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This is a lecture note of Professor Shuichi Tasaki. In the last part of this manuscript, SA 
and FB demonstrate some recent results as well. As far as SA's knowledge, regular courses 
were given every two years for graduate students at vVaseda university, and SA attended the 
course twice (probably in 2005 and 2007 or in 2006 and 2008). Some topics were added in the 
lectures of the later year, probably Professor Tasaki modified his lectures as he was discovering 
new results. A similar but intensive short course was given once as at Kyoto university. 

SA thinks Professor Tasaki had a unique philosophy of physics, which enabled him to give 
very attractive lectures that unfortunately it is not possible to attend any more. 2 In Professor 
Tasaki's lectures, both beautiful mathematical views and clear physical intuition were always 
given together, which SA believe, is quite difficult. As many people know Professor Tasaki was 
very strong in mathematics, but he never forgot to think of physical interpretations. Professor 
Tasaki was writing a lecture note of this course based on the note taken by a student of Kyoto 
university. Unfortunately, Prof. Tasaki passed away before he finished writing the manuscript. 
This lecture note is based on the incomplete Japanese note(l] and a note taken by SA at Waseda 
university. It seems that main stories of the lectures are the same, but Professor Tasaki gave 
different materials in detail, and use different notations. This manuscript mainly follows the 
note of SA. 

SA and FB decided to write this manuscript (1) to complete a note of Professor Tasaki's 
lectures, and (2) to give an access for non-Japanese speaker to his lecture note. However, they 
are slow writer, and they could not finish it before the deadline of this volume. They could finish 
only parts before nonequilibrium states (only some of the results will be shown in this version), 
and some recent results about Landauer formula and sufficient condition on interaction for the 
existence of unique steady states. They hope to complete the lecture note part, and upload it 
on Arxiv in the future. 

1 introduction 

One of the main problems in a mathematical formulation of statistical mechanics might be the 
treatment of infinite systems because some fundamental quantities that usually appear in the 
equations have formal meaning but are ill-defined. In addition, states in quantum system also 
do not have asymptotic limit since e-iHt oscillate very frequently. 

1 E-mail: g00k0056@suou.jp 
2 SAjoined Professor Tasaki's courses on dynamics (1st year), thermodynamics (2nd year), statistical mechanics 

(3rd year - as a master student), and two courses for graduate students, one about C* algebra and dynamical 
systems, the other about renormalization group 
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The method of C* algebra was first introduced on the purpose to axiomatically study quan
tum system [2], and it has been applied to the study of statistical mechanics of infinitely extended 
systems [3, 4, 5, 6, 7]. C* algebra is constructed as a set of elements with finite norm, and thus, 
the problem of divergence does not exist by definition. 

Recently, the C* algebra approach to quantum statistical mechanics found important ap
plications in the study of nonequilibrium systems because we can rigorously consider reservoirs 
in contrast to usual formulation where the infinite size of them prevents a rigorous analysis. 
Starting from Ruelle's work[8, 9] on scattering-theoretical characterizations of NESS and Jaksic
Pillet's investigation[10, 11, 12] on entropy production, the algebraic approach to NESS has been 
extensively developed (see Re£.[13, 14, 15, 16, 17, 18, 19, 20, 21] and references therein). Cur
rently, in addition to various aspects[13, 22, 23, 24, 25], linear response theories[26, 27, 28, 29}, 
thermodynamics properties[l7, 21, 30, 31], Landauer-Biittiker formula[16, 18, 32, 33, 34, 35), 
nonequilibrium phase transition[36], and quantum dissipative structure[37] are investigated. 

Since quantum time evolution is unitary, the consideration of the reservoirs is inevitable 
for discussion of many phenomena such as dissipation and decoherence, and thus, it had been 
important to establish mathematically rigorous theory to discuss these issues. Several tools exist 
to study those systems, like kinetic theory[38], steady state thermodynamics[39), linear response 
theory[40], etc, but their foundation has been the subject of long debates. For application, 
C* algebra has been only applied to quasi-free systems, though under this circumstances, the 
rigorous study with C* algebra for nonequilibrium systems has significant values. 

In systems connected to two infinitely extended reservoirs with different sets of thermody
namic quantities (temperatures T and chemical potentials fJ,), one might expect that systems 
reach steady states after sufficiently long time. However, it is not always the case, and the 
conditions to reach steady state are not well understood. With the method of C* algebra, it 
was shown that[8], if time-evolution satisfies £ 1 asymptotic abelian properties and some other 
conditions, there exists a stable unique steady state. 

Part of C* algebraic works is highly mathematically oriented, and physical systems are 
typically studied with evolution equations for reduced density matrix[41, 42, 43) (super operators 
obtained by tracing out reservoir's freedom) or with the Keldysh formalism(44]. 

Maybe one of the achievements of Professor Tasaki was that he studied physically interesting 
systems rigorously and presented the analysis in a language accessible to most physicists. 

In the first part of this article we have presented in great detail the general framework of C* 
algebra approach to quantum mechanics and to equilibrium quantum statistical mechanics as 
though by S. Tasaki in Kyoto and Waseda University. The extension to nonequilibrium situations 
is presented without detailed profs, which are left for a second part of the lecture notes, however, 
in the second part of this article, namely in Sec.7, we include a detailed derivation of Landauer 
formula, an important formula in the study of transport properties of nonequilibrium systems. 
Consider a system of non-interacting fermions and two reservoirs, one called the left reservoir and 
the second the right reservoir, each characterized by a given temperature and chemical potential. 
Then the system is put in contact with the left reservoir and the right reservoir such that a current 
of particles is established. Landauer formula, connects the (particle) current through the system 
in the nonequilibrium steady state with the Fermi distribution characterizing the left and right 
reservoirs. Landauer formula is very appealing because it has a simple physical interpretation 
linking current to transmission properties of the system, and in fact it can be derived using 
simple and reasonable physical assumptions [45). Here we present one derivation that uses the 
results of C* algebra approach without invoking these assumptions. In particular, there is no 
need to assume that the reservoirs remain in Fermi distribution once the nonequilibrium steady 
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state (NESS) is established but still NESS current is determined by the Fermi distribution that 
reservoirs had at least in the infinite past. 

The manuscript is organized as follows. In §2, we review the basics of second quantization, 
Fock Space and operators acting on that space. In §3, we define * and C* algebras, analyze 
their spectral properties, an analyze special properties of some members of the algebra know as 
selfadjoint elements. In §4, we introduce the notion of time evolution by considering the action 
of a one parameter group on the algebra. The analogy with usual time evolution in quantum 
mechanics is explained. In §5, we introduce states as linear functionals from the C* algebra to 
the complex numbers. We show that for finite system this is equivalent to the notion of density 
matrix. Then we consider the so called GNS representation of the C* algebra, which provides a 
useful tool of analysis and also of physical interpretation in terms of usual quantum mechanics. 
At the end of this section and in §6, statistical mechanics is developed in the C* approach to 
quantum mechanics. §6 ends with the introduction on nonequilibrium steady states. In §7, we 
include a result of our own research and analyze a particular problem which is the validity of 
Landauer formula and explicit form of tunneling probability for systems described by a quadratic 
hamiltonian. Sufficient conditions for the existence of a unique steady state are also derived in 
that section. \Ve end with a few conclusions in section §8. 

2 Second Quantization 

In this section, we briefly review the second quantization of fermions. Let us start from 2 body 
wave function. 

(1) 

Let { ¢n(x)} be a complete orthonormal system (CONS), then, ¢(x1, x2) can be expanded as 
follows. 

n 

n,m 

where On ( x1) and Cnm are defined by 

Cn(xl) - J ¢~(x2)¢(x1, x2)dx2 

Cnm J dx1dx2 ¢:n(x1)¢~(x2)¢(x1,X2). 
In this expansion, fermionic condition (1) reads 

I: CnmrPm(xl)¢n(x2) =- L CnmcPm(X2)¢n(xl) =? Cnm = -Cmn 

Therefore, the wave function is rewritten by 

'1/J(xl, x2) = L CnmrPm(xl)rPn(X2) + L Cnm¢m(xl)rPn(X2) 
n>m n<m 

n>m 
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where the matrix 

1 I ¢m(XI) ¢m(x2) I 
yf2 ¢n(xl) ¢n(x2) 

is called the Slater matrix. By interpreting n and m as states, V'iCnm is a probability amplitude 
of which state ( n, m) are occupied by particles. 
Note: In general, wave function of N particle systems are expressed as 

Next we are going to study the action of operators in this space and show that is useful to 
introduce the notion of Fock space. Let h be an operator from L 2 to L 2 , then, kf(x) can be 
expanded as 

hf(x) 2: ¢n(x) J dx' ¢~(x')hf(x') 
n 

2: (nIh I f) rPn (X). 
n 

Later we will use this formula when f is an element of the base ¢m or ¢a· In that case we use 
the notation If) -* !m) or If) -* Ia). 

2 

Suppose, hk (k = 1, 2) acts on Xk· Then, L hi'¢(x1, x2) reads, 
i=l 

2 

L hi'¢(x1, x2) 
i=l 

n>m 

n>m k 

n>m k 

(2) 

One can interpret (2) as Ei hi transforming the state (n, m) into (n, k) and (k, m). It is know 
that it is convenient to separate this transformation into 2 steps. Namely, we first annihilate one 
particle, and, then, create one particle. For that purpose, we introduce a space which contains 
states with different particle number (Fock space). 

2.1 Fock Space 

Quantum state of the 1 particle system is described by the Hilbert space 1-l as a space of 
£ 2 functions. On the other hand, Quantum state of the N particle system is described by 
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1jJ(x1, · · · , xn) E J{®N (we will write (HN)s for symmetric case and (HN)A for anti-symmetric 
case). To treat states with different particle numbers, the Fock space is introduced as follows. 

where C corresponds to vacuum. Now wave function is described as 

One can prove that the Fock space equipped with the following inner product is a Hilbert space. 

2.2 creation and annihilation operator 

Let 1{ be a separable Hilbert space of £ 2 function, and { ¢o:(x)} be a CONS of H. Then, let us 
define annihilation (aa) and creation operators (ba): 

( ao:'I/J )(n) (xl, .. · , Xn) = v' n + 1 J dx¢a(X )*'1/J(n+l) (x, XI, .. · , Xn) 

(b 1 )Cn)( . .. ) = { )n L~l (±l)i-l¢a(Xi)'I/J(n-l)(XI, · · · , Xi-1 1 Xi+l, · · · , Xn) 
o:1.fJ Xl, ,Xn - 0 

(3) 

n # 0(4) 
n=O 

where plus sign corresponds to boson (S) and minus sign corresponds to fermion (A). Then, 
one can easily prove the following propositions. 

Prop. 1 

where [·, ·]+ and [·, ·]- represent anti-commutation relation and commutation relation respec
tively, and t represent Hermite conjugate in Fock space. Since ba is the Hermite conjugate of 
ao:, we will denote bo: as al, 

For instance, suppose 

-487-



then, we have 

0 
0 

)2 { ¢f3(XI)¢a(x2) ± ¢.a(x2)¢a(xl)} 
0 

In general, for operator A on 1-l, a one particle operator A : F ---+ F is defined by 

1./J= 

We will express it in a very useful way. For this first note that due to Eq.(6), we have 

L(a!Ajj/3) J dxj¢(3(Xj)'!/)n)(xl, · · · ,Xj, · · · ,xa)¢a(Xj). 
a,(3 

VVith the aids of n!,(n)(xl · · · X· · · · X ) = (±l)j-l,j,(n) (x · X1 · · · X· 1 X ·+1 · · · X ) one rec-
'f' ' ' J, , n 'f/ ]' , ' J- ' J ' n ' 

ognizes (see Eqs.(3,4)) the component (a1a(31./J)(n) in the second line of the previous equation. 
Then, the one particle operator A reads 

A = L (ajAj,B)a1af3, 
a,,B 

(alAI$)= J dx ¢o(x)* A¢(3(x) . (5) 

In a similar way, two particle operators can be defined. Let V(y, y') be a symmetric operator, 
i.e., V (y, y') = V (y', y), then, two particle operators on Fock space are defined by 

0 
0 

V (Y1, Y2 )'I/J(2
) (Y1, Y2) 

This operator can be rewritten in terms of creation and annihilation operators: 

a,,B,a' ,(3' 

(a, pi VIa', ,B') j dxdx' ¢0 (x)*¢o'(x)V(x, x')¢a(x')*¢f3'(x') 

Note: 
Let 
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then, A and V reads 

A j dy~(y)t A~(y) 
V ~ J dy dy' ~(y)t~(y')tV(y, y')~(y')~(y) . 

3 C* algebra 

A satisfactory theory for nonequilibrium systems should include treatments of reservoir, sine 
system might be strongly influenced by them. 

The most common approaches to nonequilibrium systems involve those with Keldysh Green 
function and reduced density operator. Applicabilities of those methods are remarkable; however 
those might includes some fundamental problems. For instance, environments are traced out in 
the reduced density operator, thus, it is not possible to characterize states of system including 
environments. Also, the method does not give any insights for correlation between system 
and environments. On the other hand, Keldysh method is based on the existence of NESS 
and validity of the perturbation series, adiabatic switch-on for interaction. However, those 
assumptions are not always valid. 

There are other approaches to nonequilibrium systems, like steady state thermodynamics by 
Sasa and Tasaki [39], Zubarev ensemble [46]. Though assumptions of those methods should be 
on debate [47]. 

Contrary to the methods described above, the method of C* algebra does not require as
sumptions for the switch-on of interaction, extrapolation from equilibrium. Although it can treat 
only specific systems, one can study natural steady states derived from a time evolution of full 
systems. C* algebra A is constructed as a set of observables with finite norms (the observables 
can be local elements in infinitely extended systems). 

Time evolution on A is described by a linear map Tt: A ----1 A, and states w is described by 
a positive linear functional on A: w(A) 2:: 0, w(aA + (3B) = aw(A) + w(B) . 

Since norm of A is finite by definition and w is positive, we have 

lw(A)I:::; IIAII < oo · 

Therefore this method can describe behavior of infinite systems only with finite values. For 
instance, hamiltonian of total systems and canonical ensembles are mathematically ill-defined. 
Within the framework of C* algebra, we do not explicitly use them, and the framework is 
mathematically well-defined. 
vVe would like to remark that this framework is contrary to conventional quantum mechanics; 
namely, in conventional quantum mechanics, Hilbert space for state is introduced first, and then, 
linear operators on the Hilbert space are defined. 

The advantages of this method is that one can rigorously discuss the existence of NESS 
purely by dynamical time evolution, and it is not based on physically strong assumptions such 
as Markovianity and adiabatic switch-on 3 . In the following section, we are going to review the 
framework of C* algebra. 

3 The method is usually applied with purely mathematical motivation. S. A. thinks that Professor Tasaki's 
motivation was to study physically interesting system by using the rigorous results of the 0* algebra 
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3.1 The definition of C* algebra and some examples 

Definition 3.1 A is a * algebra if algebra A is together with an involution * A --+ A: 

• (A*)*= A, (AB)* = B* A*, VA, BE A 

• (o:A + {3B)* =a:* A*+ {3* B*, VA, BE A, Vo:, ,BE C , 

where a:* denotes the complex confugate of o:4 . 

Definition 3.2 A is a C* algebra if * algebra A satisfies the following properties. 

• A is a is a Banach algebm with respect to a norm 11·11 < oo. 

• The following pmperties are satisfied for arbitrary A, B E A: 

(i) IIABII ~ IIAII IIBII 
(ii) IIA*II = IIAII 

{iii) IIA* All= !lAW (C* property) 

Example 1 (CAR algebra of spinless fermion) Let f E L 2 , and ak the annihilation oper
ator on its associated Pock space :F. An algebra A generated by 

a(!) = 1 dk f*(k)ak, f E L 2 

a(f)* and identity element 1 equipped with a norm 

llfll£2 = 1 dk lf(k)l 2 
' 

is C* algebra. 

Prop. 2 For the CAR algebra defined in the previous example, we have the following three 
properties. 

(i) a(c1f + c2g) =cia(!)+ c2a(g), Cj E C, f,g E h 

(ii) [a(f), a(g)]+ = 0, j,g E h 

( antilinearity) 

{iii} [a(j),a(g)*1+ = (j,g)L21, where (f,g)p = f dxf(x)*g(x). 

Proof of (iii) 

[a(!), a(g)*]+ 

Remark 1 

J dk dk' f(k)*g(k')[ak, ai>l+ 

1 dk f(k)*g(k)1 

(!, g)L21 

Elements of A can be approximated by finite sum of identity element 1, a (h)*··· a (fn)*, and 
4 Note that we assign a double meaning to*· It is the usual complex conjugate operation for complex number 

and also the involution on the elements of the algebra. 
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a (gl) ···a (gm) with arbitrary precision. 
Remark 2 
The following theorem is well-known [Bratelli-Robinson 5.2.5] (Throughout this paper, Bratelli
Robinson means that statements are from Ref. [7]). 
Let h be a pre-Hilbert space with closure h and let Ai ( i = 1, 2) be two C* algebras generated 

by the identity 1 and elements ai (f), f E h, satisfying 

( antilinearity) 

(ii) [ai(f), ai(g)]+ = 0 

(iii) [ai(f), ai(g )*]+ = (!,g) 1 , 

for all f, g E h, i = 1, 2. It follows that there exists a unique *-isomorphism a : A1 ----+ A2 such 

that 

for all f E h. Thus, there exists a unique, up to *-isomorphism, C* algebra A= A( h) = A(h) 
generated by elements f(f), satisfying the canonical anti-commutation relations over h. 

Example 2 (Bratelli-Robinson 2.1.2) Let 1i be a Hilbert space and !3(1i) be the set of all 
bounded operators ove1~ Ji. Define sums and products of elements of !3(1i) in the standard 
manner, and equip this set with the operator norm 

II All = sup{jjA¢11; <P E 'H, ll<PII = 1} · 

Then, the adjoint operation satisfies the properties of involution, and with respect to this invo
lution and the operator norm, !3(1i) form a C* algebra. 

3.2 Spectral analysis on C* algebra 

In conventional quantum mechanics, observables are linear operators on the Hilbert space, and 
one measures their eigenvalues. InC* algebra, corresponding vector space does not exist, and it 
is not possible to discuss eigenvalues. In this subsection, we are going to discuss the spectrum 
of element A E A, which is analogous to a set of eigenvalues. 

Definition 3.3 Let A be an algebra with identity 1 (Hereafter, we shall call unital algebra). 
The resolvent set r A(A) of an element A E A is defined as the set of A E C such that (A1- A) 
is invertible and the spectrum a-A of A is defined as the complement of r A (A) in C. The inverse 
(A1 - A)-1 , where A E r A(A) is called the resolvent of A at A. 

One of the simplest approaches to analyze resolvents and spectra is expanding resolvents 
with respect to.\, and analytically continuing it. For,\ E C and j.\j > IIAII, resolvent can be 
expanded as 

(.\1- A)-1 = A-1 L (~)mE A, (completeness) 
rn?.:O 

(6) 

Therefore, {,\ : ,\ E C, l\l > I JAil} is a subset of r A(A), and spectrum a-A(A) c {.\ : ,\ E 

C, !AI ::;; [[A[j} is bounded. 

-491-



Note 

One can prove that aA(A) is not empty. For spectrum of A, the spectral radius p(A) of A is 
defined by 

p(A) = sup{IAI, A E oA(A)} . 

Definition 3.4 {i) If an element of C* algebra satisfies A* A= AA*, then, A is defined to be 
a normal element. 

{ii) If an element of C* algebra satisfies A* = A, then, A is defined to be a selfadjoint element. 
The set of all selfadjoint elements of A. is denoted by As.a .. 

{iii) Suppose A. has identity 1. If an element of C* algebra satisfies A* A= AA* = 1, then, A 
is defined to be a unitary element. 

Prop. 3 (Arai 3.8) As.a. is closed. 

Throughout this paper, Arai means that statements are from Ref. [48]. 
proof 

Suppose An E As.a., and An ---+A E A. as n---+ oo. 
IIAn- All= IIA~- A* II· Combined with An= A~, we have An---+ A*. Therefore, A= A*. 

Let us show some properties of spectrum. The following proposition is important. 

Prop. 4 (Bratteli Robinson 2.2.2, 2.2.5) 

{i) If A EA. is unitary {i.e. AA* =A* A= 1), then, OA(A) C {A: A E C, IAI = 1} . 

{ii) If A E A. is selfadjoint (i.e. A* = A), then, 

O"A (A) c [-I JAil, I JAil], O"A (A2
) c (0, IIAII 2

] . 

{iii} p(A) = limn-.oo IJAnl\1/n = infn J1Anll 1/n :S JIAIJ 

We are going to prove (i) and (ii) with the aid of (iii). 
proof of (i) 
C* property yields 

II (An)* Anll (C* C*property) 

II (An-1)* A* AAn-111 =II (An-1)* An-111 = ... = 1. 

Thus, 

p(A) = 1 , 

and it follows 

O"A(A) c {A: A E c, IAI:::; 1} . 

Similarly, p (A*) = 1, and A-1 =A* implies 
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Therefore, we have 

( 
1 )-

1 

3 (-\1- A)-1 
9 3 A*- -:\1 . 

It follows 

and 

Combining with p(A) = p(A*) = 1, we have 

,\ E O"A (A)* I-XI = 1 . 

In a conventional quantum mechanics, the same results can be derived for the eigenvalues of 
unitary operators on Hilbert space. Property (i) corresponds to the fact that the eigenvalues of 
unitary operators acting on a Hilbert space have modulus 1. 

proof of (ii) 

implies that the Von Neumann series: 

is convergent. It follows that (2iiiAII1 ± A)-1 exists. Thus, Cayley transform K of A (this 
transform can be defined for unbounded operator and transform Hermiticity to unitarity): 

K = (ia1- A)- 1(ia1 +A), a== 2IIAII 

is well-defined. By using, Hermiticity and the existence of ( 2i II A Ill ± A) -I, and the following 
equality: 

we have 

(ial +A)( -ia1 +A) (ial- A)( -ial- A) , 

K* ( -ia1 +A)( -ia1 - A)-1 

(ia1 + A)-1 (ia1- A) . 

Thus, KK* = 1 (K is unitary). One can also prove the existence of (K + 1)-I, and inverse 
Cayley transformation reads 

A= ia(K- 1)(K + 1)-1 . 
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Thus, resolvent of A is 

.\1-A ).,1- io:(K- 1)(K + 1)-1 

{()., + io:)1 + ().- io:)K} (K + 1)-1 

(-).+io:) { ).,).,+i~ 1- K} (K + 1)-1 . - + zo: 

Since p(A) ~ IIAII, we only need to discuss l.\1 < IIA!I. With the restriction, we have 

It follows 

1-.\ + io:l = 1-)., + 2iJIAlll2: 2IIAII- .\ > o. 

3(.\1- A)- 1 {::} 3 { .\ + i~ 1- K}-
1 

-.\ + ~0: 

Therefore OA (A) is a subset of R: 

.\ + io: 
.\ E OA (A) {::} .\ . E O"A (K) C {0': a- E C, Jo-j = 1} - + ~0: 

{::} 1.\ + io: I = 1- A + io: I 
{::} Im.\ + o: = - Im.\ + o: 

{::} .\ER 

In addition, p(A) = IIAII gives O'A (A) C [-IIAII, IIAIIJ . Finally, let us study the resolvent of A2 . 

• .\ > 0 
(.\1 - A2

) = ( V,\1 -A)( V-\1 +A) implies that .\ E o-(A2 ) is equivalent to vi:\ E a-(A) or 
-vi:\ E o-(A). Thus, resolvent does not exist for A E [0, IIAII2]. 

•A<O 
(.\1- A2

) = (i-M1- A) (i-Ml +A). Combining with O"A (A) C [-!!All, IIAIIJ, resol

vent of A 2 exists for A < 0. 

Thus, we have O'A (A2
) E [0, IIAIJ2

]. 

Q.E.D. 
We only give an explanation for (iii) (see [Bratteli Robinson 2.2.2] for a complete proof). 

The expansion of resolvent with respect to .\-1 reads 

(7) 

This series is absolute convergent when 

~ IAI:+liiA"II' 

is convergent. Thus, the series (7) is convergent for 

~ = lim IIAnW/n < IAI · 
a n--+oc 

Hence, 

lim IIAnll 1/n 2: p(A). 
n--+oo 
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Prop. 5 p(A) = IIAII for a normal element A EA. 

p(A) lim IIAn[l 1/n 
n--+oo 

lim 11A2n 111/2n 
n--+oo 

From C* property and normality, we have 

II (A 2n) *A 2n II ( C* property) 

[[(A*A?nll (normality) 

II (A* A)2n-ll[2 

[[A* A[[ 2n 

IIAII 2
n+l . 

Therefore, 

as n-+ oo. 

Q.E.D. 

Definition 3.5 A E A is defined to be positive if A* = A and OA (A) C R+ = {A : A E R, A 2 
0}. If A is positive, we denote A 2 0, and the set of all positive elements of A is denoted by 

A+· 

Prop. 6 {i) D"A (,\I- A) =).-a-A (A) 

{ii) a-A (,\A) =AD" A (A) 

(iii) Let A E A be an invertible element, then, 

{iv) a-A (A*)= a-A (A) 

{v) a-A (AB) U {0} =a-A (BA) U {0} 

proof of (i) 
Jk E D"A ().I- A){:} (,\- f.l)I- A is not invertible. 
{:}).- 1-l E a-A (A){:} 11 E A- a-A (A) 
proof of ( ii) 
For ,\ = 0, the relation obviously is satisfied because of D"A (0) = {0}. Let us suppose ). =/= 0, 
then, 
Jk E a-A ().A) {:} ).A - 11 is not invertible. {:} (A - X I) is not invertible. {:} p, E A a-A (A) 
proof of (iii) 
Since A is invertible, we have 0 E r·A(A). Let us suppose).=/= 0. 
Because of A-1 -). - 1 I = -A - 1 A-1(A- ).I) , the existence of (A-1 - >.-1I)-1 and the existence 
of (A- ).I)-1 is equivalent. 
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proof of (iv) 
The claim follows from (A1- A)* = (5.1- A*). 
proof of (v) 
Suppose A ErA (BA), then, 

(A1- AB)(1 + A(A1- BA)-1 B)= A1 . 

Therefore, A1- AB is invertible for A E r A (BA) with a possible exception A= 0. Therefore, 
a A (BA) U {0} ~ aA (AB) U {0}. Similarly, we have aA (AB) U {0} ~ aA (BA) U {0}. 

Prop. 7 {i) aA (A) C [0, IIAIIL VA E A+ 

{ii) VA< 0, (A- A1)-1 E A+· IV!oreover, 

-1 1 
II(A-A1) II~ f\1. 

proof of ( ii) 
With the aid of 

and (i), we have 

Prop. 8 (Arai 3.31} A+ is closed. 

proof 

Q.E.D. 

Q.E.D. 

Suppose An E A+, and An--+ A E A as n--+ oo. Since As.a. is closed, we have A E As.a.· 
It is sufficient to show that A- A1 is invertible for A < 0. Let us assume that A is negative. 
Then, positivity of An yields A ErA (An), and thus, An- A1 is invertible. Therefore, 

A - .\1 (A - An) + (An - .\1) 

= {(A- An)+ (An- .\1)}(An- .\1)-1(An- .\1) 

= {(A- An)(An- .\1)-1 + 1}(An- .\1) . 

Since An- .\1 is invertible, A- A1 is invertible, if and only if, {(A- An)(An- .\1)-1 + 1} 
is invertible. Thus, it is sufficient to show -1 ETA ((A- An)(An- A1)-1

). For all positive 
number E, there exists a natural number no such that 

\\An- All< E, \In> no. 

Combining the previous estimation with proposition, we have 

1\(A- An)(An- A1)- 1 ll < \lA- An\1 II(An- .\1)-1
\i 

E 

~ f\1' \In 2 no . 

By taking \~\ < 1, we have p ((A- An)(An- .\1)- 1
) < 1 for n > no, and hence -1 E 

T A ((A- An)(An- A1)-1). 

Q.E.D. 
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Prop. 9 Let A be a C* algebra A, then, the following five properties are satisfied: 

{i} A selfadjoint element A is positive if, and only if Ill - A/IIAII II S 1. Moreover if a 
self-adjoint element A satisfies Ill- All :::; 1, then A is positive, and IIAI! < 2. 

{ii} A selfadjoint element A is positive if, and only if A = B 2 for some B E As.a· If A is 
positive, there exists a unique positive B such that A = B 2 . Moreover, if A is commutable 
with C, i.e. AC = CA, (C E A), then, B is also commutable with C, i.e., BC = CB. 

{iii} Let A1 A2 E A be positive elements, then, c1A1 and c1A1 + c2A2 are positive for c1, c2 > 0. 

{iv) If A is self-adjoint, then, A+ A- = 0 and A = A+ - A_ for some positive elements A±. 

( v) A is positive, if, and only if, A = B* B for some B E A. 

Note for (ii) 
From the uniqueness of B for positive elements, the square root of A E A+ is well-defined, and 
is usually denoted by A112 or yA. Since A2 E A+ for selfadjoint element, we define modulus of 
the selfadjoint elements by !AI= JA2. 

Note for (iv) 
The decomposition A= A+- A_ is referred to as the orthogonal decomposition of A. 

Lemma Let A, BE A+· If A+ B = 0, then, A= B = 0. 
proof 
A= -B implies O"A (A) c [-!IBII, 0]. It follows 

O"A (A)= O"A (B)= {0}. 

Thus, we have A = B = 0. 

proof of (i) 
Q.E.D. 

Suppose A E A+, then, O"A (1- A/IIAII) C (0, 1]. Thus, p(l- A/IIAII) =Ill- A/IIAI\\1:::; 1. 
On the other hand, suppose Ill- A/IIAII II :::; 1. Since O"A (A) C [-jjAjj, IIAIIJ for a selfadjoint 
element A E A, we have 

O"A (1- A/IIAil) c [-1, 1] . 

With the aid of Lemma, we have O"A(A) C [0,2jjAJI ]. 
proof of ( ii) 

O"A (B2) C [0, IJBII2J implies that B2 is a positive element for a positive element B E A+· Let 
us prove the existence of B for positive elements A. Let us define Bas 

00 

n=l 

From (i), we have, Ill- A/I lAIII/:::; 1, thus, the series in the definition of B is convergent in A. 
Let C = 1- A/IIAII, then, 

B
2 IIAII (1+ ~IenlG")' 

IIAII(l- C)= A. 
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\Vith the aid of (i), III- B /IJBJJII s; 1 is equivalent to the positivity of B. Because of C*property 
and the self-adjoint property of B, we have 

IIBII
2 

= IIB*BII = IIB
2

II = JIAIJ. 

Combining with Cn < 0 and II Cj I s; 1, we obtain a desired inequality: 

Thus, B is positive. 

B 
1

-IIBII 1

1 B 

I v11ATI 
= 

< - LCn IICJjn 
n=l 

1- (1+ t,en IICIIn) 

1- Vl- IIC!l s; 1 

From the definition of B, it is obvious that B commutes with any elements which are commutable 
with A. Next, we are going to prove the uniqueness of an element B. Let us assume that the 
second positive element B' exists. Let B = C 2, B' = C'2. One can easily prove that A, B, B', C 
and C' commute each other. Thus, we have the following equality. 

0 (A- A)(B- B') 

(B2
- B'2 )(B- B') 

(B- B')B(B- B') + (B- B')B'(B- B') 

{(B- B')C}2 + {(B- B')C'}2 
. 

Since (B- B')C is selfadjoint, { (B- B')C}2 and { (B- B')C'P are positive. Applying a lemma, 
we have 

It follows 

and 

{ (B- B')C}2 = { (B- B')C'}2 = 0 . 

0 { (B- B')C}2 
- {(B- B')C'}2 

(B- B')3 
, 

(B- B')4 = 0. 

From C* property and Hermiticity, we have 

Thus, B is unique. 
proof of (iii) 
c1 > 0 implies CJ(c1A1) ={.X: .X/c1 E CJ(A1)} C {.X: .Xjq E [0, JIAI!I]} = [O,ci!IAI!I]. Thus, c1A1 
is a positive element. Let p = cl\JAII\/(ciJIAII\ + c2\\A2\\) < 1. With the aid of 

A1 ( ) A2 c1A1 + c2A2 
p-IIA-1II + 1 - P -jjA-21! = -ci--=IIA~I_:_II_+_c2-IIA--2-,-II ' 
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we have 

Ill- h~:ll + (1 - p) ~~~:II }II Ill- ~~~:~:::~~~~~II 
< pIll- 11~: 11ll + c1 - p) Ill- ~~~~~~11 ~ 1 

· 

Therefore, c1A1 + c2A2 is a positive element. 
proof of (iv) 

Let A± = IAI;A, then, A= A+- A_ is obvious. From the definition of A, one has jAj2 = A2
, 

and thus, AlAI = IAIA, and it follows 

4A+A- = (IAI + A)(IAI- A)= A2 + AIAI-IA!A- A2 
= 0. 

Next, we are going to prove a positivity of A±. Since proofs for A+ and A_ are the same, 
we only show the positivity for A_. Because A± is selfadjoint element, one should prove Ill -
A±/IIA±IIII ~ 1. Since nA2 E A+, 1 + nA~ is invertible for n EN (proposition), 

An= nA:_(l + nA:_)-1 

is well-defined. It follows 

and it implies 

IIIAIAn- A-11 2 = IIA-(1 + nA:_)-1 11 2 = lf(l + nA:_)-1 A:_(l + nA:_)-1 11 

~ II (1 + nA:_)-1 A:_ II II (1 + nA:_)-1 11 = !_Ill- (1 + nA:_)-1
[[ 11(1 + nA:_)-1

[[, 
n 

where we have used the C* property and 

1 
(1 + nA~J- 1 A~=;, (1- (1 + nA~)-1 ) 

OA (1 + nA:_) C [1, oo) yields that a A ((1 + nA:_)-1) and a A (1- (1 + nA:_)-1) are subsets of 
[0, 1], and thus, the right hand side of the equation (8) is less than or equal to 1/n. Therefore 
we have 

lim 
n-+oo 

[AJAn =A_· 

Moreover !AlAn reads 

hence, it is positive. Since A+ is closed (proposition 8), we conclude that A_ E A+. 
proof of (iv) 
Proposition implies that for any positive element A, there exists an elements B such that A = 
B* B. Conversely, we need to prove the positivity of B* B for any B E A. Since B* B E As.a. is 
unitary, there exists positive elements C and D such that 

B*B=C-D, CD=O 
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We need to proveD= 0. The positivity of 

-(BD)*(BD) =-DB* BD = -D(C- D)D = D3 

yields O"A ((BD)*(BD)) C ( -oo, 0]. Next, we decompose BD by selfadjoint elements 8, T 5 . 

BD= 8+iT 

Then, (BD)(BD)* reads 

(BD)(BD)* = (8 + iT)(S- ·iT) = 8 2 + T 2 + i(T8- ST) = -(BD)*(BD) + 282 + 2T2 . 

Since -(BD)*(BD), 282 , and 2T2 are positive, we conclude that (BD)(BD)* is positive. 
Thus, we have O"A ((BD)(BD)*) C [0, IIBII 2 IIDII 2]. With the aid of proposition4, we have 
O"A ((BD)*(BD)) c [0, IIBII 2 IIDII2

]. 

Recall that we have already -(BD)*(BD) E A+, and hence we conclude a A ( -(BD)*(BD)) = 
O"A (D)= {0}. Since D 3 is normal, proposition 5 yields !ID3 1] = 0 = IID]j 3 , and hence D = 0. 

Q.E.D. 

4 Time evolution on C* algebra A 

As we have stated in the introduction, one of the main motivations to introduce C* algebra was 
to avoid a mathematically ill-defined observables, such as hamiltonian of infinite systems. In 
addition, states also do not have asymptotic limit since e-iHt oscillate very frequently, and thus, 
it is crucial to establish a theory which describes the time evolution of local observables without 
using a hamiltonian. Indeed, this divergence problems is crucial in mesoscopic systems, but still 
one can study interesting local observables such as density of local electrons, current etc. In 
this section, we shall present the time evolution on C* algebra, which formally agree with the 
time evolution described with a hamiltonian. Namely, the idea is to introduce a generator of 
time evolution Tt(A) of local observable A E A which formally matches conventional quantum 
mechanical time evolution A(t) = eiHt Ae-iHt (R.H.S. is ill-defined and it only has a formal 
meaning). We axiomatically impose the following properties on the time generator Tt ( ·) : A -+ A 
(strong continuous *-isomorphism group). 

(i) Tt(aA + (3B) = art(A) + f3rt(B), \:fa, ,BE C, \:/A, BE A 
Tt(AB) = Tt(A)rt(B), VA, B E A 
Tt(A*) = Tt(A)* 

(ii) Ts (rt(A)) = Ts+t(A), ro(A) =A (group property) 

(iii) limt--+0 l!rt(A) -All = 0, (strong continuity) 

(linear) 

We remark that a map ¢satisfying the condition (i) is referred to as a *-morphism. lVIoreover, 
if *-morphism is one-to-one, then, it is called *-isomorphism. 

5 Let us consider the decomposition of A E A into two selfadjoint operator. Let us define Are (A + 
A*)/2, A;m =(A- A*)/2i, then, Are and Aim are selfadjoint, and they satisfy 

A = Are + iA;m . 

We note that Are and A;m are referred to as real part and imaginary part, respectively. 
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Prop. 10 Let Tt be a group of strong continuous *-isomorphism over A. Then, Tt(l) == 1 and 

\\Tt(A)\\ =\\A\\. 

Lemma OA (A)= OA (Tt(A)) for A E As.a.· 
proof of lemma 
Let A E As.a., and let A E r A (A), then, we have the following equality: 

{Tt(Al)- Tt(A)}Tt((Al- A)-1
) 

Tt(Al- A)Tt((A1- A)-1
) (*-isomorphism) 

Tt((A1- A)(A1- A)-1
) (*-isomorphism) 

- Tt(1) = 1 

Thus, Al- Tt(A) is invertible, and it follows A E r(Tt(A)). Conversely, let A ErA (Tt(A)), then, 

T-t((A1- Tt(A))-1)T-t(Tt(A1- A)) (group property) 

T-t( (Al- Tt(A))-1 (Al- Tt(A))) (*-isomorphism) 

T-t(l) = 1 . 

Thus, we have A E r(A). We concluder A (A)= r A (Tt(A)), which follows O'A (A)= O'A (Tt(A)). 
Q.E.D. 

proof of proposition 
Applying Tt(T-t(A)) =A, we have 

(group property) 

Tt(lT_t(l)) (*-isomorphism) 

Tt(T_t(l)) = 1. (group property) 

Suppose A E As.a., then, following the previous lemma, we have O'A (A)= O'A (Tt(A)). 
Applying proposition 5 for A, we have IIAII = p(A) = p(Tt(A)) = IITt(A)j). 
Suppose A is not selfadjoint, then, we have 

IIAII2 = IIA* All = IITt(A* A)ll = !ITt(A)*Tt(A)JI = lln(A)II 2 
. 

Q.E.D. 

Prop. 11 Let A be a C* algebra. For a group of strong continuous *-isomorphisms Tt over A, 
there exists a dense subset D( 8) of A and linear operator 8 on D( 8) such that 

Moreover, 

{i) 1 E D(8) and 8(1) = 0. 

{ii) If A, BE D(8), then, ABE D(8) and 8(AB) = A8(B) + 8(A)B. 

{iii) If A E D(8), then, A* E D(8) and 8(A)* = 8(A*). 
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This element 8 corresponds to a derivative (8 = ddr lt=o), and is referred to as a generator of It 

in the doming V(8). 
Remark 1 
This proposition is proved without using differentiability. Thus, if strong continuity is imposed 
on a self map, then, derivative exists for almost all elements in the C* algebra in the sense of 
this proposition. 
proof 
Let 

First let us prove that V( 8) is dense in A. It is sufficient to show IIAe - All -+ 0 as E -+ 0 for 
any A E A (Any element in A can be approximated by AE E V(8) with arbitrary precision.). 
With the aid of the strong continuity and the equality: 

one can easily see IIAE - All -+ 0 as follows: 

lim IIAE -All = lim II~ rX) dse-sfEis(A) - ~ r= dse-s/E All 
E-+0 E-+0 E~ E~ 

j~ llf ~s e-'I'{T,(A)- A}ll 

¥~ 111= dse-'{Tc,(A)- A}ll 

< lim r= dse-sjjTEs(A)- Ail 
E-+O Jo 
0 (9) 

Therefore we conclude V( 8) = A, where V( 8) represents a closure of V( 8) with respect to the 
norm we discussed6 . Next, we are going to prove equality (8). For any element AE E V(8), let 
us define 8 ( AE) by 

(10) 

Linearity of 8 is obvious. For arbitrary A E A, we have 

6 Rigorously speaking, limit of (9) should be treated more carefully. 
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Therefore, we have the following inequality: 

II r,(A,:- A, - J(A.)II = II r,(A,~- A, - A.~ A II 
I 

et/E -1- tjE 111 (1-s)t ) Ai ---__;__AE- - dse-6 -Tts(A +-
t E 0 E 

< et/E- 1- tjE IIAEjj + ~ {1 dse (1-:;s)t l!rts(A)- Ajj 
t E Jo 

1 I [ 1 
(1-s)t I +~ 1- Jo dse_€_ 1\A\I 

By taking a limit of t --+ 0, we have the desired equality: 

~~II Tt(A,~- A. -li(A,)II = 0 

Let us prove the properties (i)-(iii). Thanks to Tt(l) = 1, we obtain 

Let A, B E V( 8), then, 

llr,(AB~- AB- {J(A)B + AJ(B)}II 
= II r,(A)r,(B)- Art(~)+ Ar,(B)- AB - 6(A)r,(B) + J(A)Tt(B)- {J(A)B + AJ(B)}II 
= II r,(A~- A r,(B) - J(A)r,(B) + li(A)r,(B) -li(A)B +A r,(B~- B -Ali( B) II 
S llrt(A~- A- 6(A)IIIh(B)II + II6(A)IIIIrt(B)- Bll + IIAIIIIrt(B~- B -J(B)II 
--+ 0 (t--+ 0) . 

Thus, (ii) is proved. For A E D(8), we have 

hence (iii) is proved. 

II r,(A ·~- A' - O(A)' II = II r,(A):- A* - 6( A)* II 
= II Tt(A~- A - J(A)II __, 0 (t __, 0), 

Example 3 (Spinless fermion in d dimensional space) For this example, we make a 
rough argument which show that D( 8) is not equal to A. Let us think of a CAR algebra discussed 
in Example 1. For a(J) = J f ( k) * ak dk, we define a following time evolution: 
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lla(f)ll = J J lf(k)l2 dk implies 

and thus, Tt is well-defined for any a(f) E A. On the other hand, formal calculation gives 

ll8(a(f))ll = J w~lf(k)l 2 dk. 

R.H.S. can be divergent, and has meaning only for some a(f) E A. It means that domain of 

derivative is not equal to A. 

Proposition 11 claims that a time generator 8 exists for Tt. On the other hand, the existence 

of Tt for a given time generator 6 is much more difficult to prove, and individual problems are 

usually discussed using the Hille Yoshida theory of semi-group. However, there are some general 

results for perturbative systems. 

Prop. 12 Let A be a C* algebra, and Tt be a group of strong continuous *-isomorphisms over 

A. Let us define r t E A as a solution of 

for V E As.a.. Then, 

(i) r t is unitary. 

(ii) rt+s = rtrt(r s) 

(iii) 

r, = 1 + i fa' dsr ,r,(V) (11) 

rt (A)= rtrt(A)r; (v A E A) 

is a group of strong continuous *-isomorphisms. Thus, generator ofrY exists for A E 1J(8). 

Let 8v be a generator of rY for A E 1J( 8). Then, it has the following form: 

8v (A)= 8(A) + i[V, A] (12) 

Remark 
Here, let us formally discuss the relation between conventional quantum mechanics and this 

theorem. Let us study perturbative systems H = Ho + V. Then, time evolution operator 

is denoted by U = e-iHt (or one can say that U changes Schrodinger picture to Heisenberg 

picture). Let As be an arbitrary observables in Schrodinger picture, and let us define Uo, AH, AI 

as Uo = e-iHot, AH = utAU,A1 = uJAu0 . Then, ensemble averages of observable AH(t) read 

tr{AsU poUt} 

tr{ ut AsU Po} 

tr{AI(t)uJu poutuo} 
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Usually, UI = uJu is used as a time evolution operator in interaction picture. Here, we shall 
define rt = utuo, instead, then, AH(t) = rtAI(t)rt. The equation of motion forrt reads 

idrt - i(utuo)' 
dt 

_ i(eiHte-iHot)' 

ieiHt(iH- iHo)e-iHot 

-utvuo 
-utuouJvuo 
-rtUdVUo 

We shall define rt(A) as uJAUo. Then, this equation corresponds to the time derivative of 
Eq.(11). On the other hand, Heisenberg equation of motion for AH(t) is given by 

i[H, AH(t)] 't=O 
t=O 

i[Ho, AH(t)] lt=O + i[V, AH(t)] \t=O · 
The first term corresponds to 8(A) in equation (12). Roughly speaking, we separate evolution 
with Ho and V 7 , and r(·) is used to avoid free hamiltonian evolution H0• 

proof 

(13) 

is a solution of the integral equation if the limit exists and it is continuous with respect to t 
(This series corresponds to the Dyson series in the conventional quantum mechanics). With the 
aids of an inequality: llrs1 (V) · · ·'Tsn(V)II:::; llrs1 (V)jj· ··ilrsn(V)l! = IIV!In, we see that 

1 + II fo' dBr,(V) II + · · + II fo' dsn [n dsn-1 · · f ds1 Ts, (V)r,, (V) · ·Tsn (V) II + · · 

<; 1 + fo' dsllrs (V) II + · · · + fo' dsn [" dsn-1 · · [' ds1ll r, (V)r, (V) · ·Tsn (V) 1\ + · · · 

<; 1 + fo' dBI\VI\ + · · · + fo' dsn [" dsn-1 · ·1'' ds1I\VIIn + · · · 
tn 

= 1 + t !lVII + · · · + -IIVI!n + · · · = eiiViit < +oo 
n! 

is absolute convergent for t > 0. Similarly, one can also prove the convergence for t < 0. 
Thus, (13) is norm-convergent, and it is a solution of the integral equation. Since (13) is norm
convergent and every term is differentiable, one concludes that this solution is differentiable, 
and hence 

d 
dt rt irtrt(V) 

--------------U.~ r; -irt(V)r;. 
7 This argument is only to have a intuition, and not correct statement. 
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Moreover, one can easily see that (rtr;) is t independent: 

d (r r*) dr t r* r dr; . ( ) * . ( ) * -d t t = -d t + t-d = ~rtrt v rt -1Ttrt v rt = o, 
t t t 

and thus, we have rtr; = ror0 = 1. Next, let us prove r;rt = 1. 

implies 

r;r, -1 ~ -i fo' dt[r,{V),r;r,] ~ -i fo' dt[r,{V),r;r, -1]. 

Let R1(t) = J~ ds!lr;rs- 111. With the aids of the previous equality, we have the following 
inequality for t > 0: 

1\JT l . l . h . . }" b e-2j1VIIt b . 
1.ViU tip ymg t e prev1ous mequa 1ty y 2 \IVII , we o tam 

e-21\VIIt * . _ _ e-211VIIt dR1(t) _2 IIVIJt 
0 ::; 2JIVII llrtrt 1\l - 2IIVII dt ::; e Rl (t) 

= ft ds~{e-2 IIV!IsR1(s)} = r dse- 211V\Is{dR1(s)- 2l!VIIR1(s)}::; o. 
Jo ds Jo ds 

We conclude that rt is unitary. 
Next, we are going to prove the property (ii), i.e., rs+t = rsrs(rt)· 

With the aids of r;rt+s\ = 1 and dd r;rt+s = ir;rt+sTt+s(V), we have 
t=O t 

r:rt+, ~ 1 + i 1' dt, T,+t, (V) + i 2 1' dt21" dt1 Ts+l> (V)r,+t,(V) 

+ · · · + i" 1' dtn 1'" dtn -1 · • ·1'' dt1r,+h (V)rs+t,(V) · · · Ts+tn (V) + · · · 

1 + i .fo' dtJT, (r,. (V)) + i2 l dt2l' dt1 r, (r,. (V)r,, (V)) 

+ ... + i" .{ dtn 1'" dtn-1 .. ·1" dt1 T, ( r,, (V)r,, (V) ... Ttn (V)) + ... 

T8 ( 1 + i 1' dt1 Tt, (V) + i 2 .f dt21'' dt, Tt, (V)rt, (V) 

+ · · · + i" 1' dtn 1'" dtn-1 · · ·1'' dt1 Tt, (V)rt,(V) · · · Ttn (V) + · · ·) 

Ts(rt) . 

Unitarity of rt gives a desired equality. 
Finally, we prove that rr (A) = rtrt(A)r; is a group of strong continuous *-isomorphisms. 

It is obvious that rr is linear. In addition, 

rt (AB) = rtrt(AB)r; = ftrt(A)rt(B)r; = ftrt(A)r;rtrt(B)r; = rt (A)rt (B) 

rY (A*) = rtrt(A*)r; = rtrt(A)*r; = (rtrt(A)r;)* = Tr (A)* 
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follows that rY is a *-isomorphism. Moreover, it satisfies 

rY (r; (A))= rtrt(rsrs(A)r=)r; = rtrt(rs)rt(rs(A))Tt(r:)r; 
= ftTt(fs)'Tt+s(A)Tt(rs)*r; = rt+s'Tt+s(A)r;+s = Tt~s(A) . 

Thus, Tr is a group. Strong continuity follows from 

I!T{ (A) -All !lrtrt(A)r; -All 
< llrt(rt(A)- A)r:11 + llrtAr;- Ar;!l + JIAr;- All 
< !ITt(A)- All+ IIAII!Ir;- 111 + 1\Ailllrt- 111 
--+ 0 ' ast--+0. 

Recalling, \\(rt(A)- A)/t- o(A)\1--+ o and \l(rt- 1)/t- iVII--+ 0 for the limit t--+ o, we have 

Tr (A)- A _ rtrt(A)r;- A_ r Tt(A)- Ar* rt -1 Ar* A r;- 1 
t - t - t t t+ t t+ t 

--+ o(A) +iVA- iAV = 8(A) + i[V, A], as t--+ 0, 

for any A E V(J) in a sense of norm convergence. Therefore, generator JV of rY reads 

ov (A) = 8(A) + i[V, A] . 

Q.E.D. 
Proposition 12 gives a time generator for autonomous systems. Time evolution with non

autonomous perturbation can be described by the following proposition. 

Prop. 13 Let A be a C* algebra, and Tt be a group of strong continuous *-isomorphisms over 
A. 

Let us define r t,s E A as a solution of 

(14) 

for V E As.a.. Then, 

(i) ft,s is unitary. 

(iii) 'Tt~(A) == ft,slt-s(A)r;,s 
is a group of strong continuous *-isomorphisms which satisfies 

d v v ( ) dt 't,s(A) = rt,s 8(A) + i[V(t), A] , VA E V(J) . 

(15) 

-507-



is a solution of the integral equation if the limit exists, and it is continuous with respect to t. 
llrt(A)II = IIAII follows 

!lrh -s(V(h)) · · · Ttn-s(V(tn)) II < llrt1-s(V(t1) )JI· · ·Jlrtn-s(V(tn)) II = K(t, S )n 

K(t,s) sup IJV(r)!l. 
s5,r5,_t 

\Vith the aids of this inequality, we have 

1 
~ K(t, s)n(t- s)n K(t s)(t-s) 

=+L =e' <+oo 
n=l n! 

fort> s. Thus, (15) is absolute convergent. In a similar way, one can prove that the series (15) 
is norm-convergent for t < s, and thus the series (15) is a solution of the integral equation. 

proof of (i) 
Since V(t) is selfadjoint and Tt() is *-isomorphism, we have Tt(V(t))* = Tt(V(t)). Thus, differ
entiating (14) with respect to t, we obtain 

dr 
dt t,s 

~r* dt t,s 

irt,sTt-s(V(t)) 

-iTt-s(V(t))r;,s . 

It follows that (rt,sr;,s) is t independent: 

:t (rt,sr;,s) = irt,sTt-s(V(t))r;,s- irt,sTt-s(V(t))r;,s = 0 

Therefore, we have rt,sr;,s = rs,sr;,s = 1. Next let us prove (r;,srt,s) = 1. Integrating 

from s to t, we obtain 

r;,,r,,,- 1 = -i [ dt[r,_,(V(t)), r;,,r,,,] = -i [ dt[r,_,(V(t)), r;,,r,,,- 1] . 

Therefore, the following inequality is satisfied for t > s: 

dR1 (t) 
dt 

R1(t) 

11r;,srt,s- 111 

< 1t dt'jj[rt'-s(V(t')),r;,,srt',s -1]11 

< 2K(t, s) 1t dt'!lr;,,srt',s- ljj = 2K(t, s)R1(t) 

0 :S; l!r;,srt,s- ljj :S; 2K(t, s)R1(t) 

1t dt'jjr;,,srt',s- 111 
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From R( s) = 0 and the previous inequality, we have 

e-2K(t,s)t 
0 < 2K(t, s) 11r;,srt,s- 111 

[ dt' ~~ { e-2K(t,s)t' Rr (t')} 

[ dt' e-2K(t,s)t' { d~t~t') - 2K(t, s)Rr (t')} . 

Combining 0::;; K(t',s)::;; K(t,s) (t' ~ t) and dRJt~t')- 2K(t',s)Rl(t') :S 0, we have 

e-2K(t,s)t 

0 < 2K(t, s) jjr;,srt,s- 111 

= [ dt'e-2K(t,s)t' { d~~~t!) - 2K(t, s)Rr(t')} 

< 0. 

Therefore, r;,srt,s = 1, and thus rt,s is unitary. 
proof of (ii) 

Let y(t)s11s = r;1,srt,s· By integrating :t r:1,srt,s = ir:1 ,8 rt,s'Tt-s(V(t)) from s1 tot, we obtain 

Ys 1 ,s(t) = 1 + i it dt1 Ys1 ,s(t1)7t1-s(V(fi)) , (16) 
81 

where we have used r;
1

,8 rt,sl = 1. The solution can be expressed by the following series 
t=s1 

(One prove the convergence of the following series with the same arguments we have done to 
prove the convergence of series (15).): 

It follows 

= 1 + f i" 1' dtn 1'" dtn-l .. · [' dtrrs,-s ( Tt, _,, (V(tr))r,,_, (V(t2)) .. · Tt,-s, (V(tn))) 
n=l Sl 81 Sl 

= r, -s ( 1 + f i" 1' dtn [" dtn-l ... 1'' dtrrt, _,, (V(tr))rt,-, (V(t2)) ... Tt,-, (V(tn)))) 
n=l 81 81 Bl 

= 'Ts1 -s (r t,s1) · 

Thus, we have rt,s = r Sl,S'TSl-s(rt,sJ· 
proof of (iii) 

First, 

rt':s(A) = rt,sTt-s(A)r;,s, v A E V(8) 

is obviously linear. In addition, 

rt':sCAB) = rt,srt-s(AB)rt,s = rt,srt-s(A)rt-s(B)rt,s 

= rt,srt-s(A)r;,srt,srt-s(B)r;,s = rt~(A)rt':sCB) 
rt~(A*) = rt,srt-s(A*)rt,s = rt,srt-s(A)*r;,s = (rt,srt-s(A)r;,s)* = rt':sCA)* 
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implies that Tt~ is a *-isomorphism. Strong continuity follows from 

IITt';:(A) -All llrt,sTt-s(A)r;,s -All 

< llrt,s(Tt-s(A)- A)r;,sll + ll(rt,s- 1)Ar;,s11 + IIA(r;,s- 1)11 

-+ 0 1 as t-+s. 

Next, let us prove the group property. Since Tt is a *-isomorphism, we have 

rt1 ,sTt1 -s (rt,t1 Tt-t 1 (A)r;,tJr;1 ,s 

rt1,sTt1 -s (rt,li )Tt1 -s ( Tt-t 1 (A) )Tt1 -s(r;,t
1 
)r;1 ,8 ( * - isomorphism) 

rt1,sTtr -s(rth )Tt-s(A)Tt1-s(r;,tJr;1 ,s (*-isomorphism) . 

Moreover' the equality r t,s = rh ,s Ttl -s (r t,tl) yields r;,s = Ttl -s (r;,tJr;l ,s because Tt is a *
isomorphism. Hence, we have 

Tt~,s(Ttjl (A)) = rt,sTt-s(A)r;,s = Tt~(A) . 

Therefore, we conclude that Tt~ ( ·) satisfies the group property. Finally, let us discuss the form 
of the generator for A E V(8). 'For v A E D(8), we have 

Tt~h,s(A)- Tt~(A) 
h 

(group property) 

where we have used rt,t = 1, II(Th(A)- A)/h- 8(A)II -+ 0, ll(rt+h,t -1)/h-iV(t) II -+ 0 (h-+ 0). 
In conclusion, the generator is expressed by 

:t Tt~(A) = Tt':s ( 8(A) + i[V(t), AJ) (17) 

5 State on C* algebra 

Conventional quantum mechanics starts from Hilbert space, and states of quantum systems are 
represented by unit vectors in Hilbert space 1-l, and observables are selfadjoint operators on 7-l. 
Then, expectation values with state W are given by an inner product: 

(A)w = (w, Aw) (18) 

From the expression (18), states can be interpreted as a positive linear functional ww : As -+ 

C, where As represents a *-algebra generated by bounded operators on the Hilbert space 7-l. 
This functional gives the correspondence between expectation values ww(A) and observables 
A E As at state W. Stating from this interpretation, we can generalize a framework of quantum 
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mechanics (the method of C* algebra). In the method of C* algebra, we no longer start from 
Hilbert space (it is not even necessary to have Hilbert space in the theory), and start from C* 
algebra A, where selfadjoint elements in A are defined to be physical observables (it means that a 
set of observables are a sub-algebra of A). Then, we redefine state as a positive linear functional 
with a normalization condition 8 (see definition 5.1). This state gives a correspondence between 
observables and their expectation values at state w. As we shall explain, Hilbert space structure 
will appear later as a representation of C* algebra A. Roughly speaking, we consider that 
we know states of quantum systems when we have all the correspondence between expectation 
values and local observables. For infinitely extended systems, this definition works better in a 
mathematical sense. 

Definition 5.1 Let A be a * algebra, and let A* be a set of linear functionals from A to C. 
Then, wE A* is said to be a positive linear functional if w(A* A) "2:: 0, for all A EA. Moreover, 
positive linear functional is called faithful if A = 0 for all A satisfying w(A* A) = 0. States are 
positive linear functionals that satisfies the normalization: w(l) = 1. 

We note that for any positive elements A in C* algebra, there exists B E A such that 
A= B* B, and thus, positivity of w is equivalent to imposing w(A) "2:: 0 for any positive elements 

AEA+· 

Although we introduced state from the correspondence with (18), it is easy to see the connection 
between state on C* algebra and density operator in a conventional quantum mechanics. In par
ticular, there is one-to-one correspondence between density operators and states on C* algebra 
in finite systems. More general results are given by example 4. Before stating the proposition, 
let us first present density operator in conventional quantum mechanics, and then its connection 
to states inC* algebra (Ex. 4). 

Example 4 Let B(1i) be a set of bounded linear operators on Hilbert space 1i. Then, if T E 

B(1i) satisfies 

= 
IITII1 = Tr!TI = L (en, ITien) < CXJ 

n=l 

for some CONS {en}~1 , then, Tis called a trace class operator. A set of trace class operators 
over 1i will be denoted by cl (1i). 

LetT E C1 (1i) be defined as positive trace class operator if T =f- 0 and T "2:: 0. Moreover, if 
positive trace class operator p is normalized (i.e. Tr p = 1), then, it is called a density operator. 

Let A be a unital C* subalgebra of B(1i). For arbitrary density operator p E C1 (1i), we define 
a map wP : A -c> C as 

wP(A) = 'fr(pA) . 

Then, wP(·) is a state on A. 

\Ve note that wP is referred to as the normal state associated to a density operator p. 
proof 

(19) 

8 The same definition can be used for *algebra, and one can study wider class of systems. For instance, it is 
more natural to start from *algebra if one want t o study unbounded observables. 
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Linearity of wP(·) comes from the linearity of trace. wP(1) follows from Tr p = 1. Since 
Tr(pA* A) = Tr(ApA*) for v A E A, we have wP(A* A) ~ 0. 

Q.E.D. 
Positivity and C* algebra is a very strong condition, and for instance, one can show the 

continuity from positivity (proposition 14), and some more properties (proposition 15). 

Prop. 14 (Bratteli Robinson 2.3.11) 
Let w be a positive linear functional over a C* algebra A. Then, w is continuous. 

see [Bratteli Robinson] for the proof. 

Prop. 15 Let A be a C* algebra and w(·) be a state over A. Then, the following propert·ies are 
satisfied: 

(i) w(A)* = w(A*) 

{ii) !w(A* B) I :::; -Jw(A* A)w(B* B) {Cauchy-Schwarz inequality) 

{iii) w(A* B* BA) :::; IIBII2w(A* A) 

{iv) lw(A)I :S IIAJI 

proof of (i) 
Positivity of w follows 

w ((A+ -\1)*(A + -\1)) = w(A* A)+ -\*w(A) + -\w(A*) + l-\12 E R, 

for arbitrary complex number -\. Thus, we have 

Im (-\*w(A) + -\w(A*)) = 0. 

By substituting A = 1 and A = i, we obtain 

Imw(A*) = -Imw(A), Rew(A*) = Rew(A) . 

We conclude w(A*) = w(A)*. 

proof of (ii) 
Positivity of w follows 

0:::; w ((A+ -\B)*(A +-\B)) = w(A* A)+ -\*w(B* A)+ -\w(A* B)+ l-\l 2w(B* B) , (20) 

for arbitrary complex number -\. Let us take A= tw(A* B)*, t E R, then, (i) yields 

w(B* A) = w(A* B)* . 

Thus, inequality (20) reads 

(21) 

Since inequality (21) is satisfied for arbitrary t E R, discriminant of the R.H.S. of (21) should 
be less than or equal to 0: 

lw(A* B)l4
- w(A* A)jw(A* B)j 2w(B* B) :::; 0 (22) 
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If w(A* B) = 0, then, Cauchy-Schwarz inequality is satisfied, else inequality (22) gives Cauchy

Schwarz inequality. 

proof of (iii) 

II ( B*B)II liB*BII 1 
-

1
- IIBII2 :::; IIBII 2 = 1 

implies 1- B* B/!IBI! 2 E A+· Therefore, there exists B' such that 

Positivity of w gives 

0 < w (A* B'* B' A) 

(A* A)_ w(A* B* BA) 
w IIBII 2 

Thus, we have w(A* B* BA):::; IIBII2w(A* A). 

proof of ( iv) 

lw(A)I lw(A*)I (i) 
< /w(A* A) (substitute B = 1 into (ii)) 

< IIAI\ (substitute A= 1, B =A into (iii)) 

Q.E.D. 

5.1 G NS representation 

We have discussed states and time evolution on C* algebra without using the Hilbert space 
structure. In conventional quantum mechanics, discussion starts from setting a Hilbert space, 
and states are unit vector in the Hilbert space. Therefore, we do not need to set up different 
Hilbert space for different states. 

In C* algebra, states are positive linear functional over C* algebra A, and Hilbert space 
appears as a representation of states. Namely, Hilbert space is introduced for each state, and 
there is a strong connection between state w and the introduced Hilbert space. Elements in A 
are connected to a linear operator on the Hilbert space. 

In this subsection, we briefly discuss the representation theory, which gives the connection 
between Hilbert space and positive linear functional. 

Definition 5.2 A representation of a C* algebra A is defined to be a pair (1i, 'D, 11), where 1-{ 

is a complex Hilbert space, 'D is a dense subspace of H, and 1r is a *-morphism of A into B('D). 
A representation (1-l, 'D, 1r) is defined to be faithful if 1r is a *-isomorphism between A and 1r(A), 
i.e. ker 7r = { 0}. Moreover, a representation is defined to be cyclic, if there exists a vector 
DE 'D \ {0} such that 1r(A)D is dense in H. D E 'D is referred to be as a cyclic vector. 
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Clearly, faithful representation is one of the most important classes of representations, and it is 
well-known that each representation (H, V, 1r) of a C* algebra defines a faithful representation 
of the quotient algebra A/ker 1r(see discussion of [Bratteli Robinson] before the definition 2.3.2). 
JVIoreover, the next proposition gives criteria for faithfulness. 

Prop. 16 (Bratteli Robinson 2.3.3) 
Let (H, V, 1r) be a representation of C* algebra A. The representation is faithful, if and only 

if, it satisfies each of the following equivalent conditions: 

(i) ker 1r = 0. 

(ii} !!7r(A)!I = llAII, v A EA. 

(iii} 1r(A) > 0 for all A > 0. 

Once the representation (H, 1r) is given, we can define a linear functional ww(·) : A---+ C by 

ww=('lr,A'I!), 

for some \[r E H. Then, one can easily prove that ww is positive. lVIoreover, Ww is a state over 
A, if and only if, \[r is a unit vector in 1-l. For a unit vector W, Ww is said to be a vector state of 
representation (1-l, V, 1r). 

In short, this argument gives states from representations; however the existence of the repre
sentation itself is not so obvious. In the rest of this subsection, we demonstrate one of the most 
common methods to construct a representations from states (GNS representation), and then, 
show an example of the representation. Namely, positive linear functional with normalization 
ensure the existence of representations (GNS representation). 

Prop. 17 (GNS representation) Let A be a unital C* algebra, and w be a state over A. 
Then, there exist a Hilbert space Hw, its element Dw E .Hw, and a *-morphism 1rw of A into 

l3 ( Hw) such that 

w(A) = (Ow, 1rw(A)flw) (v A E A) 

Hw = {1rw(A)f2w : A E A} 

(23) 

(24) 

where bar in the R.H.S. of Eq. (24) represents a closure with respect to a norm in Hilbert space. 
In addition, Dw is a cyclic vector of1-lw, i.e., {1rw(A)DwiA E A} C 1-lw is dense in Hw· A pair 
(1-lw, 1rw, Dw) is referred to as a GNS representation of (A, w). Moreover, GNS representation is 

unique up to unitary transformation. 

Remark 1 
Suppose that (J-l~,1rw,Ow) is a representation of (A,w). Then, there exists a unitary transfor-

mation U : H~ ---+ Hw, such that 

It follows 
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Therefore, inner products are preserved for different hamiltonian, which is transformed by uni
tary transformation. 
Remark 2 (Inequivalent representation) 
Let w and w be different states over C* algebra A. Let ('Hw, 1fw, flw) and ('Hw, 1fw, Ow) be their 
representations: respectively. In general, there does not exist a unitary transformation U satis
fying 

In some sense, different states over a single C* algebra are not connected. 
proof 
Let us start from constructing a Hilbert space. w(A)* = w(A*) yields w(A* B) = w(B* A)*. 
Thus, a map (-, ·) : A x A--+ C 

(A, B)= w(A*B), A,B E A 

is sesquilinear and satisfy Hermitian symmetry (A, B). 1\!Ioreover, it satisfies (A, A) :::::: 0 for 
any elements A E A. Thus, the map ( ·, ·) satisfies all the properties of inner product except 
that (A, A) = 0 does not imply x = 0. To construct an inner product, let us form a quotient 
algebra Vw =A\ N, where N represents N ={A E AI (A, A) = 0}. The elements of Vw are 
classes [A]= {A+ nj n EN}. One can easily show An forms a vector space with respect to the 
following operation: 

[A]+ [B] = [A+ B], a(A] = [aA], A,B E A, a E C 

Let us introduce a map (-, ·)w : Vw x Vw --+ C as 

([A], [B])w =(A, B), [A], [B] E Vw . 

This map does not depend on the choice of representatives and therefore is well-defined: 

I (AI, BI) - (A2, B2) I < I (AI - A2, Bl) I + I (A2, BI - B2) I 
< V(Al- A2,A1- A2)y'(B1,B1) 

+v' (A2, A2) y' (B1 - B2, B1 - B2) (Cauchy- Schwarz inequality) 

0, v Ar, A2 E [A], v B1, B2 E [B] . 

Obviously, ([A], [A])w = 0 implies [A] = [0]; therefore Vw is a pre-Hilbert space (inner product 
space) with a inner product (-, ·)w· Then we have a Hilbert space 'Hw as the Cauchy completion 
ofVw with respect to the norm j[A]I = y'([A], [A]). 

Next, we are going to discuss *-morphism 1fw(-). 1fw(A) E B('Hw) is defined to be 1fw(A)[B] = 
[AB] for A E A, then 1fw(·) can be extended to bounded operator over 'Hw as we shall explain 
below. 

Let 'lj; E 'Hw, then, there exists a sequence { Bn}~=I C Vw such that 

lim j[Bnl-w) = o . 
n--->oo 

For that sequence, we have 

)1fw(A)[Bn]-1rw(A)[Bm]l = '[A(Bn- Em)] I= jw((Bn- Bm)*A*A(Bn- Bm)) 

:S IIA!ljw((Bn- Bm)*(Bn- Bm)) = !!AI!\[Bn]- [Bm]J-+ 0, as n,m--+ 00. 
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Therefore, {[Bn]}~=l is a Cauchy sequence in 'ltw, and thus completeness follows that the limit 
exists. We define the limit limn---+oo Kw(A)[Bn] as 7rw(A)'!f1. This map '!f1 ---+ 1rw(A)'!f1 is obviously 
linear, and Kw(A) is an element of B('ltw) due to 17rw(A)'!f11 :::; !!All l'!f11: 

11rw(A)[Bn]l = Jw(B;iA*ABn) :S IJAjJJw(B;iBn) = IIA!!J[Bn]l 

We need to prove that the map ?rw : A 3 A---+ Kw(A) E B('ltw) is *-morphism, i.e., the map is 
linear, Kw(A)* = Kw(A*), and Kw(A)Kw(B) = Kw(AB). Linearity comes from9 

Kw(A)* = Kw(A*) comes from 

([B], Kw(A)* [C)) (Kw(A)[B), [CJ) = ([ABJ, [CJ) = w(B* A*C) 

([B), [A*C]) =([B), Kw(A*)[C]) . 

Finally Kw(A)Kw(B) = Kw(AB) comes from 

Thus, ?rw is a *-morphism of A into B('Jtw)· 
Let us prove that flw = [1] is a cyclic vector, and satisfies 

{Kw(A)flw : A E A}= {[A] : A E A}= Du., yields that flw is a cyclic vector. In addition, we 
have 

J\!Ioreover, w(l) = 1 implies that llflwll = 1, and thus, flw is a unit vector. Finally, we are going 
to prove that another representation ('lt~, ?r~, n~) is transformed to ('ltw, 1rw, flw) by a unitary 
transformation. Let us define a map U : 'ltw ---+ 1t~ by 

(25) 

Since {Kw(A)flw : A E A} is dense in 'ltw, we can extend the domain of U into 'ltw. Then, we 
have 

( U*1r~(A)fl~, Kw(B)flw) = ( 1r~(A)O~, UKw(B)flw) 

= ( 1r~(A)n~, 1r~(B)n~) = ( n~, 1r~(A)*1r~(B)n~) = ( n~, 1r~(A* B)n~) 

= w(A* B)= ( flw, Kw(A* B)flw) = ( Kw(A)flw, Kw(B)flw) . 

It follows U*1r~(A)fl~ = Kw(A)flw. Combining with a definition of U, we have 

UU* ( 1r~(A)O~) = U( Kw(A)flw) = 1r~(A)O~ 

U*U(Kw(A)flw) = U*(1r~(A)fl~) = Kw(A)Dw. 
----------------------------

9 Strictly speaking, it should be proved for C rj A as well, but the discussion is similar to the extension of 1fw 

we have discussed. 
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Thus, we conclude that U is unitary. Moreover, 

U*7r~(A)U7rw(B)flw = U*1r~(A)1r~(B)fl~ = U*1r~(AB)fl~ = Kw(AB)flw = Kw(A)Kw(B)flw 

follows U*1r~(A)U = 1rw(A). Thanks to this equality, the definition of U (25) reads flw = U*fl~. 
Q.E.D. 

As an example of GNS representation, let us demonstrate a construction of representation 
of Hilbert-Schmidt space. 

Definition 5.3 Let H be a Hilbert space. A bounded operator T E 'H on 'H is defined to be 
a Hilbert-Schmidt operator if T*T E C1 (H). A set of Hilbert-Schmidt operators over H will be 
denoted by C2(H). A norm IITII2 = y!Tr (T*T) is said to be a Hilbert-Schmidt norm. 

Prop. 18 (Arai 1.40, 1.41} Let 'H be a Hilbert space. Let us define a map \-, ·)2 : C2('H) x 
C2('H) -+ C by 

(T, 8)2 = Tr(T* S) . 

Then, (-, ·)2 is an inner product over C2('H). Moreover, let us define £2('H) as an pre-Hilbert of 
C2('H) equipped with the inner product (-, ·)2. Then, £2('H) is a Hilbert space. 

See Arai for the proof. 
We are going to construct a GNS representation of 0*-sub-algebra A of B('H), where 'His 

Hilbert space. Suppose Tis an element of £2('H), then, AT E £2('H) for arbitrary elements A 
in A (see [Arai 1.36] for example). Only to avoid confusion, we denote [T] forTE C2('H) when 
we use it as a element of £ 2(H)10 . Let us define a map l(A) by 

l(A)[T] =[AT], T E £2('H) 

One can easily show 

IIZ(A)[T]II2:; JIAIIII[T]II2, 

therefore, l(A) E B(£2('H)). Moreover, l(-): A-+ B(£2(H)) is easily proved to be a morphism. 
Combining with 

([T], l(A)[S])2 = Tr (T* AS) = (l(A*)[T], [SJ) 2 , 

we conclude that l(·) : A-+ B(£2('H)) is a *-morphism. Thus, (£2(H)), l) is a representation 
of A. Let p be a density operator over 'H, and wP be its associated normal state: 

wP(A) =:: Tr (pA), A E A 

It follows 

(26) 

Namely, expectation value of A with a state wP is expressed by expectation value of l(A) with 
respect to [p112] in the Hilbert space £2('H). Let 'Hp be a closure of 'Dp = l(A)[p112], then, 'Hp 

is a closed subset of £2('H), and is a Hilbert space. One can prove that ( 'Hp, l, [p112J) is a GNS 

representation of (A, wP) (see (Arai §4.4]). 
10T was used in the lecture of Prof. Tasaki 
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5.2 Equilibrium state 

In the previous subsection, we have discussed the representation. There, first Hilbert space rfw 
was constructed from C* algebra A and a state w( ·) over A, then, an element A in C* algebra was 
mapped into a bounded operator on the Hilbert space. Expectation value of elements A E As.a. 
is expressed by 

(27) 

In this expression, flw is a unit vector in the Hilbert space Hw, and (27) corresponds to an 
average in conventional quantum mechanics. 

In this subsection, we are going to discuss the characterization of equilibrium states in 
C* algebra. First we give a GNS representation of equilibrium state for finite system, then, 
we discuss KMS (Kubo-:i\1artin-Schwinger) condition for finite systems. The condition will be 
generalized as a condition to characterize equilibrium for generic systems (including infinite 
systems). 

5.2.1 Equilibrium state and G NS representation 

In this subsection, we discuss a GNS representation of finite system. Let 1i be a Hilbert space, 
and A be a C*sub-algebra of B(H). Then, a normal state associated to a density operator 

e-f3H 

P,B = Tr e-f3H 

is defined to be a Gibbs state. Let 'lip be a closure of Vp = Z(A) [p112J. Let us define fls and 

l(J : A-t B(1i(3) by n(J = [p¥2J' and lp(A) = l(A)I1if3· 
Following the discussion in the previous subsection, (1if3, lf3, fl(J) is the GNS representation 

of (A, w·8 ). Then, expectation value at Gibbs states O.B reads 

(A) f3 = (D,6 , l13 (A)fl13)2 . 

5.2.2 correlation function for finite systems 

In this subsection, we are going to discuss equilibrium states for finite systems. One of the most 
important properties which characterize Gibbs states are time-correlation function: 

A, B E A, t, s E R , 

where o:fl(A) is defined by o:fl (A) = eitH Ae-itH. We note that His well-defined since we only 
discuss finite systems in this subsection. In this subsection, we will show the restriction on 
time-correlation function Gibbs state (Kl\18 condition). This condition will be generalized later 
in § 5.2.3, and, conversely, KMS condition is shown to derive Gibbs state. 

Thanks to [H, P.B] = 0, we have 

CA,B(t, s) tr (p!3eiHt Ae-iHteiHs Be-iHs) 

tr (P!3AeiH(s-t) Be-iH(s-t)) = (Ao:{!_t(B)),B 

tr (p(JeiH(t-s) Ae-iH(t-s) B) = (o:f-s(A)B) (J • 
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Therefore, the following two correlation functions are of fundamental interest: 

- (Aaf (B))f3 = GA,B( -t) 

(af (A)B)(3 = FA,B( -t) 

Let us first extend FA,s(t) to complex plane. Suppose y E [0, (1]. We define FA,s(t + iy) by 

FA,s(t + iy) - ;(3 Tr ( e-f3H Aei(t+iy)H Be-i(t+iy)H) 

Prop. 19 (Arai 7.14, 7.15} 
Let I,a be a strip: 

Zf3 _ Tr ( e-f3H) . 

I,a = { z = t + iyjt E R, 0 < y < p} . 

Then, FA,s(z) is an analytical continuation of FA,s(z) to 1(3. FA,s(t) is holomorphic in If3, and 
is bounded and continuous in I(3. Moreover, the following inequality is satisfied: 

IFA,s(z)j:::; Cf3IIAII IIBJI, z Era ' 
where 0(3 is a constant independent of A and B. 

Since FA,s(z) is an analytical continuation of F:4,s(t), we shall write FA,s(z). We remark that 
GA,s(t) can be analytically continued to 1_(3 and it satisfy GA,s(z) = FA,s(-z) (z E I(3) due 
to the symmetry FA,s(t) = GA,B( -t). 

Prop. 20 

proof11 

FA,s(t) 

FA,s(t + ip) 

Gs,A(t- ip) 

Gs,A(t) 

FA,s(t) - ;(3 Tr ( e-f3H AeitH Be-itH) 

~Tr (eitHBe-itHe-(3H A) 
z/3 

On the other hand, G B,A ( t - ip) reads 

Gs,A(t- ip) ;(3 Tr ( e-f3H ei(t-i(3)H Ae-i(t-i(3)H B) 

;(3 Tr ( eitH Ae-itH e-(3H B) 

Thus, we have (28). GA,s(z) = FA,s(-z) (z E I(3) and (28) follow 

FA,s(t + ip) = GA,B( -t-ip)= Fs,A( -t) = Gs,A(t) . 

11 0ne need to make more rigorous arguments. See [Arai 7.18] for example 
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5.2.3 KMS condition 

In § 5.2.2, we have discussed a restriction on time-correlation function at equilibrium state. 
Since density operator is ill-defined in infinite systems, we cannot characterize equilibrium state 
by Gibbs state. Instead, we employ the equality (29) to characterize equilibrium states (Later 
we will show that this condition gives Gibbs state for finite systems). Roughly speaking, we 
impose 

for equilibrium states. 
To give more rigorous definition, let us start from giving a definition of analytic elements in 

C* algebra A. 

Definition 5.4 Let O"t be a strong continuous group of *-isomorphisms over C* algebra A. Let 
S >. be a strip 

8>. = {z: IImzl < >.} . 

A E A is called analytic for at, if there exists a function f : S >. --+ A which satisfies the following 
condition: 

{i) f(t) = at(A), t E R. 

{ii) The following limit exists for z E I>. in norm {strong analyticity): 

1
. f(z +h)- f(z) 
nn h 
h~o 

If A E A is analytic for at, we denote f(z) = az(A). 

Similar to the construction of generator, one can construct a dense set in A which consist 
of entire analytic elements for any at. Namely, for almost all A E A, at(A) : t --+ A can be 
analytically continued to a entire complex plane: proposition 21). 

Prop. 21 Let at be a strong continuous group of *-isomorphisms over C* algebra A. There 
exists entire analytic elements for at. Thus, we can define a set Aa- of analytic elements for at. 
Aa- is dense *-subalgebra in A, and is at-invariant. 

proof 
(Existence) 
Let E be a positive number and A" be an element of A defined by 

vVe are going to prove that AE is analytic for at, and a set of AE is dense in A. Let us start from 
analyticity. It is sufficient to prove a function f(z) : C-+ A: 

(30) 
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is strong analytic in a entire complex plane, and matches with O"t(A) fortE R. 
Thanks to \e-(s-z)

2/c2
\ = exp[-(s2 - 2sRez + Rez2)/t:2], R.H.S. of (30) is convergent, and is 

an element of A. Similarly, a function g(z) : C-+ A: 

( ) 
= 100 

ds 2( s - Z) -(s-z)2jE2 (A) g z - ~;;; 2 e O"s 
_

00 
y7rE E 

is an element of A. With the aids of an inequality: 

00 00 

n=O n=O 

we have 

II f(z + hl- f(z)- g(z)ll 
_ (s-z)2 

1
00 ds { 2h(s-z)-h

2 2h(s z) } e 2 
- e " - 1 - E2- h" O" s (A) 

-00 fie: 

< IIO"s(A) II 

0, ash-+0, 

for z E C. Thus, f(z) is strong analytic. 
IVIoreover, the following equality: 

yields f ( z) = O" z ( AE) ( AE is an element of Ao-). Thus, Aa is not empty. 

Let us prove that Aa is dense in A 
For every A E A, we define a sequence {En} ~=l: 

E -A loo ds -n2s2 (A) n = l/n = n r-;;e O"s 
-00 v 1f 

By definition, En is an element of Aa, and the equality: 

liEn- All = lin I: ~e-n''' {tr,(A)- A}ll 

- III: ~e-s2 {O"sjn(A)- A} II 
< I: ~e-82 \IO"sjn(A)- AIJ-+ 0, 

follows Bn -+ A in norm, thus, Aa is dense in A. 
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Next, we prove that Aa is a *-subalgebra of A 
Let A, B be elements of Aa, i.e., there exists strong continuous functions f, h: C------* As. t. 

f(t) = O"t(A), h(t) = O"t(B) , 

for any t E R. Let c1 and c2 be complex numbers. Obviously, c1f(z) + c2h(z), f(z)h(z), and 
f ( z*) * are strong analytic, and satisfy 

c1f(z) + c2h(z)lz=t = c1f(t) + c2h(t) = C!O"t(A) + C20"t(B) = O"t(clA + c2B) 

f(z)h(z)lz=t = f(t)h(t) = O"t(A)O"t(B) = O"t(AB) 

f(z*)*lz=t = f(t)* = O"t(A)* = O"t(A*) . 

Therefore c1A + c2B, AB, and A* are elements of Aa, and thus, Aa is a *-sub-algebra of A. 

Finally, we prove that Aa is O"t-invariant. 
Let A be elements of Aa, i.e., there exists strong continuous functions f, g: C ------*A such that 

f(t) = O"t(A), t E R 

l~ II f(z + h~- f(z) - g(z)ll = 0, z E C. 

The following equality 

~il.~ II a,(f(z +h)~- a,(f(z)) - a,(g(z))ll 1. II (f(z +h)- f(z) ( )) II 
liD 10"8 h - g Z 

h-+0 

},~II f(z +hi- f(z) - g(z)ll 
0 

yields that fs(z) = O"s(f(z)) is strong analytic. 
On the other hand, 

implies 0"8 (A) is an element of Aa. Thus, we conclude that Aa is O"-invariant. 
Q.E.D. 

Using the idea of analytical elements, we can define the K111S condition. 

Definition 5.5 Let O"t be a strong continuous group of *-isomorphisms over C* algebra A, and 

Aa be a *-sub-algebra of entire analytic elements for O"t. A state w over A is said to be a O"-KMS 
state at ,B (or (O", (3)-KMS state), if there exists a dense {in norm) and O"-invariant *-sub-algebra 

A~ of Aa such that 
w (AO"i,B (B))= w (BA) 

for any A, BE A~. 

Prop. 22 Let be the C* algebra of n x n matrices, and let 0"8 (A) = eiHs Ae-iHs, H E As.a.· 
Then, (O", (3)-KMS state is the normal state associated to a density operator p = e-f3H / Zf3. 
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proof 
Since there is one-to-one correspondence between density operators and states on 0* algebra in 
finite systems, state w can be expressed with density operator p: 

w(A) = Tr (pA) 

aif3 (B) = e-f3H Bef3H and KMS condition follow 

Tr(pAe-f3H Bef3H) = Tr(pBA) . 

Selfadjoint property for H implies that H has real eigenvalues hj (j = 1 · · · n) with associated 
eigenvectors jj). Take A= ji)(jj and B = jk)(lj. Then, KMS condition reads 

(ljpji)e-,B(hj-hl)fJJk = Tr(pAe-f3H Bef3H) = Tr(pBA) = (jjpjk)8il . (31) 

By substituting i = l and k = j into (31), we have 

(ljpjl)e-f3hj ef3hz = (jjpjj) . 

Therefore, (jlpjj)ef3hj does not depend on j. Let us define the constant as 1/0(3. 
By taking k = j, (31) reads 

-(3h' 
(ljpji)e-f3(hj-hl) = (jjpjj)8iz = 8il e 

0
(3 

1 

, 

where we have used (ljpjl)ef3hz = 1/0(3. Thus, we obtain 

~ -(3hz 
(Zjpji) = _ui_l e __ 

0(3 

Therefore, density operator reads 

li 

Normalization condition Tr p = 1 gives 0(3 = Z,e. 
We conclude that pis the normal state associated top= e-f3H j Zf3. 

Next, we discuss grand canonical ensemble of spinless Fermion. 
Q.E.D. 

Prop. 23 Let AcAR be a unital CAR algebra generated by a(f) = J f(k)*akdk, f E L 2 , a(j)* 
and unit element 1. Let 8 be a *-isomorphism over AcAR, and at be a group of strong continuous 
*-isomorphisms defined by 

e(a(f)) 

crt( a(!)) 

-a(!) 

j e-i(wk-t-L)t f(k)*akdk . 
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Let w be a 8-invariant, i.e., w(8(A)) = w(A), (0',{3)-Kl'vfS state. 
Then, w satisfies Wick's theorem: 

w( a(JI)* · · · a(fn)*a(gm) · · · a(gl)) 

=8n,m2)-1) IO'Jw(a(JI)*a(g/o-/(l)))···w(a(fn)*a(gjo-j(n))), (32) 
0" 

where IJ = (0'(1) · · ·O'(n)) represents a permutation of 1, ... , n, and 10'1 is 0 for even permutation 
and 1 for odd permutation. 

Moreover, the following equality is satisfied: 

{

det {w(a(fi)*a(gj))} (n = m) 
w(a(h)* · · ·a(fn)*a(gm) · · ·a(gl)) = 

0 
l~i,j~n 

(n i- m) 
(33) 

where w(a(fi)*a(gj)) is given by 

(34) 

In general, state satisfying (33) is referred to as a quasi-free state. 

Formally speaking, we consider a time evolution 12 O't r'-.J ei(H-pN)t Ae-i(H-pN)t, then, (0', ,8)-KMS 
states correspond to a state described by a density operator p ex e-,B(H-pN) (Grand canonical 
state). 

proof 
proof of ( 34) 
KMS condition for a(f)* and a( G) gives 

w( a(f)*O'i,a(a(G))) = w( a(G)a(f)*) (35) 

Let G(k) = ef3(wk-J-L)G(k), then, O'if3(a(G)) reads 

O'if3(a(G)) = j eB(wk-J-L)G(k)*akdk = a(G) . (36) 

Thanks to the CAR relation, R.H.S. of (35) reads 

w(a(G)a(f)*) = -w(a(f)*a(G)) + (G,f)p. (37) 

Substituting (36) and (37) into KMS condition (35), one obtains 

w( a(f)*a(G +G)) = (G, f)Lz . 

Let g(k) = G(k) + G(k), then, we have 

G(k)- g(k) 
- 1 + ef3(wk- p) ' 

12 
rv can be replaced by equal for finite systems. For infinite systems, we use "' to represent formal equalities. 
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and thus, KMS condition reads 

Thus, (34) is proved. 
proof of ( 33) 

w ( a(f) * a(g)) (G, f)p 

Jdk g(k)*f(k) 
1 + ef3(wk- J..i) 

Suppose n + m is odd number. Then, (33) immediately follow from 8-invariance of w: 

w(a(fl)* · · · a(fn)*a(gm) · · · a(g1)) w( 8(a(fl)* · · · a(fn)*a(gm) · · · a(gl))) 

-w(a(fl)* · · ·a(fn)*a(gm) ·· ·a(gl)) 

Hereafter, we prove (33) in case n + m = 2l. First let us prove (33) for n = 0. From KMS 
condition and CAR relation follow 

w ( a(g2z) · · · a(g2)a( G)) w((a(G))a(g2z) · · · a(g2)) 

-w(a(g2z) · · ·a(g2)a(G)). 

By taking g1(k) = G(k) + G(k), we have w( a(g2z) · · · a(g1)) = 0. It follows 

w(a(gl)* · · · a(g2z)*) = 0. 

Thus, (33) is proved for (n = 0, m) and (n, m = 0). 

(38) 

The last possibility is the case of n =f. 0, m =f. 0 and n + m = 2l. To prove (33) for this case, 
we will use the following equality: 

w( a(fl)* · · · a(fn)*a(gm) · · · a(gl)) 
n 

= I)-l)j-lw(a(iJ)*a(gl)) w(a(fl)*· .. a(fn)*a(gm)···a(g2)), (39) 
j=l 

except a(fj )* 

which can be easily obtained using the similar argument of the proof of (34). 13. 
Since (39) takes out w(a(fj )*a(g1)) from w( a(fl)* · · · a(fn)*a(gm) · · · a(g1)), we have 

w(a(fl)* .. ·a(fn)*a(gm) .. ·a(gi)) = 0 

for n < m. Similarly, one can prove (33) for n > m. 
Finally let us prove (33) for n = m by induction. 

n=m=2 

w( a(fl)*a(h)*a(g2)a(gi)) 

= w(a(h)*a(gl)) w(a(h)*a(g2))- w(a(h)*a(gi)) w(a(ft)*a(g2)) 

= det (w(a(JI)*a(gl)) w(a(fr)*a(g2 ))) 

w(a(h)*a(gi)) w(a(h)*a(g2)) 

Suppose (33) is satisfied for n = m:::; k- 1. 

13
Use CAR relation for w a(G)a(JI)* · · · a(fn)*a(grn) · · · a(g2) = w a(JI)* · · · a(fn)*a(grn) · · · a(g2 )a(G) . 
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Since 

except a(]j) * 

is a (j, 1) cofactor .6.j1 of a matrix {w(a(ji)*a(gj))h:=;i,j:S:b we have 

w(a(JI)* · · ·a(fk)*a(gk) · · ·a(gi)) 
k 

= 2::) -l)j-1w(a(Ji )*a(gi)) w( a(JI)* · · · a(fk)* a(gk) · · · a(g2)) 
j=l 

a(fi) *except 

k 

= :Z:::w(a(Ji)*a(gi)) .6.jl = det{w(a(fi)*a(gj))h:::;i,j:Sk . 
j=l 

Thus, we conclude that (33) is satisfied. 
Obviously, the Wick theorem (32) is satisfied due to (33) and (39). 

(40) 

(41) 

Q.E.D. 
To describe equilibrium states of single system, we have considered (a, ,B)-Klv1S state with 

a time evolution a-t(A) rv ei(H-~-tN)tAe-i(H-JlN)t_ This statement needs to be modified to de

scribe systems contain independent subsystems [Hj, Hk] = 0 (j f= 0) with different tempera
tures. For this purpose, it is convenient to include temperature in time evolution: O:t(A) rv 

ei"L,j,Bj(Hj-J-tNj)tAe-iLjPj(HJ-~-tNj)t_ Then, (0:, 1)-K1VIS state14 is equivalent to (o-,,B)-K1VIS state 

for single systems. For instance, the Kl\18 condition for a(f)* and a(g) in proposition 23 reads 

On the other hand, (0:, 1) Kl\18 condition reads 

Take 

w(a(f)*ai(a(g))) = w( a(g)a(f)*) 

at(a(f)) 

O:t ( a(f)) 

J e-i(wk-J-t)t f(k)*akdk 

J e-if3(wk-J-t)t f(k )*akdk , 

(42) 

(43) 

then, (42) and (43) are obviously equivalent. Thanks to this idea, we have the next proposition 
for systems containing subsystems in different equilibria. 

Prop. 24 Let akl and ak2 be annihilation operators satisfying 

Let AcAR be a unital CAR algebra generated by a(f) = L J !A.(k)*akA.dk, !A. E L2 (>-. = 1, 2), 
A. 

a(f)* and unit element 1. 

14Since temperature is formally included in the time-evolution, ,6 in the KMS condition does not represent 
temperature 
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Let 8 and at be *-isomorphism and a strong continuous group of *-isomorphisms defined by 

e(a(f)) 

at ( a(f)) 

-a(f) 

L J e-if3(wk>.-JL>.)tf>..(k)*ak>..dk. 
>.. 

Take w as a 8-invariant {cit, 1}-KMS state. Then, w satisfy 

{

det {w(a(fi)*a(gj))} (n = m) 
w( a(JI)* · · · a(fn)*a(gm) · · · a(gi)) = 

0 
l::S:i,j::S:n 

(n =f. m) 

where w(a(fi)*a(gj)) is given by 

We skip the poof of this proposition since it is almost the same as the proof of proposition 23. 
Roughly speaking, we consider a time evolution at rv eit3(H -p,N)t Ae-it3(H -J-LN)t, then, (0:, 1 )-KJ\118 
states correspond to a state described by a density operator p ex: e- 2:>. P>.(H>. -p,>.N>.). 

6 Mixing, Return to equilibrium, and Asymptotic abelian 

Definition 6.1 Let It a *-automorphism over C* algebra A. It is said to be asymptotic abelian, 
if the following condition is satisfied: 

lim \1 [A, It (B)]± II= 0, VA, BE A, 
ltl-+oo 

, where we take + if A, B contains odd number of fermions, and - for the other cases. 

The condition for asymptotic abelian looks quite strong, but it is not so strong. For instance, 
let us study a CAR algebra and free-time evolution O't defined in proposition 23. Take A = 

a(f)*a(f), and B = a(g)*a(g), and, let Tt(a(g)) = gt, then, 

[A, lt(B)]-

Thus, we have 

[a(!)* a(f), a(gt)* a(gt)]-

a(f)*[a(f), a(gt)*a(gt)]- + [a(f)*, a(gt)*a(gt)]-a(f) 

a(f)* [a(f), a(gt)*]+a(gt)- a(gt)* [a(!)*, a(gt)]+a(f) 

(gt, f)~2a(f)*a(gt)- (gt, f)L2a(gt)*a(f) 

\\[A,It(B)]-\\ = 2\(gt,f)p\ \\a(f)\\1\a(gt)\\ 

Thanks to the Riemann Lebesgue theorem, we have 

(gt,f)£2 = J dkf(k)g(k)*ei(wk-p,)t---* 0, as \t\---* oo. 

It follows II [A, lt(B)]-\1 ---* 0. 
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Definition 6.2 Let 'H be a Hilbert space, and M be a sub-algebra of B('H) ( M is not necessary 
to be a *-sub-algebra). 

M' = {a E B('H) : [a, b] =ab-ba= 0 '~bE M} (44) 

is said to be a commutant of M, and (M')' = M" is said to be a bicommutant of JVl. 
Since arbitrary element in M commute with M', we have M" c M. A Von Neumann 

algebra on 'His a *-subalgebra M of B('H) such that M" = M. 

Prop. 25 For any subset M of B('H), 

M' JvtC3) = M(5) = · · · 
M" M(4) = M(6) = · · · 

where M(n) is defined by M(n+l) = (M(n))', M(2) = M". 

proof 
If BE B('H) commutes with any mE lvl", then, B commutes with any elements in a subset of 
M". Thus, M C M" implies M(3) c M'. On the other hand, replacing M by M' in M C M", 
we have M' C M(3). 

Thus, we have 

M' = M(3). (45) 

l\1oreover, by replacing M' by M(n) in (45), we have the proposition. 
Q.E.D. 

From proposition25, we have the following example of a Von Neumann algebra. 

Example 5 Letw be a state overC* algebra A and ('Hw,1rwJ:l) be GNS representation of(A,w). 
Then, 

M = {nw(A) : v A E A}"= nw(A)" 

is a Von Neumann algebra. 

Definition 6.3 The center Z(M) of a Von Neumann algebra M on 'H is defined by 

Z(M) =MnM' 

Definition 6.4 Let w be a state over C* algebra A and ('Hw, Irw, n) be GNS representation of 
(A,w). Let M its associated von Neumann algebra M = nw(QL)". A state w is called factoTl- 5 , 

if M has a trivial center, i.e., 

Z(M) = C 1 = { c1 : v c E C} . 

Remark 1 
Let us restrict on finite systems. Roughly speaking, a factor state w means that its associate 
density operator has an inverse. Let us roughly explain it for special case. 

15 A von Neumann algebra is called a factor if it has a trivial center. 
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Let us think of a Hilbert Schmidt space and its associated GNS representation. For finite 
systems, there exists a density operator associated to the state. As we discussed in § 5.1, we 
attach a Hilbert space structure with the Hilbert Schmidt norm. Let us define l(A) and l'(A) as 

Then, expectation value reads 

l(A)[T] 

l' (A) [T] 

[AT], T E £2(1-i) 

_ [TA], T E £2(1-i) . 

w(A* B) = Tr (pA* B) = Tr ((Ap112)*(B/12
)) = (l(A)O, l(B)0}2 , 

where n = [p112]. For any elements [C] E 1-iw, we have 

l'(A)l(B)[C] = [BCA] = l(B)l'(A)[C] . 

Thus, we have [l'(A), l(B)]. It follows16 

l(A)' = {l'(A): A E A} . 

Namely algebra of right products is commutant of the algebra of left products. Let X E l(A)' n 
l(A)"l i.e., [X, l(A)] = [X, l'(B)] = 0, v A, B; it means 

X([Ap 112
]) = X(l[A]O) = l[A]X(O) 

X([p112 A]) = X(l'(A)O) = l'(A)X(O) 

Suppose there exists Y E A such that 

Then, ( 46) reads 

If there exists inverse of p, then, it follows 

[Y AJ = [AYJ 

(46) 

(47) 

Since Y commutes with any A, it is restricted to Y = al (a E C). Namely, if pis invertible, 
then, w is a factor. 

Remark 2 
If w is a unique KMS state17 

, then, w is a factor. Let us explain it with rough arguments. First 
let us write Kl\IIS condition: w(Ao-i,a(B)) = w(BA) in terms of theGNS representation: 

where iJ represents a extension of o- into B(1iw)18 . LetT E l(A)'nl(A)". Suppose TO is a Kl\IIS 
state, then, the uniqueness follows TO= en (c E C). Thus, we have 

TKw(A)n = Kw(A)Tn = C1Tw(A)O . 
----------------------------

16More rigorous arguments is necessary. 
17

Physically speaking, if no phase transition takes place, the KMS state is unique, else, several KMS states 
exist as a result of spontaneous symmetry breaking. 

18It is possible to construct this extension, but we skip it in this paper. 
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Since 7rw(A)fl is arbitrary, we have T = cl. Therefore, it is sufficient to prove that Tfl is a KIVIS 
state. It follows from the following equality: 

( fl, T*7rw(A)To-if3(7rw(B))fl J (T E 7rw(A)') 

( n, 7rw(B)T*7rw(A)Tfl J (KMS condition) 

( Tfl, 7rw(B)7rw(A)Tfl J (T* E 7rw(A)') 

Therefore, Tfl is a-KIVIS. 

Prop. 26 (Bratteli Robinson 4.3.24 (Strong Mixing)) 
Let Tt be an asymptotic abelian over C* algebra A. If a state w is factor, then, 

lim {w(Art(B))- w(A)w(rt(B))} = 0 
It I-+= 

(Cluster Property) 

Explanation 
Let ( 7-tw, 7r w, n) be a G NS representation of (A, w), then, we need to prove 

as it! ---+ oo . 

For this purpose, it is sufficient to prove 

as iti ---+ oo 

for any elements c/>, 1/J in fiw. 

Let Xt = 7rw(rt(B))- w(rt(B))l. Then, 

IIXtll :S: 117rw( Tt(B)) II+ !w(rt(B))I :S: 2IIBII :S: 00 

yields that there exists a sequence {tj}~1 and an element C in B(7-t) such that 19 

It follows 

I ( 1/.J, [C, 7rw(A)]¢ J I 

_lim (1/.J, (Xt -C)¢)= 0 
J-+OC! J 

.lim tj = oo. 
J-+OC! 

\}TJo (1/.J, [7rw(rtj(B)),7rw(A)]¢JI 

.lim I<li[rt.(B),A]II J-+OCI J 

Q.E.D. 

(48) 

for some positive K E R. Asymptotic abelian property follows [C, 7rw(A)] = 0, thus, C E 7rw(A)'. 
On the other hand, Xtj E 7rw(A) + cl implies C E 7rw(A)". Therefore, Cis an element of Z(A). 
Since w is a factor, we have C = o:l for some a E C. It follows 

"= (n,cn) = jii.~ [ (n,"w(r,,(13))n) -w(r,,(B)))] = o 
19In infinite systems, it is not possible to say the existence in a sense of norm, and Xtj -+ C only in a weak 

sense. This property is called Tychonov theorem. 
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Thus, we have C = 0, and it follows 

for any t/J:=1 which satisfies (48); therefore, we have 

Q.E.D. 
With the aid of this proposition, we can discuss a condition with which perturbed system 

returns to equilibrium. 

Prop. 27 (Bratteli Robinson 5.4.10) 
Let Tt be an asymptotic abelian over C* algebra A, and w be a unique (1, {3)-K!YIS state. Let 

V be a local perturbation. Then, we have 

lim w(ATt(B)) = w(A)w(B) 
It I---+= 

Explanation 
Because of a remark 2 after Def. 6.4, we say that w is a factor. Thus, the assumption of the 
proposition 26 is satisfied, and it follows 

lim {w(ATt(B))- w(A)w(Tt(B))} = 0. 
It I---+= 

We need to prove w(Tt(B)) = w(B) for (49). Here, let us just make a formal argument: 

w(Tt(B)) 
1 ( e-f3H eiHt Be-iHt) rv -tr 

zf3 
1 (e-,BHB) rv -tr 

Zf3 
rv w(B) 

Prop. 28 w is said to be a grand canonical state if it is rJ-KMS state for rJx = TxO:-ftx, where 
a 8 rv eiNs Ae-iNs. Let w be a grand canonical state. If interaction V is analytic for rJx, a (V) = 

v {We shall call it Gauge in variance)' and perturbative time evolution T r is asymptotic abelian. 
Then, 

lim w (rt (A))= wv (A) t---+±CXl 

is satisfied, where wv is a KMS state for rJ Y, and ,y, rJ Y is defined by 

rt {<5o (A) i [V, A]}, 't~o (A)= A 

where K, is a generator of the gauge transformation. 

Physically, this proposition means that if reservoirs are locally perturbed, then, total system 
reaches a new equilibrium wv. 

explanation 
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Formally speaking, the average is expressed by 

w 

wv 

!_e-(J(H-ttN) 
8 
_l_e-(J(H+V -ttN) 

8v 

Let us formally define r(J by r(J rv e-f3(H-ttN)e-f3(H+V-ttN) 20 . Then, we have 

8 

w 

tre-f3(H-ttN) = trr f3e-f3(H+V -ttN) 

I_ e-(J(H -J-tN) = _r__:(J_e_-_.6---c(c:-;-H=+:-V-::c-:-t-t-N-::-)::-:-
8 trr f3e-f3(H+V -t-tN) 

Hence, 

!_~e-(J(H+V-t-tN) 
8 (r.e)v 

w (A)= wv (Arf3) . 

wv (r fJ) 

Combining with Tr (C)= ei(H+V)tce-i(H+V)t, we conclude 

6.1 Nonequilibrium steady state 

As we have mentioned, the method of C* algebra was first applied to equilibrium systems and 
thermodynamics. For instance, the first and second law of thermodynamics[21, 49], the relative
entropy reformulated by Ojima[50] was shown to be non-negative at steady state(9, 10, 50, 51], 
where its existence is proved under £ 1-asymptotic abelian property[8, 11, 12]. 

In this subsection, we will concern nonequilibrium state, and show some useful results without 
giving rigorous proofs. 

The system is coupled to some reservoirs, and reservoirs are in different equilibria. Here, we 
are interested in a finite systems coupled to some reservoirs. Those reservoirs are assumed to 
be in equilibrium at initial state, but we do assume this property only at the initial state. To 
be more precise, initially state are written in terms of a product state Ptot = (po)system ® (Pl ® 

P2 ® · · · ® PN)reservoirs 1 and each Pi(i ~ 1) is in equilibrium at initial time. We assume that at 
t = 0- reservoirs are in different equilibria, and we contact finite system to reservoirs at t = 0+. 
We are interested in a finite system at t = +oo. 

Let us start from defining a Field algebra ~ (One can find detailed discussion in (15]). This 
Field algebra is defined to be a C* algebra having the following * -automorphisms: 

1. Time-evolution Tt 

.... _,L 
2. Gauge transformation a.z which satisfies a..~,- a.- =a A.-+..~..- , ¢ E R . 

~ ~1 ~2 ~1 ~2 

3. Involutive transformation 8 = a¢-;. 

4. Time reversal operator: t 

20We note that r 13 can be defined without H. 
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We note that transformation 1, 2, and 3 commute each other. 
Intuitively, time-evolution 7t reads 

Tt (A) rv eiHt Ae-iHt ' 

gauge transformation a($ reads 

and e represents a parity of fermion. 
Next, we split total system into system and reservoirs. 

1. Observables: 

~ = (~o)system ® (~1 ® · · · ® ~N )reservoirs 

2. Time-evolution: 
V -(1) ,o. 10. -(N) 

Tt = Tt '<Y • • • '<Y Tt ' 

construct from a generator: 

o v (A) = 8 (A) - i [V, A] , 

where Tt(j) acts on ~j, and r?) satisfies 

3. Gauge transformation: 

Similarly, it satisfies 

Nioreover, 

;;p) (A) 
-(j) -(k) 
Tt Ts 

A, (\fA E ~k, j =/- k) 

r1k);;p) (t, s E ii, j =1- k) 

i(j) a(k) = a(j) i:(k) (v1· k = 1 · · · N t E R X E R ..... L) 
t ($ -¢ t ' ' ' ' ' ' '+' 

holds, and time-reversal operator t satisfies 

~.,;;t(j) ~., = ;;!!£, ta~j) ~., = a~l . 

Since rt was separated as stated below, we have D (8v) = D (8) (see [15, 20] for detailed 
discussion). It follows 

o (A) 

8v (A) 

where Oj is a generator of r?). 

ov (A)+ i [V, AJ, \fA ED (8) 
N 

2:8j(A), \iAED(8) 
j=1 

The following classes of subalgebra of~ are important: 
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1. Subalgebra of observables: Q( E ~' a set of gauge invariant elements. 

2. Parity subalgebra: 

~± = {A E ~~ 8 (A) = ±A} 

Observables with odd/even annihilation and creation operators. 

3. Subalgebra ~ L is norm dense and it satisfies 

1:00 

dtii [A, Tt (B) Ill < +oo (A E ;yL, BE ;yL n ;y+), 

1
+= 

-= dtll [A, Tt (B)]+ II < +oo (A, BE ~L n ~-). 

If ~L exists, then, time-evolution Tt is said to satisfy £ 1 (~L) asymptotic abelian. For 
instance, the interaction between system and reservoir V is an element of~ L. This property 
implies rapid decay of correlations and is satisfied for free fermions in R d ( d 2:: 1) (Bratteli 
Robinson 5.4.9). 

Each reservoir is infinitely extended, and is in a equilibrium with different thermodynamic 
valuables such as temperatures and chemical potentials. To describe such state, we characterize 
each reservoir by KNIS condition. 

Let us define a~ by 

(49) 

where f3j 1 is a inverse temperature of jth reservoir, j1j = (t1Y), · · · , MJL)) is a chemical potential 

of jth reservoir, and exp (Ds) represents a initial state of a finite system. 
We are interested in a case which w is a (a~, -1) KMS state, i.e., 

Then, generator 8w is given by 

where gy) is a generator for a:~~>. (e_x E RL is the unit vector whose >.th element is 1, and s is 
a real number.). We note that the KMS state for a~ corresponds to the Maclennan-Zubarev 
ensembles21 in an appropriate sense[15, 20]. 

As we shall describe in Proposition 30 , we are interested in the effects of the way of splitting 
systems. For this purpose, we introduce a locally modified state w 1

• Namely, we consider a 
different partition: 

~ = ~~ ® ~i ® · · · ® ~:v , 
and define w' as a (a~' ,-1) K1v1S state for this partition. In the same way, we introduce a';!' as 

21 The problem of divergence in Maclennan-Zubarev ensemble[46, 52] was reformulated by Tasaki[15]. The 
validity of the ensemble was proved for spinless electron model of a single-level quantum dot[20]. 
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This state w' is defined to be a locally modified state, if Ow' and Ow satisfy 

Ow' (A) - ow (A) = i [W, A] , \1 A E D (Ow) , 

for some selfadjoint element WE~. 

Prop. 29 ( Existence of steady states (Ruelle [8]) ) 
Suppose that the time evolution Tt satisfies the L 1 (JL) property, then, 

(50) 

exists for each initial condition w, and W± is Tt-invariant. 

Prop. 30 ( Tasaki and Matsui theorem 2 in [15] ) Suppose that the time evolution Tt sat

isfies the L 1 (~L) property, and there exists a unique KMS state foro-~. Then, for locally per
turbed w1

, the previous equality holds: 

lim w' oTt (A)= lim w oTt (A) = W± (A), (VA E J'L) 
t-+±oo t-+±oo 

Interestingly, proposition 30 concludes that the steady state W± is determined by thermodynamic 
properties such as temperature and chemical potential, and it does not depend on the partition, 
initial condition in the finite system. 

Prop. 31 ( Tasaki and Matsui theorem 3 in [15] ) Suppose that the time evolution Tt sat
isfies the L 1 (~L) property, and there exists a unique KMS state for a~. Then, the following 
equality holds: 

* W± =I- W=t=, 

where&* is defined by t*w (A)= w (t (A*)). 

Prop. 32 ( Stability of steady states (Tasaki and Matsui theorem 4 in [15]) ) 
Suppose that the time evolution Tt satisfies the L 1 (~£) property, and there exists a unique 

KMS state for a~. If M¢ller opemtor[7, 8, 15, 20} !± (= limt-+±oo Ty-
1
Tt) is invertible, then, 

a steady state w+ is stable against local perturbations in the following sense: 

l. W+ (B*Tt (A) B) = (A) (\.-JA B '£:") 
liD (B' B) W+ ' v ' E 1) • t-+±oo w+ '" 

(51) 

The same arguments hold for w_. 

7 Landauer formula and the existence of unique steady states 
for bilinear hamiltonian 

In this section, we will study particle current and condition with which unique steady state exists. 
We use rigorous results of C* algebra but try to demonstrate an application in more physical 
manner. We also describe a hamiltonian having a infinite norm; however as we explained, it 
is possible to define time evolution without using the hamiltonian (One can use the rigorous 
discussion of single dot couple to two reservoirs [20]). The hamiltonian is used only to formally 
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give a time evolution over 0* algebra. In this section, vVe will restrict our analysis on a finite 
bilinear hamiltonian coupled to infinite reservoirs: 

H 

Hs 

Hs 

v 

Hs+Hs+V 

2:: E)Jlf>, 
}.. 

j dk ( Wka!ak + J-Lkb!bk) 

L j dk ( ufwfalf>, + ufwfb!J>.. + (h.c.)) 
}.. 

(52) 

where u%wK (v = L, R, .A. EN, k E R 2 ) is a tunneling between system and reservoirs, f>.. is an 
annihilation operator of an fermion in finite system with energy E;..., and ak/bk is an annihilation 
operator of left/right reservoir fermion with energies wk/ /-Lk and wave number k. 

7.1 Particle current and Landauer formula 

Let us study following operators: 

(53) 

Suppose that this set of operators { Ctk, !3k} is complete (It will be studied in § 7.2), then, ak 
for instance should be written as a summation of this operator, i.e., 

Then, A%,, B~, should be given by 

A k -
k' - { al, + ~ht*J1 + J dk" 

= 8 ( k - k') + mf * 

where we have used 

{bl, + ~hf*J1 + J dk" 

j dk" { o:k', o:k"} A~" = A~, 

J dk" {,Bk', f3k"} B~" = B~, . 

(54) 

Similarly, inverse formula for j;... and bk can be obtained. As a result, if { ak, !3k} is complete, 
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then, the inverse formula reads 

ak ak + j dk' (m~'*ak' + m~'*f3k') 

bk f3k + j dk' ( n~'*ak' + n~'*f3k') 

f:x j dk (h~*ak + h~*f3k) . 

Next, let us introduce an incoming field. Incoming field is an elements of C* algebra which 
formally satisfies 

[ak, H] = wkak, 

[,Bk, H] = Pkf3k , 

eiHtake-iHt eiwkt--+ ak (t--+ -oo) 

eiHtbke-iHt ei~-tkt --+ f3k (t--+ _ 00) . 

For bilinear hamiltonian (52), it should be written in the form (53), and [ak, H] = Wkak reads 

L L hk J dk' k L L J dk' k R R hk Uk W;x + ;xE;x + mk,UktW>,. + nk,UktW;x = Wk A , 

From (56) and (57), we obtain 

By substituting the above equality into (55), we have 

where ~±(w) and rJ±(w) are defined by 

~±(w) = Jdk' juf,j2 . ' 
w- Wkl ±tO 

TJ±(w)=Jdk' ju~j2 .. 
w- I-lk' ±~o 

We only need to determine A%. By substituting (58) into definition of A%, we obtain 

A% = 

Thus, we have two equations for Ak": 

Af ufSLL(wk) + ~±(wk)SLL(wk)Af + TJ±(wk)SRL(wk)A~ 
A~ ufSLR(wk) + ~±(wk)SLR(wk)Af + 1J±(wk)SRR(wk)A~ , 
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where Svv' ( w) is defined by 

The solution is 

uf ( SLL(w) + 1J±(w) {ISLR(w)l 2
- SRR(w)SLL(w)} ) , 

A±(w) SLR(w) 
w=wk 

1- {1J±(w)SRR(w) + ~±(w)SLL(w)} 
+~±(w)1J±(w) { SLL(w)SRR(w)- ISLR(w)J2

} 

Similarly, we have the condition for h~, iii~,, n~, to satisfy [fJk, H] = /-LkPk· In short, the 
conditions for [ak, H] = wkak, [f3k, H] = /-LkPk, are summarized as follows. 

k 
mk' 

-k 
mk' 

where AJ;; is defined by 

11oreover, if this field is complete, then, the inverse formula reads 

ak ak+ j dk' (m%'*ak'+m~'*J3k') 

bk f3k + j dk' ( nr*ak' + n~'*,Bk') 

f>. j dk ( h~*ak + h~* Pk) . 

Sign of the denominator is determined by the condition eiHtake-iHteiwkt-----+ ak (t-----+ -oo): 

(59) 

(60) 

and its counterpart for ,Bk. Since the term (60) should vanish in the limit oft --+ -oo, the sign 
e-ixt 

in denominator should be taken minus, where we have used lim --.- = 0. The same applies 
t->-oo x + zO 

to the right reservoir (f3k). 
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Following the idea of Ruelle[8], if the reservoirs are initially set to be in different equilibria 
and a set of incoming fields { ak, r6k} is complete, then, the whole system is shown to approach 
a NESS in the long time limit[16, 18, 20]. The NESS so obtained can be characterized as a state 
satisfying Wick's theorem with respect to ak and Pk and having the two-point functions: 

(61) 

where (-)00 represent a NESS average Ooo = w+(-) in a sense of (50), fv(x) = 1/(e(x-f-iv)/Tv + 1) 
is the Fermi distribution function, Tv is the initial temperature and f-Lv is the initial chemical 
potential of the reservoir v = L, R. Formally, this can be understood as follows: 22 Let po be 
an initial density matrix, where the two reservoirs are in distinct equilibria, and p00 be that of 
the NESS, then, limt-<+oo e-iHt poeiHt = Poo and, e.g., Tr{ al.ak' po} = !L(wk)o(k - k'). As the 
incoming field O::k is given by limt->+oo eiwk(-t)eiH(-t)ake-iH(-t) = ak, one obtains the desired 

relation: 

!L(wk)o(k- k') = Tr{ alak'Po}ei(wk-wk' )t 

= Tr{ { eiH(-t)ake-iH( -t) eiwk( -t)} t eiH( -t) ak'e-iH( -t) eiw·e( -t) e-iHt poeiHt} 

----+ Tr{a::lak'Poo} = (akak')oo (as t----+ +oo). (62) 

Finally, if the incoming field is complete, then, the particle current J reads 

J ( J dk gt ( alak) ) 
00 

-i L J dk (ufwfa!f>..- uf*wf* J1ak)oo 
.:\ 

2 lm ;;= [! dk ufwfh~' fL(k) + J dk dk' ufwf { m~' hr* fL(k') + mrhi'' fR(k')} l 
21m J dk ufAr* SLR(wk)TJ+(wk)fL(k) 

+21m J dk ~-(wk)AfAf* SLR(wk)TJ+(wk)fL(k) 

+21m J dk ~- (J-Lk)Af { ur* SLR(JJk) + Ar* SLR(J-Lk)TJ+(J-Lk)} !R(k) 

-2Jdkjd 1:( _ )lufi
2

ISLR(w)l
2
1mrJ-(w)f ( ) 

w u w Wk JA_(w)J 2 L w 

J J 
luRI 2 ISLR(w)j 2 

+2 dk dw o(w- J-Lk) kJA-(w)j2 lm e-(w)fR(w) 

J 
JSLR(w)j 2 

2 dw IA-(w)l2 Im e-(w)Im TJ-(w) {JR(w)- !L(w)} ' 

where we have used lm e-(w) = 7r J dk JufJ 28(w- Wk) 'Im TJ-(w) = 7r J dk lufJ28(w- J-Lk), and 

equalities (59) (61). It is nothing but a Landauer formula, and it gives a tunneling transition 
probability from left to right with energy w: 

JSLR(w)/ 2 

T(w) = 2 JA_(w)j 2 lm e-(w)lm TJ-(w) 
~~----------------------~ 22

The very proof of the existence of the limits requires rigorous and careful arguments[20]. 
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periodic chain 
To be more concrete, let us take the following hamiltonian: 

H Hs+HL+HR+V 
n-1 n 

Hs L (tjc}cj+I + (h.c.)) + I:uc}cj 
j=l j=l 

HL J dkEkalak, HR = J dkEkblbk, Ek = eF(Ikl - ko) 

V J dk ( v1alcl + v~blcN) + (h.c.) 

By taking 

~ N . ( ?TA ) f>...=yJ\T+l~sm N+ 1n Cn, 

we can apply the result discussed. Since, inverse formula reads 

we have 

· ( 1rl\f ') · ( 1r ') 2 sm N+I /\ sm N+l /\ 

N + 1 L w-E). 
). 

• ( 1r N ') · ( 1r N ') 2 sm N+l /\ sm N+l /\ 

N + 1 L w-E). 
). 

2tcos (N?T~ 1) + U, 

and 

Hereafter, we further assume 

-540-



!Perspectives of Nonequilibrium Statistical PhysicsJ 

with some exponent a E R. Then, Im~_(w) and Imry_(w) is expressed by very simple form: 

Im ~-(w) 

Im 1J-(w) 

It follows 

7rv1 J dk !kl2a8(w- et(lkl- ko)) 

- 27r2 vz J dx x 2a+l8(w- ()j(X- ko)), 

27r2vz (w- 8tko)2a+l 

et et 

2 7r2Vk (w- 8tko)2a+l 
ef et 

x= iki 

T(w) 

7.2 Condition for the existence of unique steady state 

We are going to study the completeness condition for the transformation from { ak, bk, h.} to 
the incoming field { ak, ,Bk}· 

In this subsection, we will give a sufficient condition with which, unique NESS exists. First, 
let us suppose {al,,Bk'} = 0, {al,ak'} = 8(k- k')l, {,BL,,Bk'} = 8(k- k')l are satisfied, then, 
only the following operator might match with ak, bkl and f>,,. 

ak ak + j dk' ( mf*ak' + mZ'*,ak') 

bk fJk+ j dk' (n~'*ak'+n%'*t3k') 

f>.. J dk h1* O:k + J dk h~* fJk 

Let us start from ak 

ak = ak + L h~f>.. + j dk1 ( mt ak1 + nt bk1 ) 

A 

+ J dk1 [ m~1 ' { ak, + ~?~' 1>. + J dk2 ( mZ:ak, + n~:bk,)} 

+m~'' {b.,+~ ii~h + j dk2 ( m~ak, +n~:bk,)}] 
= ak + j dk, ( mt + mP' + j dk2 m~''m~ + j dk2 m:;·m~) ak, 

+ j dk, ( nt + m[" + j dk2 m~'*n~: + j dk2 mZ''n~:) bk, 

+ ~ ( h~ + j dk, m~''h~1 + j dkpnZ''ii~') fA 
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Thus, 

k + k' * + J dk ( k1 * k1 + - k1 * - k1) O wk k' mk' mk 1 mk mk, mk mk' = , v , 

k + -k'*+]dk ( k1* k1 + -k1*-k1) 0 wk,k' nk' mk 1 mk nk' ·mk nk' = , v 

h~ + j dk1 ( m~1 *h~1 + m~1*h~1 ) = 0, Vk, >. 

Similarly, we have the following relation for (3: 

m~, + nZ'* + j dk1 ( n~1 *m~} + n~1 *m~7) = 0, Vk, k' 

nz, + n%'* + J dk1 (n~1 *n~7 + n~1 *n~7) = 0, Vk, k' 

h~ + j dk1 (n%1*h~1 + n~1 *h~1 ) = 0, Vk,).. 

At last, we get the similar relation for h.: 

h~* + j dk1 ( h~1 *m~1 + h~1 *m~1 ) = 0, Vk,).. 

h~* + j dk1 ( h~1 *n~1 + h~1 *n~1 ) = 0, Vk,).. 

J dk1 (h~1 *h~7 +h~1 *h~7) =5A,N, V>.,>.' 

If the fermionic anti-commutation is satisfied for ak, f3k, the following equations are equiv
alent to completeness of the field. 

m~, + m~'* + j dk1 ( m~1 *m~} + m~1 *m~7) = 0, Vk, k' 

n~, + m%'* + j dk1 ( m~1 *n~7 + m~1 *n~i) = 0, Vk, k' 

-k + -k'* + J dk (· kl* kl + -ki*-kl) - 0 nk' nk 1 nk nk, nk nk' - , Vk,k' 

hk + j dk (mkl*hkl + mkl*Jikl) = 0 Vk ).. A 1 k A k A '' 

Jik + j dk (nk1*hk1 + nk1*}ik1) = 0 Vk ).. A 1 k AkA '' 

J dk1 ( h~1 * h~} + h~1 *h~}) = 8A,N, V>., >.' 

Next, we are going to check anti-commutation relation. Let us start from { al, 16k'} = 0 

- k' k* "'""' k*- k' J = mk +nk' + LhAlhAI + dkl 
AI 

=0 
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Then, the other two commutations, { aL, ak'} = l8(k- k') and {!Jk, ,Bk'} = l8(k- k') read 

8(k- k') + m%' + m%1 + L ht h~: + j dk1 ( m%;m%: + ntnt) = 8(k- k') 
Al 

8(k- k') + n%' + n%1 + L htht + j dk1 ( m%;mt + ·ntnt) = 8(k- k') . 
Al 

Thus, the three commutation relations are satisfied if the following three conditions are 

satisfied: 

m%' +n%1+ Lhth~~ + j dk1 (m~~m~: +ntnt) =0, Vk,k' 
Al 

k' h "'"' hk* hk' J dk ( k* k' k* k' ) 0 'I-lk k' mk + mk' + L AI AI + 1 mk1 mk1 + nk1 nk1 = ' v ' 
Al 

n~' + n%1 + L ht h~~ + j dk1 ( mtm~: + n%;n~:) = o, Vk, k' 
Al 

In summary, we have nine equations to guarantee that the system reaches unique steady 

states 

-k'* -k "'"'-hk -hk'* + J dk (- k - k'* + -k -k'*) 0 nk + nk' + L Al Al 1 mk1 mk1 nk1nk1 = ' 
Al 

h~ + jdk1 (mkl*hkl + mkl*hkl) -0 \lk ). /\ k A k A-,' 

h~ + j dk1 ( n~1 * h~1 + n~1 *h~1 ) = 0, Vk,). 

J dk1 ( h~1 *h~7 + h~1 *h~7) = 8A,A'l \f).,).' 

\fk, k' 

Vk, k' 

\lk k' 
' 

We have derived a Landauer formula for a quadratic system described by hamiltonian coupled 
to reservoirs. In our calculation there is an explicit expression for the transmission probability in 
terms of the parameters of the hamiltonian. We have also derived the sufficient conditions under 
which the system has a unique NESS. These conditions are difficult to interpret, and although 
they are explicit in terms of the hamiltonian parameters it is not clear how restrictive they are. 
We conjecture that if the range of reservoir energy goes from -oo to +oo then is not possible 
to satisfy the sufficient conditions here derived. We leave these problems for future research. 
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8 conclusions 

The derivation of macroscopic irreversible dynamics of nonequilibrium systems from microscopic 
equations was recently revisited from the point of view of infinitely extended quantum systems. 
Here we have briefly reviewed the C* algebra and its application to equilibrium systems as well 
as introduced some recent results on NESS. We were too slow to finish the nonequilibrium part 
of the lectures by Professor Tasaki. We plan to upload to the Arxiv that part in the future. In 
addition to the lecture part we have demonstrated the derivation of Landauer formula rigorously 
for quadratic systems but using a more physical presentation in the spirit of Professor Tasakis 
work. We hope it helps physicists to use these techniques in their work. 
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