then, in the next spring, I found him 

with surprise at Waseda University as a new faculty member of Department of Applied Physics. 

He acted as a reviewer of my doctoral thesis and was my advisor for my current position at 

Waseda University. I am very happy that I could work with Prof. Tasaki and could publish four 

papers with him. He always tried to be available for discussion and gave me a lot of suggestions. 

I got many hints from the collaborations, from his lectures, and from daily conversations with 

him. Many of my recent works do not exist without the fruitful interactions with Prof. Tasaki. 

While he had to stay in hospital, I could just push forward with my researches, to be ready to 

report good results to him as soon as he is back in his office. I regret that I was unable to do it 

before he passed away, but I would like to take this opportunity to report one of the results I 

wanted to show him. 

Prof. Tasaki had a quite broad spectrum of interests and knowledge, mainly in the fields of 

statistical mechanics, condensed-matter physics, and quantum physics, which should be clear 

from the list of the authors of the present volume. He was not only an excellent physicist but 

also a brilliant mathematician. He was a rare scientist who could talk with both physicists 

and mathematicians. He proved purely mathematical theorems rigorously, and he liked exact 

solutions, but he did not hesitate to make drastic approximations and got through "dirty" 

calculations to explain experimental data. Mathematics spoken by Prof. Tasaki was very clear 

to physicists. Prof. Tasaki was in particular interested in the C* -algebraic approach to the 

statistical and quantum mechanics. Several years ago, he gave a series of lectures on the C*

algebra, which was not an authorized course of the university but was delivered mainly for the 

students of his group. The note I took during this lecture course always helps me when I am 

lost in the mathematics of the C* -algebra. In addition, the note held a clue to my recent work 

with Mauro Iazzi on the interference of independent Bose-Einstein condensates [1]. 
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2 Canonical vs Grand Canonical Ensembles of Free Bosons 

The relevant topic is the canonical vs grand canonical ensembles of free bosons [2]. Consider an 

ideal gas of bosons in a box of size L with the periodic boundary condition at a finite temperature 

T. If one describes it as a grand canonical ensemble, the expectation value of an observable 6 
is given by 

(2.1) 

with 

fi = L c:kalak, (2.2) 
k 

where ak and al are the annihilation and the creation operators for a boson of momentum 

k, satisfying the canonical commutation relations [ak, al,J = Okk', etc., and (3 = 1/kBT is the 

inverse temperature. J.L is the chemical potential to be fixed by the condition that the average 

number of bosons in the gas is N, i.e., 

A L 1 (N)a = . !3( ) = N. e c:k-J-t - 1 
k 

(2.3) 

\Ve take the thermodynamical limit L, 1V -+ oo with the density p = N / L 3 kept finite. The 

system exhibits phase transition and a macroscopic number No of bosons start to occupy the 

ground state as [3] 

No ~P [1 - ( T) 3/2] 
Po=-= Tc 

L3 
0 

(2.4) 

below the critical temperature Tc = (2n1i2 /mkB)[p/(,(3/2)] 213
, where ((z) = l::::~=l n-z (Re z > 

1) is the Riemann zeta function. 

This ensemble is fully characterized by the generating functional for normally-ordered prod

ucts, namely, the expectation value of 

(2.5) 

which reads 

Wc[J, J'] = (W[J, J'])c = exp(-~ efiC<~~~: _ 1) · (2.6) 

In the thermodynamical limit, it is reduced to 

(2.7) 
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with a factor relevant to the condensate, 

where Jk has been scaled as Jk = Jk/ L312. 

(T ~ Tc, p, = 0), 

(T > T~, p, < 0), 
(2.8) 

If, on the other hand, one describes the gas as a canonical ensemble with the number of 

atoms fixed at N, the expectation value of an observable 6 is given by 

(2.9) 

instead of (2.1) for the grand canonical ensemble, where PN is the projection operator that 

selects theN-particle sector, satisfying PNPN' = 5NN'PN and LN PN = 1. It is not quite easy to 

directly compute this expectation value (2.9) for the canonical ensemble. It is however attainable 

via inverting the relationship between the canonical and the grand canonical ensembles, 

(O)c = L)PNr)c(O)N'· (2.10) 
N' 

In the thermodynamical limit, this relation (2.10) for the characteristic functionals Wc[J, J*J 

and WN[J, J*] = (W[J, J*J)N is reduced to 

Wc[:J, :J*] = fooo dp' JC(p')Wp'[:J, :J*], (2.11) 

where 
3 A I 

L {PN' )c -+ JC(p ) , (2.12) 

By noting 

(2.13) 

the kernel JC(p') is estimated to be 

{

B(p'- p)!_e-(p'-p)fpo 
JC(p') = Po 

5(p'- p) 
(2.14) 

(T > Tc, f-1 < 0), 

where p = p- PO· ForT~ Tc, the above relation (2.11) yields 

(2.15) 
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which is essentially the Laplace transformation from p' to 1/ PO· Its inversion leads to (2] 

(2.16) 

(2.17) 

where 

Jv(z) = _ ~8-v-les-z2 /4s (
z)v 1a+ioo d 
2 a-ioo 27rz 

(Rev > 0, a > 0) (2.18) 

is a Bessel function. 

Above the critical temperature T > Tc, both characteristic functionals (2. 7) and (2.16) for 

the grand canonical and the canonical ensembles coincide, while they differ below T :::; Tc. In 

addition, it is instructive to decompose the characteristic functional (2.16) for the canonical 

ensemble below the critical temperature T:::; Tc as 

Wp[3,3*] = j_: ~!we[3,3*], 
by noting the formula for the Bessel function 

Jn(x) = -:n deeixcosB cosne 1 17r 
?rl 0 

(x E lR, n = 0, 1, 2, ... ). (2.20) 

In particular, the characteristic functional We[3, 3*] generates an expectation value of iio as 

(2.21) 

which is the so-called wave function of the condensate, endowed with a definite phase e [4]. The 

canonical ensemble Wp(3, 3*] is a mixture of such condensed states with different phases. 

This knowledge I acquired from Prof. Tasaki's lecture helped me to study the interference of 

independent Bose-Einstein condensates. 

3 Interference of Two Independent Bose-Einstein Condensates 

When two independently prepared Bose-Einstein condensates are released from traps and over

lap, interference fringes are observed (5]. The simplest description of this phenomenon is based 

on the spontaneous symmetry breaking [4). The U(l) symmetry of the system is spontaneously 

broken upon condensation and the two gases individually acquire definite phases. As a result, 

the relative phase between the gases becomes well defined, which enables them to exhibit inter

ference. The symmetry breaking, however, would be valid only approximately, since the actual 

gases in typical interference experiments consist of finite numbers of atoms. Javanainen and 

Yoo showed in [6] that, even if the number of atoms in each gas is fixed, described by a number 
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state, and the phase of each gas is accordingly uncertain, an interference pattern is observed in 

each snapshot photo of the overlapping gases. The density profiles would differ from snapshot 

to snapshot, and the appearance of an interference pattern is not definitely certain. According 

to the numerical simulation by Javanainen and Yoo in (6J, however, sinusoidal patterns are very 

typical among all possible snapshot profiles and interference is almost certainly observed in ev

ery snapshot. One of the interference patterns, in other words, one definite relative phase, is 

selected by taking a photo, i.e., by measurement, and such interference revealed in a snapshot 

is called measurement-induced interference [7, 8]. 

I have found the subject interesting, since it requires studying snapshots in quantum me

chanics, and got the following idea to tackle this issue. 

3.1 Average Fringe Spectrum and Its Fluctuation 

Our idea is similar to the one employed in [9-11). Suppose that there are N bosonic atoms 

and one takes a photo of the cloud: the positions of the M atoms (generally smaller than N) 

are recorded at once in the snapshot. The probability of finding the lvf atoms (among N) at 

positions { r1, ... , r M} at an instant t is given by the A1-particle distribution function 

(3.22) 

where ,(!;( r) is the field operator of the bosonic atom, satisfying the canonical commutation 

relations [~(r),,(f_;t(r')] = 83(r- r'), etc., and(··· )t denotes the expectation value estimated in 

the state of the cloud at time t. This probability is normalized to unity as 

Jd3 3 (M)( ) 
T1 · · · d T M pt T1, ... , T M = 1, (3.23) 

and satisfies the recursive relation 

J d3 p(M)( ) _ (M-1)( 
Tf. t TJ, ... ,rp_, ... ,TM -Pt TJ, ... ,Tf.-I,Tf.+l,···,rM)· (3.24) 

In the following, we assume that all of the N atoms are recorded in the snapshot photo. 

Given a single configuration of the N atoms {r1 , ... , TN} in a photo, the snapshot density 

profile of the cloud is given by 
N 1 

p(r) = N L8(r- ri)· 
i=l 

(3.25) 

Notice that the positions of the N atoms, { r1, ... , r N}, differ from run to run, and the density 

profile p( r) changes from snapshot to snapshot. The average profile over all possible configura

tions of the N atoms (over all snapshots) is given by 

-( ) _ J d3 ... d3 p(N) ( ) ( ) _ (1) p r - r1 r N t r1, ... , r N p r - Pt ( r), (3.26) 
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i.e., the single-particle probability distribution. When two independent Bose gases are over

lapping, no interference fringes are expected in this single-particle distribution PP) ( r), which 

represents the image obtained by accumulating and superposing many snapshots. An interfer

ence pattern, however, would be found in each snapshot, due to the higher-order correlations 

arising from the indistinguishability of identical atoms. 

If fringes are present in a snapshot, we expect the density deviation 

8p(r) = p(r)- p(r) 

to oscillate, which is captured by spikes in its Fourier transform 

8P(k) = J d3r8p(r)e-ik·r. 

(3.27) 

(3.28) 

If a spike is found at k f, it reveals the oscillation of the density profile with fringe spacing 21r / k f. 

Notice here that the phase (spatial offset) of the interference pattern varies randomly from 

snapshot to snapshot. This is actually unavoidable, in order to be consistent with the "inde

pendence" of the two gases: this random shift smears out the fringes in the average profile 

p(r), i.e., in the single-particle distribution PP\r), and the "independence" is recovered. In 

order to discard this random phase, we look at the square modulus of the Fourier spectrum, 

lbp(k)l 2 . If sinusoidal patterns with a definite fringe spacing (with their random spatial offsets 

discarded) are typical among all possible snapshot profiles and are found in almost all snapshots, 

the spikes in the spectrum j5p(k)j2 would remain even in its average over all possible realizations 

of{rlJ ... ,rN}, 

(3.29) 

The typicality is characterized by the variance, or more generally, by the covariance 

Ct(k, k') = j5p(k)j 2 j5p(k')l 2 -j5p(k)j 2 ·l5p(k')j2. (3.30) 

If the average spectrum St(k) exhibits a nontrivial spike at k = kJ with a vanishingly small 

covariance Ct(kJ, kJ) t'V 0, the sinusoidal pattern corresponding to the spike is expected to be 

observed in every snapshot. This is the idea: if no fluctuation, we can speak of snapshot through 

average. 

By noting p(k) = I::f:1 e-ik·ri jN, one realizes that these quantities are given in terms of 

few-particle distribution functions. Indeed, 

(3.31) 

(3.32) 

where 

(3.33) 
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I (4)(k k') - J d3r d3r d3r d3r p(4)(r r r r )eik·(rl-r2)+ik'·(r3-r4) 
t , - 1 · 2 3 4 t I, 2, 3, 4 · (3.34) 

Namely, the average fringe contrast St ( k) of the N particles is essentially ruled by the two

particle distribution PP), while its fluctuation Ct(k, k') by pt(
4
). We do not need to compute 

the N-particle distribution function Pt(N) in practice to discuss the average fringe spectrum 

St(k) and the fluctuation Ct(k, k'). 

In general, the fluctuation of the snapshot profiles p( r) is fully characterized by the generating 

functional 

(3.35) 

When N >> 1, it is cast into [1] 

(3.36) 

where:···: denotes normal ordering. These are our tools for discussing the measurement-induced 

interference. See also [9-11]. 

\Ve are going to compute the statistics of the density profiles Zt[<P] in (3.36), in particular, 

the average fringe spectrum St(k) in (3.29) and the covariance Ct(k, k') in (3.30), for the ideal 

gases of bosonic atoms released from two separate harmonic traps. 

3.2 Canonical and Grand Canonical Ensembles in Harmonic Traps 

It is possible to generalize the calculation shown in Sec. 2 to compute the characteristic functional 

WN[J, J*] for the canonical ensemble of noninteracting bosonic atoms in a 3D harmonic trap, in 

the continuum limit tiw/kBT << 1 keeping (tiw/kBT) 3 N finite. Here we assume, for simplicity, 

that the 3D harmonic trap is isotropic and the strength of the harmonic trapping is characterized 

by the single frequency w. The Hamiltonian of the systems reads 

fi = LEna~an, (3.37) 
n 

where n = (nx, ny, nz) (nx, ny, nz = 0, 1, 2, ... ) are the quantum numbers labeling the energy 

states of the harmonic potential, and an and a~ are the associated annihilation and the cre

ation operators, satisfying the canonical commutation relations [an, a~,] = Onn', etc. Then, the 

characteristic functional for the canonical ensemble of the noninteracting bosonic atoms in the 

harmonic trap is obtained, in the continuum limit, as [1] 

(3.38) 

(T > Tc, f-1, < 0), 
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where 

(3.39) 

which is equivalent to (2.5) but in a different representation, and the condensation fraction is 

given by [4, 12] 

N {1- (T)3 
>. = ;; "' 0 T, (3.40) 

(T > Tc, J-L < 0), 
with the critical temperature 

(3.41) 

On the other hand, the grand canonical ensemble yields a different characteristic functional [1] 

e-NolJol2 exp (-'"'"' )Jnl2 ) (T ~ Tc, /l = 0), 
~ec:n-1 
n:,;fO 

Wc[J,J*1 ~ 

( !Jnl
2 

) 
exp - ~ ef3(c:.,. -J-t) - 1 

(3.42) 

(T > Tc, M < 0). 

3.3 Statistics of the Density Profiles of the Overlapping Gases 

We are now ready to compute the statistics of the density profiles, Zt[<P] in (3.36), of the 

overlapping gases released from two identical harmonic traps "L" and "R" separated by a 

vector d. We assume that each gas contains exactly N atoms and is described as a canonical 

ensemble at temperature T. Before the release from the traps, there is no correlation between 

the two gases, in particular no phase correlation, and no exchange of atoms between the two 

traps: the two gases are "independent." The latter condition is mathematically represented by 

the commutativity between the bosonic operators a~)' a~)t for the L trap and ahR)' ahR)t for 

the R trap, which is equivalent to the condition that the eigenfunctions rp~) ( r) of the L trap are 

all orthogonal to the eigenfunctions rphR) ( r) of the R trap. This is at least approximately valid, 

if the two traps are well separated and the spatial overlaps between the eigenfunctions rp~) ( r) 

and rphR\r) of the relevant low-energy levels (En :S kBT) for the finite-temperature gases are 

negligible. Then, the field operator ~( r) is expanded by those eigenfunctions (at least up to the 

relevant levels En :S kBT) as 

(3.43) 
f=L,R n 

The state of the pair of gases before the release from the traps is the product state of the 

canonical states for the L and R gases, and accordingly, the characteristic functional for the pair 

is given by the product of (3.38) for Land R: 

•"' ~ J(£) A (J!)t •"' 2.: J("-)* A(£) 
WN+N[J, J*] = (e2LAL.....n n a.,.. ezL.....R. n n a .. )N+N 

..... J(L).(L)t ..... J(L)*.(L) -~ J(R).(R)t ·~ fRl*·(R) 
= ( ez L.....n n an ez L.....n n an ) N ( ez L.....n n an e~ L.....n n a.. ) lv. (3.44) 
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In the coordinate representation, it reads 

where 

and 

1
1r dBL 11!" dBR e2iVNRe I:£ I d3 r a<tl(r)eiO£ J*(r) 

-7r 21T -7r 21T 

x exp( -2N J d3rd3r' J*(r)F'(r,r')J(r')) 

(T S Tc, 1-L = 0), 

exp ( -2N J d3r d3r' .J*(r)F(r, r')J(r')) (T > Tc, 1-L < 0), 

J(r) = 2::: J$;)<p~)(r), 
l=L,R 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

o;(R) (r) is the wave function of condensate£= L, R, while F'(r, r') and F(r, r') are the single

particle density matrices of the noncondensed components. We shall use the same symbol F for 

the density matrix below the critical temperature, 

1 
F(r, r') = 2 I: o:(R)(r)o:(R)*(r') + F'(r, r') 

l=L,R 

(3.49) 

Starting from this initial condition, the gases are released from the traps and expand freely 

in the absence of collision among the atoms. In the Heisenberg picture, the field operator (3.43) 

simply evolves as 

(3.50) 
l=L,R n 

Therefore, in order to implement the time evolution, we have only to replace cp~) ( r) -+ <p~) ( r, t) = 

e(int/Zm)V
2 cp~) ( r), and accordingly, o;(R) ( r) -+ a:~£) ( r), F' ( r, r') -+ F£( r, r') and F( r, r') -+ 

Ft(r, r'), in (3.45). Then, the generating functional of the density profiles, Zt[<I>] in (3.36), of 

such an expanding cloud is generated as [1] 

_i_ I d3r _o_<P(r)-<l- I ZN+N,t[<I>] = e2N <liJ(r) <liJ*(r) WN+N,t[J, J*] 
J,J*=O 

1 i I: < cell 1 I ceJ> 
------.,.A-e2 eat q,-1(r)-i.:Fi at 

Det[1 - i<I>(r)F:J 

11r dB i (<a(L) I 1 , Ja(R))ew+(a(R) I 1 I (L)) -io) 
X -e 2 t q,-1 (r)-iFi t t <I> 1 (r)-i.:Fi at e 

-1!" 27f (3.51) 
(T S Tc, 1-L = 0), 

1 

Det[1 - i<I>( r)Ft] 
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where an abstract notation has been introduced by 

Fi(r, r') = (r\Fi\r'), (3.52) 

and 

fir)= rjr), (3.53) 

This generating functional should be compared with that for the grand canonical ensembles [1], 

(3.54) 

Below the critical temperature T :=:; Tc, the density profiles fluctuate in different ways for the 

canonical and the grand canonical ensembles. 

3.4 Snapshot Interference and Condensation 

We are finally in a position to discuss the snapshot interference of the overlapping gases of 

noninteracting bosonic atoms released from two spatially separated harmonic traps. 

Observe first the average profile 

-( ) _ szN+N,t[<P]] _ r ( ) 
p r - 8i<P(r) 11>=0- .rt r, r ' (3.55) 

and recall the definition of Ft(r, r') in (3.47)-(3.49). It is just the sum of the density operators 

of the two gases Land R, and no interference is observed in this quantity. However, interference 

fringes are found in each snapshot. 

3.4.1 At zero temperature T = 0 

Let us look at the zero temperature case T = 0. In this case, the average profile (3.55) is reduced 

to 

p(r) = ~ (ia~L)(r)l 2 + la~R)(r)l 2). (3.56) 

On the other hand, the average fringe spectrum (3.29) reads 

(3.57) 

while the covariance (3.30) 

(3.58) 

where 

(k) _ ( (R) I -ik·r I (L)) Xt - at e at ' (3.59) 
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Figure 1: The time evolution of the interference spectrum Xt(k) in (3.61) between two pure 
condensates at zero temperature T = 0. The two condensates, each containing N = 5 x 106 

Na atoms, are released from two harmonic traps of trapping frequency w = 1.6 kHz, separated 
by a distanced= 30 J1m. The condensates expand, overlap, and exhibit an interference pattern 
in each snapshot. The critical temperature of the gas trapped in this harmonic potential is 
estimated by (3.41) to be Tc = 2.0 fJ,K. 

which is the Fourier transform of the "interference term" a~R)* ( r )o;~L \ r) between the two con

densate wave functions a~L\r) and o;~R)(r). For the harmonic traps, they are given by 

o;(L/R)(r) = mw e-mw(r±d/2)2 j2n(l+iwt) 
( )

3/4 

t 1rn(1 + iwt) 2 ' 
(3.60) 

with d representing the displacement between the two traps, and 

(3.61) 

The time evolution of Xt ( k) is shown in Fig. 1. Two sharp peaks grow in the average spectrum 

St(k) in (3.57) at 
md 

kJ = tit. (3.62) 

The peaks become sharper and higher as the time of flight increases. The covariance Ct ( k, k') 

in (3.58), on the other hand, is vanishingly small for any (k, k'), since the peaks of Xt(k) and 

Xt( -k) are well separated. This means that there is no fluctuation in the fringe spectrum and an 

interference pattern with the fringe spacing 27r / k f is certainly observed in every snapshot. Note 

that the visibility of the interference pattern is essentially ruled by the height of the spectrum 

St(±kJ ), and its asymptotic height St(kJ) ~ 1/4 corresponds to the perfect visibility. 2 

Note also that the characteristic functional for the canonical ensemble, l¥N[J, J*] in (3.38), 

gives 

(3.63) 
2 The Fourier transform of cosk1 · r = ~(eikrr + e-ikrr) exhibits peaks at k = ±k1 of height 1/2, whose 

square gives 1/4. 
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That is, the U(l) symmetry of the system is not broken. Actually, no interference is observed 

in the single-particle distribution (3.56), but an interference pattern appears in each snapshot. 

3.4.2 At finite temperature T > 0 

At a finite temperature T > 0, formulas for the average fringe spectrum St(k) and the covariance 

Ct(k, k') are available for a long time of flight t [1]. They exhibit sharp peaks at k = 0 and 

±k f, whose heights are given by 

{

p(O) rv 1, 

p(kJ) rv 0, 

1 A4 · A2 2 4 
Ct(kJ,kJ) rv 

16
(2Tr{F0 } + Tr{F0 } -3-\ ), 

Ct(O, 0) rv ~(3 Tr{F~4 } + 2 Tr{F~2 }2 ), 
3 A/4 

Ct(kJ, 0) rv g Tr{F0 }, 

(3.64) 

where Fa is the single-particle density operator of the gas in each trap, and Fb = Fo -\ao)(o:o\ 

is its thermal part with \o:o) being its condensed component. These expressions are valid over 

the whole range of temperature T, across the critical temperature Tc. 

Recall here that Th{FJ} is the "purity" of each gas, and the average fringe spectrum St(kt) 

in (3.64) is given by this purity. The purity is vanishingly small TI.·{ PJ} rv 0 in the absence 

of condensate above the critical temperature T > Tc, while it becomes Tr{FJ} rv 0(1) as the 

ground state is occupied by a macroscopic number of atoms below the critical temperature 

T ~ Tc, approaching Tr{FJ} = 1 for pure condensation at T = 0. The purity is a good measure 

of condensation and is adopted for a criterion of the Bose-Einstein condensation by Penrose 

and Onsager [13]. The formula for the average fringe spectrum St(kt) in (3.64) explicitly 

clarifies the connection between the condensation and the interference, and the importance of 

the condensation for the interference. The purity 

(3.65) 

is different from -\2 only by Tr{Fb2} ~ 0(1/N) (1}, and therefore, the purity is essentially given 

by the square of the condensation fraction -\2 [11]. See Fig. 2, where the average fringe spectrum 

St ( k f) is plotted as a function of the temperature T. 

The fluctuation of the fringe spectrum (relative to the average), on the other hand, is esti-

mated to be 

by noting that 

Ct(kt,kt) "'
1

_ -\4
- 2Tr{Fb4

} "'"'{0(1/N) (T :S Tc), 

S[(kt) (-\2 + Tr{F[f} )2 - 1 + 0(1/N) (T > Tc), 

{

0(1), 
A"' 

0(1/N), 
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Ct(kh k1) 
8t{kJ) 

1.5 2.0 

Figure 2: The average and the fluctuation of the snapshot interference spectrum, St(kJ) and 
Ct(k1, kJ) given in (3.64), as functions of the temperature of the gases T. The parameters are 

the same as in Fig. 1. The relevant quantities>., Tr{F~2 }, and Tr{F~4 } are numerically evaluated 
without resort to the continuum limit. 

and Tr{F62 } c:::: 0(1/N) for the whole temperature range [1]. The fluctuation is vanishingly 

small below the critical temperature T :::; Tc [10), while it is nonvanishing above T > T"c. As 

shown in Fig. 2, the fluctuation abruptly changes at the critical temperature Tc. In particular, 

the interference spectrum does not fluctuate at any temperature below the critical temperature 

T :::; Tc, and in this range, the interference pattern with fringe contrast >. is certainly observed 

in every snapshot. 

If the gases are described as grand canonical ensembles, instead of the canonical ensembles, 

the statistics of the snapshot profiles are given by Zc+G,t[<P] in (3.54), and we end up with dif

ferent conclusion from the above. \Vhile the average fringe spectrum St(kJ) remains unchanged, 

the variance Ct(kJ, kJ) exhibits different fluctuation for the grand canonical ensembles: 

(3.68) 

The fringe spectrum largely fluctuates below the critical temperature T :::; Tc, in contrast to 

the vanishing fluctuation with the canonical ensembles in (3.66) and in Fig. 2. If the gases are 

described as the grand canonical ensembles, we are not sure whether an interference pattern is 

observed in a snapshot photo. 

The main difference between the canonical and the grand canonical ensembles is the fluctu

ation of the total number of atoms. In the case of the canonical ensemble, it does not fluctuate, 

(!J.N)'Jv = 0, since the total number of atoms is fixed at N. In the case of the grand canonical 

ensemble, on the other hand, it is estimated to be 

(3.69) 
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and the total number of atoms becomes fluctuating below the critical temperature T :=::; T"c. 

Although usually the canonical and the grand canonical ensembles coincide in the thermody

namical limit N -+ oo, it is not the case in the presence of condensate. This difference leads to 

the difference in the fluctuation of the fringe spectrum in (3.66) and (3.68). 

On the other hand, the fluctuations of the energies of the canonical and the grand canonical 

ensembles are both negligibly small for large N, 

(~E)2 
E 2 ""0(1/N), (3.70) 

irrespective of the presence of condensate, since the energy of the condensate is zero and does not 

contribute to the energy E and its fluctuation ~E. Therefore, in the large N limit, the canonical 

ensemble well mimics the microcanonical ensemble, in which the total number of atoms N and 

the total energy E are fixed, and the results of the present paper for the canonical ensemble are 

all (approximately) valid for the interference of two independent microcanonical gases. 

4 Summary 

We have discussed the interference of two independently prepared Bose-Einstein condensates. 

When the number of atoms in each gas is fixed and the phases of the gases are uncertain, no 

interference is expected in the single-particle distribution. However, the interference is observed 

in each single snapshot. \Ve have presented tools for studying such snapshot interference, the 

measurement-induced interference. The idea is to discard the randomness in the snapshot pro

files (the spatial offsets of the interference patterns) and to focus on the typical feature in the 

interference patterns (the fringe spacing). If the sinusoidal patterns with a definite fringe spacing 

is actually typical, the fringe spectrum with the random offset discarded does not fluctuate, and 

we are allowed to speak of the snapshot interference through its average. 

\Ve have described the two gases as canonical ensembles with the numbers of atoms fixed at N 

individually. We have shown that the covariance of the fringe spectrum over all possible snapshot 

profiles is vanishingly small below the critical temperature of the Bose-Einstein condensation: 

the interference pattern whose fringe contrast is characterized by the average fringe spectrum 

is certainly observed in every snapshot in the presence of condensates. The fringe contrast 

becomes stronger as the temperature is lowered and the condensation fraction is increased. This 

clarifies the importance of the Bose-Einstein condensation to the interference of independent 

Bose-Einstein condensates. The knowledge I acquired from Prof. Tasaki's lecture on how to 

characterize the canonical ensemble of bosonic atoms has enabled us to carry out this analysis. 

Like this example, the coherence phenomena of quantum many-body systems in general 

would be explained on the basis of the idea of the measurement-indued coherence, without resort 
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to the idea of the spontaneous symmetry breaking. This is actually true also for fermionic sys

tems: the relative phase between two independent superconductors is built up by measurement, 

even though their U(l) symmetries are not broken and their phases are uncertain beforehand. 

It would be interesting to explore the possibility of explaining various phenomena, in which the 

symmetry breaking plays an essential role, on the basis of the measurement-induced coherence. 
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