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Abstract 

The classical Bernoulli and baker maps are two simple models of deterministic chaos. On 
the level of ensembles, it has been shown the time evolution operator for these maps admits 
generalized spectral representations in terms of decaying eigenfunctions. vVe introduce the 
quantum version of the Bernoulli map. We define it as a projection of the quantum baker 
map. We construct a quantum analogue of the generalized spectral· representation, yielding 
quantum decaying states represented by density matrices. The quantum decaying states 
develop a quasi-fractal shape limited by the quantum uncertainty. 

1 Introduction 

It is our privilege to contribute a paper to the memory of Prof. Shuichi Tasaki. On a few 

occasions Prof. Tasaki encouraged us to publish the present work. We devote this work to him. 

The present work concerns the subject of quantum chaos. l\1ore precisely, the study of 

quantum systems whose corresponding classical systems exhibit chaotic behavior. Prof. Tasaki 

was one of the first authors to link irreversibility and chaotic dynamics using "generalized spectral 

representations" of time evolution operator (also called Frobenius-Perron or FP operator). One 

interesting outcome of the work of Prof. Tasaki and others (Refs. [1]-[5], as well as [6] and 

references therein) was the demonstration that eigenfunctions of the FP operator may have a 

fractal nature. This was shown using classical chaotic maps, such as the multi-Bernoulli map or 

the multi-baker map. The present paper is motivated by this work of Prof. Tasaki and others. 

In classical systems, chaos may appear in isolated systems with few degrees of freedom as 

a consequence of stretching and folding dynamics. A simple model of this type of chaos is the 

baker map. The baker map acts on a unit square with coordinates (q,p) representing the phase 

space. The square is squeezed down in p direction; it is stretched in q direction by a factor of 2 
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Figure 1: The classical baker map. 

and then right half is put on top (see Fig. 1). These time-evolution rules are a simple example 

of stretching and folding dynamics. Their consequence is a chaotic time evolution where any 

uncertainty in the initial condition grows exponentially with time until the uncertainty is spread 

over the whole phase space. 

Despite its chaotic evolution, the baker map is invertible and unitary. After applying the 

map any number of times, the resulting final phase-space distribution can be reverted to the 

initial distribution by application of the inverse map. 

An even simpler map is obtained by projecting the baker map onto the horizontal ( q) axis. 

This simpler map is called the Bernoulli map; in contrast to the baker map it is not invertible. 

The Bernoulli map maps a number qt E (0,1] as 

qt+l = 2qt modl. (1) 

One can understand the chaotic nature of the Bernoulli map by expressing the variable q 

in binary notation. Written this way, the effect of the Bernoulli map is simply a digit shift. If 

qt = O.d1d2d3··· then qt+l = O.d2d3d4 .... , where di = 0 or 1. An initial q given by an irrational 

number with random digits will be mapped to a random new point; the trajectory followed by 

q over time will be a random trajectory. 

Corresponding to this behavior of a single trajectory, an ensemble of trajectories initially 

close together will end up uniformly spread out over the whole phase space (i.e., over the 

whole unit interval). An ensemble uniformly distributed over the whole phase space is an 

equilibrium distribution, since further applications of the map will not change it. Equilibrium 

is an attractor for ensembles; any initially smooth distribution of trajectories will approach the 
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equilibrium distribution. This situation is reminiscent of the irreversible approach to equilibrium 

of ensembles in macroscopic systems, exhibited in processes such as diffusion. 

In fact, as discussed in Refs. [1, 5, 6] irreversibility (or time-symmetry breaking) can be 

formulated explicitly in simple chaotic models, such as the Bernoulli and baker maps. In pre

cise terms~ irreversibility means that the FP operator for ensembles admits eigenvalues with 

magnitude less than 1, which implies that the corresponding eigenfunctions decay in time. Such 

eigenvalues exist even if the FP operator is unitary, as is the case in the classical baker map. This 

if possible if "generalized spectral representations" of the FP operator are considered. These 

representations involve both regular functions and generalized functions (or functionals) playing 

the role of right and left eigenstates of the FP operator, respectively. 

In quantum mechanics, chaos is a more involved concept. For small, isolated quantum 

systems the Hamiltonian has a discrete real spectrum. The eigenvalues of the FP operator are 

complex numbers with magnitude equal to 1; no approach to equilibrium is apparent because 

there are no decaying eigenfunctions. 

To describe quantum chaos one can introduce certain criteria, such as integrability, or the 

spacing of energy levels [7) (a thorough discussion on integrability of quantum systems is given 

in Ref. [8]). In this paper, we will follow a different approach. We will consider quantum maps, 

where the time evolution is applied in steps. We will study density matrices, corresponding 

to the classical statistical ensembles. And we will assume the quantum maps are coupled to 

their environment, which causes instantaneous loss of coherence at each time step [9] (see Refs. 

[10, 11, 121 for a discussion on quantum stochastic maps). 

Specifically, we will study the quantum baker map coupled to its environment. The quantum 

baker map is the quantum analogue of the classical baker map. It has a physical realization as 

a shift of quantum bits [13]. We will assume that the environment causes the quantum bits to 

experience instant decoherence after each application of the quantum map. The result of the 

combination of the quantum baker map with decoherence will be a new map, which will turn 

out to be the quantum analogue of the classical Bernoulli map. vVe will call this new map the 

quantum Bernoulli map. 

\Ve will show that in the quantum Bernoulli map density matrices approach equilibrium, 

similar to their classical counterparts. The approach to equilibrium will be described by in

troducing quasi-eigenstates of the quantum FP operator, which decay in time. These states 

will appear in an expansion of the quantum FP operator analogous to the generalized spectral 

representation of the classical FP operator. 

The present work is of interest because it exemplifies the quantum correspondence between 

classical chaotic maps and their quantum analogues using an approach that as far as we know 

has not been taken before, namely through the generalized spectral representation of the FP 

-458-



!Perspectives of Nonequilibrium Statistical PhysicsJ 

operator. vVe will show that the quasi-eigenstates of the quantum FP operator approach their 

classical counterparts in the classical limit. Interestingly, when approaching this limit, the 

eigenfunctions take a self-similar, quasi-fractal shape up to the point allowed by Heisenberg's 

uncertainty principle. (Fractals and self-similarity in quantum systems have been studied in Refs. 

(14]-[19], although in different contexts. A connection between the decaying eigenstates of the 

classical FP operator and spectral properties of chaotic quantum systems has been investigated 

in Ref. (20]). 

In the following section we will summarize the ensemble description of the classical Bernoulli 

map, including the formulation of decaying eigenstates of the FP operator. Then we will describe 

the quantum Bernoulli map and we will formulate the quantum analogue of the generalized 

spectral representation of the FP operator. We will finish by showing the development of a 

quasi-fractal shape in the time-evolving quantum Bernoulli polynomials and giving final remarks. 

2 The classical Bernoulli map 

In this section we will review the classical Bernoulli map, following Ref. [6]. We will focus on 

an ensemble description of the maps, where the central role is played by the FP operator and 

its spectral (eigenvalue) representation. As we will see the right eigenstates of the FP operator 

are smooth functions that decay in time, while the left-eigenstates are functionals. The set of 

right and left eigenstates together with the corresponding eigenvalues will form the generalized 

spectral representation of the FP operator. 

To introduce the Bernoulli map we start with the baker map illustrated in Fig. 1. Its FP 

operator is defined as 

( ) { p(q/2,2p), o:::;p<1/2 
Ubp q,p = p(q/2 + 1/2, 2p- 1), 1/2::::; p < 1. (2) 

for a probability density p( q, p) defined in the unit square. The Bernoulli map is a projection of 

the baker map, obtained by integrating over a re-scaled p, 

fol dpp(q,p) = ~ fol dp p (~,p) + ~ fol dp p ( q; 1 ,p) (3) 

This gives the FP operator for the Bernoulli map as 

(4) 

where p(q) is a probability density defined in the unit interval. Successive applications of U8 

on p(q) will make it evolve towards the uniform equilibrium distribution p6q(q) = 1. This is 

true provided p(q) is a normalizable function, which excludes delta-functions corresponding to 

trajectories. To define normalizable functions we will use the inner product 

(XIY) = fo
1 

dqX*(q)Y(q) (5) 
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where Y(q) = (qiY) and X*(q) = (XIq). The norm of pis then (pip). 
We are discussing the approach to equilibrium of probability densities. But there is in 

fact a property of the Bernoulli map that seems to indicate that there can be no approach to 

equilibrium at all! Solving this apparent contradiction will lead us to the main result of this 

section. ':Ve first introduce the Hermitian conjugate operator u1 in the usual way 

(6) 

which gives 

ut Y( ) = { Y(2q), 0::; q < 1/2 
B q y ( 2q - 1)) 1 I 2 ::; q < 1. (7) 

The Bernoulli map is not invertible and not unitary, i.e., u1u 8 -:f. 1. However, it isometric: 

(8) 

This is an important property because it means that any eigenfunctions of u1 that are normal

izable must have eigenvalues with magnitude equal to one. To see this, note that (piUBU11P) = 

(PIP)= 1 for any p with unit norm, including any normalizable eigenstates of Ub. 
The isometry of u1 seems to indicate that there are no decaying eigenfunctions of this oper

ator, because any decaying eigenfunctions must have eigenvalues with magnitude less than one. 

This, in turn, seems to negate the approach to equilibrium characterized by decaying eigenfunc

tions. However, there is a way out. If we consider functionals, which are not normalizable, u1 
can have eigenvalues with magnitude less than 1. As shown in Refs. [1, 5, 6], the functionals 

Ba (with a a non-negative number) defined by 

( 
1 lnl da 

Balf) = 1 dq -d af(q) 
a. o q 

(9) 

are eigenstates of u1 with eigenvalues 2-a:, which means that 

(10) 

or taking the Hermitian conjugate 

(11) 

The operator U B also has eigenvalues with magnitude less than 1. However, the correspond

ing eigenfunctions are normalizable. Indeed, since u1uB -:f. 1, the argument below Eq. (8) does 

not apply to U B· As a result, U B can have normalizable eigenfunctions with eigenvalues with 

magnitude under 1. 

The eigenfunctions of U 8 can be constructed by noting that U B acts as a shift operator 

U . ( ) _ { ej-l,l(q), j ~ 1 
Be1,z q - O, j = O, (12) 
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and 
ut . ( ) - { ej-t,l(q), j ;::-: t 

BeJ,l q - 0, j < t. (13) 

on the Fourier-basis functions 

ej,l(q) = exp[27ri2j(2l + 1)q) (14) 

with j 2 0 and -oo < l < oo integers. 

The existence of shift states allows the construction of a type of coherent eigenstates of U B, 

given by 

(15) 

It turns out these are the Bernoulli polynomials Ba(q) of degree a [1, 5, 6). We have 

(16) 

Summarizing, while the eigenstates of U B are smooth, normalizable functions (polynomials), 

the eigenstates of Uk are non-normalizable functionals. In order to obtain eigenvalues of Uk 
with magnitude less than 1 we had to leave the domain of regular functions. This is a remarkable 

result, because it ties irreversibility to a mathematical formulation involving extended function 

spaces. 

The Bernoulli polynomials and the functionals ( Ba I are orthogonal, 

(17) 

As a result, in the domain where La IBa) ( Ba! = 1, the FP operator can be represented as 

00 

U1p(q) = L2-atBa(q) (Ba!P) (18) 
a=O 

where Bo(q) = 1. This is the generalized spectral representation of the FP operator. The 

representation (18) displays the decay rates 2-a, which are powers of the Lyapounov exponent 

exp(ln 2) of the Bernoulli map. This representation clearly shows that when t-+ oo probability 

densities approach the uniform, equilibrium density peq = Bo(q) = 1. As discussed in tl, 5, 6] 

the representation (18) is valid for smooth, differentiable probability densities (which can be 

expressed as superposition of Bernoulli polynomials). This excludes trajectories, which are 

represented by Dirac delta functions. 

Setting t = 0 in Eq. (18) and evaluating the inner product ( BalP) explicitly we obtain, with 

p(a)(q)- dapjdqa, and Po= ( BoiP) 

(19) 

-461-



This is another form of the generalized spectral representation (18) fort = 0. It is also known as 

the Euler-1\!Iaclaurin expansion. It is the generalized spectral representation of the unit operator 

U1 = 1 fort= 0. For later comparison with the quantum Bernoulli map we write this expansion 

as 

p(q) (20) 

where we used the symmetry property of the Bernoulli polynomials, 

(21) 

Fort> 0 the generalized spectral representation (18) takes the form 

(22) 

3 Quantum baker map 

In the following we will focus our attention on the quantum version of the Bernoulli map and 

the representation corresponding to Eqs. (18) or (22). Before going to the quantum Bernoulli 

map, in this section we will give a brief introduction to the quantum baker map, upon which 

the quantum Bernoulli map will be built. 

We will follow the definition of the quantum baker map given in Ref. [21]. As in the 

classical case, we have a unit square, with horizontal coordinate qn ("position") and vertical 

coordinate Pm ("momentum"). Since this is a closed, finite quantum system, these coordinates 

are quantized. \Ve divide the unit square into an ]V x N grid. We assume that N = 2D where 

D is an integer. The quantized position and momentum are given by 

n 
qn = iV' n = 0, 1, 2 .. . IV- 1 (23) 

m 
Pm = J.V, m = 0, 1, 2 .. . N- 1 (24) 

The position states jqn) or the momentum states IPm) are a basis for all possible states of the 

system. They satisfy the orthogonality relations 

(Pm I Pm1 ) = Om,m1 (25) 

and completeness relations 
N-1 

L \qn)(qnj = 1 (26) 
n=O 
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N-1 

L IPm) (Pml = 1 (27) 
m=O 

The transformation from the position to momentum representation is given by 

(28) 

where 
1 

n = 21rN (29) 

plays the role of Planck's constant in this model. The classical limit is given by N ---+ oo, 

corresponding to an infinitely fine grid. 

The quantum baker map is represented by a unitary operator T. In position representation 

its matrix elements are 

0:::; n:::; N/2 
(30) 

N/2:::; n < N. 

States l~t) are transformed as 

(31) 

Hence density operators Pt are transformed as 

(32) 

This defines the FP operator for the quantum baker map. In the classical limit the quantum 

baker map goes to the classical baker map [21]. 

4 Quantum Bernoulli map 

We will assume that the quantum baker map is coupled to an external environment causing 

instantaneous decoherence in Jqn) representation. As a result, the off-diagonal terms of the 

density matrix disappear instantaneously after each time step. Therefore, we will only keep the 

diagonal terms at each step of time evolution. The two-dimensional quantum baker map will be 

projected into a one-dimensional map, which we will call quantum Bernoulli map. 

The FP operator UJj for the quantum Bernoulli map is thus defined as 

Pt+1 = UJj Pt = [r PtTt] . 
diagonal 

N-1 N-1 

L L lqn') (qn' IT Jqn) (qn IPtl qn) (qnJ Tt Jqn') (qn' J (33) 
n=O n'=O 
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The quantum Bernoulli map acts on the diagonal component of density matrices, and transforms 

them into new diagonal density matrices. 

To see the quantum-classical correspondence of the Bernoulli map we start by defining shift 

states as 
N-l 

ej,l = L lqn)ej,l(qn)(qnl (34) 
n=O 

where ej,l(x) is defined in Eq. (14). Due to the discrete nature of the coordinate qn, the functions 

(35) 

satisfy the relation 

(36) 

Hence from now on we restrict the domain of k (and thus of j and l) in such a way that 

-N/2::; k < N/2. (37) 

This domain goes to the classical domain in the limit N--+ oo. 

Note that because the number N of modes k is finite, the number of shift states is finite. 

As a result, the quantum Bernoulli map is not isometric. The limited number of shift states 

prevents the construction of exact eigenstates of the FP operator as was done for the classical 

Bernoulli map. However, we will find quasi-eigenstates of the quantum Bernoulli map, which 

will approach exact eigenstates in the classical limit. 

For k = 0, the shift state eo(qn) = 1 is just a constant and we have 

for k -::f 0 we use Eqs. (30) and (33) to obtain [22] 

where 

(UTQ)t . ( ) - { ej-t,r(qn) n~;-2osj-t1 ,l(n)V), j::: t 
B eJ,l qn - 0, j < t. 

{ 
1. for n even 

Sj',z(n, N) = 1'- 2j'+1 12Z + 11/N, fornodd. 

(38) 

(39) 

(40) 

The result (39) says that FP operator acts as a weighted shift on ej,z(qn)· To obtain a non-

weighted shift we define the new shift states 

(41) 

where 

(42) 
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The new shift states satisfy 

(UQ)t-. ( ) - { ej-t,l(qn), j ~ t 
B eJ,l qn - 0 . t 

' J < . 
(43) 

Up to this point we have a complete quantum-classical correspondence (compare Eqs. (13) and 

(43)). The weight factor in Eq. (40) has the form 

sJ,t(n, N) = 1 + O(n) (44) 

so it goes to 1 in the classical limit (i.e., N-+ oo with l, j finite) and we recover Eq. (13). 

5 The quantum analogue of the generalized spectral represen
tation for t = 0 

We will study now the quantum-classical correspondence of the Bernoulli map based on the 

generalized spectral representation discussed in Section 2. We will first find an expansion of the 

unit operator (Ui)t with t = 0, analogous to the Euler-J\ilaclaurin expansion in Eq. (20). In the 

next section we will consider the case t > 0. 

Consider an arbitrary density p(qn)· The uniform part is given by 

1 N-1 

Po= N L p(qn') 
n'=O 

(45) 

The non-uniform part, 

(46) 

is expanded in terms of the shift states ej,l ( qn') as 

1 N-1 [N] 

8p(qn) = N L L ej,l(qn)ej,z(qn' )p(qn') 
n'=O j,l 

(47) 

where the superscript [.N] indicates the restriction in Eq. (37). In the classical case the gener

alized spectral representation involves derivatives. Seeking a correspondence, in the quantum 

case we introduce differences. vVe use the notations 

(48) 

and 

/ 0)(qn1 , N) = p(qnr) (49) 

for the differences. In the classical limit, with the condition a << lv, the differences go to 

derivatives, 

(50) 
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Note that the difference at a point qn' gives the function at that point minus the function at 

the point qn'-1 on the left. We could as well have taken the difference between the points qn'+1 

and qn'. As we will see our definition of difference breaks the symmetry of the eigenfunctions 

around 1/2 (the mid point between the end points 0 and 1) that exists in the classical model. 

The symmetry is restored in the classical limit. 

The summation over n 1 in Eq. ( 47) may be written as 

N-1 _ 1 
Ro = L ej,z(qn' )p(qn') = 1 _ * ( ) {p(qN-1)- p(qo)} + R1 

n'=O ej,l q1 
(51) 

where 
N-1 N-1 

R1 = 
1

_ * ( ) L ej,z(qn')P(I)(qn',N) 
ej,l ql n'=l 

(52) 

The summation in R1 is similar to the left hand side of Eq. (51). Thus we have 

R 1 = -N-
1 

2 
{P(l)(qN-1, 1\f)- p(1)(q1, iV)ej,z(qi)} + R2 

( 1- ej,z(qi)) 
(53) 

where 

(54) 

By recursion we get 

N-1 N _ 1y-(a-1) 

L ej,l(qn' )p(qn') = L ( * )a 
n'=O a=l 1 - ej,l(ql) 

X [P(a-l)(qN-1, N)- P(a-l)(qa-1, JV)ej,l(qa-d] (55) 

Hence, the density can be written as (see Eqs. (46) and (47)) 

N [N] ( ) + _1 L L -ej,l qn 
Po Naa=1j,l (l,-ej,z(q1))a 

X [P(a-1) (qN-1, 1V) - p(a-1) (qa-1, IV)ej,z(qa-1)] 

(56) 

Let us now define the quantum Bernoulli polynomials 

[ !V] 
_ a:! " -ej,z(qn) 

Ba(qn, 2V) = ~rya L ( * , )a 
j,l \1 - e1,z(1/N) 

(57) 

(in Appendix A we show that these are polynomials of degree a). \Vith this definition, and 

re-writing the last term of Eq. (56) in terms of Ba(1- qn-+-1, lv) we arrive to 

p( qn) Po (58) 
N 

+ L-\ [Ba(qn, ..ciV)p(a-l)(qN-1 1 N)- ( -l)a Ba(1- qn+1 1 N)p(a-l)(qa-1 1 iV)] 
a=l a. 
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This expression is the quantum version of the classical spectral representation written in the 

form of Eq. (20}. It is a quantum version of the Euler-J\.iiaclaurin expansion. Note that, in 

contrast to the classical expansion, the quantum expansion is not symmetric with respect to the 

exchange of the points x = 0 and x = 1 (corresponding to n = 0 and n = N - 1). This is due 

to the difference operation we have used. It might be possible to use a symmetric difference 

operation, but this will not be investigated here. 

6 The quantum analogue of the generalized spectral represen
tation for t > 0 

In this section we will obtain an expression describing the time evolution of density matrices 

produced by successive applications of the quantum Bernoulli map. VVe will obtain an expansion 

analogous to Eq. (22), which will involve the time-evolved quantum Bernoulli polynomials. 

Strictly speaking our expansion will not be a spectral representation of the quantum FP operator, 

because the states we will construct are not eigenstates of the FP operator. However, these states 

will approach the classical eigenstates in the classical limit. 

The time-evolution of the quantum Bernoulli polynomials is obtained from Eq. (43) as 

I [N] 1 - ( ) 
(UJf)' Ba(qn, N) ~ ;~ L ( N) ( -ej-t,l qn r O(j- t) 

j,l /-lj,l n, 1 - ej,z(l/ N) 
(59) 

Changing j - t --+ j and using Eq. ( 41) this becomes 

1 [N/2t] ( N) ( ) 
(U2)'Ba(qn, N) ~ ;·. L 1'1·' ~· N) ( -ej,l qn r for21

::; N (60) 
a j,l /-lj+t,l n, 1- ej+t,z(1/ N) 

and 

(61) 

Hereafter we consider the case 2t ::; N. Using Jlj+t,z(n, N) = /-lj,z(n, N/2t) and ej+t,z(1/N) = 

ej,z(2t /N) we obtain 

(62) 

where 

(63) 

are the time-evolved quantum Bernoulli polynomials. In this expression we have (see Eq. (40)) 

/-ij-t,z(n,N/2t) { 1, forneven 
/-ij,z(n,N/2t) - 1+0(2tk/N), fornodd. 

(64) 
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with k = 2j ( 2l + 1). Thus for n even the time-evolved Bernoulli polynomials in Eq. ( 63) have 

the same form as the initial polynomials in Eq. (57), except for the change N ----7 N j2t. For n 

odd there is an explicit correction coming from the ratio of weight factors in Eq. (64). 

Let us introduce the re-scaled variables 

(65) 

then with q~, = n' /1V' = qn = nj1V we have 

Ba(q~,,N'), forneven (66) 

Ba ( q~,, N') + "quantum'' correction, for n odd 

where the "quantum" correction comes from the second line of Eq. (64). This correction will 

play an important role in the next section when we will discuss the quasi-fractal shape developed 

by the time-evolved quantum Bernoulli polynomials. 

Inserting Eq. (62) into Eq. (58) we get the following expression for the time evolution of the 

density matrix, expressed in terms of the time-evolved quantum Bernoulli polynomials: 

iV 

(U~)' p(q.,) = Po+~ 2~a ~! [Ba(qn, N, t)pla-l)(qN ,, N) 

( -1) 00 B 00 (1- qn+l, N, t)p(a-l\qa-1, 1V)] (67) 

This equation is the quantum analogue of Eq. (22). To see how the classical limit is reached, 

we write an alternative form of the quantum Bernoulli polynomials 

Ba(n'/N', .lV') = exp(1rin') (68) 
(2N1

)
00 

+ -~2 
exp [27rik(n' + a/2)/N'] + ( -1) 00 exp [-2K·ik(n' + a/2)/N'] 

k=l [2i.lV' sin(7rk/N')]
00 

We may approximate 

2iN' sin(1rkjN') ~ 2Kik (69) 

provided that 

N' >> 1. (70) 

In this case the Fourier components of the Bernoulli polynomials are dominated by small k 

components with k << N'. 111oreover let us assume that 

a<<N' (71) 

Under these conditions the Fourier components for small k are independent of N'. This means 

that we can approximate 

(72) 
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and therefore 

(73) 

Inserting this into Eq. (62) we get 

(74) 

which corresponds to Eq. (16). So the quantum Bernoulli polynomials behave as the classical 

ones, i.e., as decaying eigenstates of the FP operator. Furthermore have 

1
. ( 1 N') _ 

1
. ~2 

exp [2nikn' IN'] + ( -1 Y" exp [-2nikn' IN'] 
liD Ba qn'' - TliD L...t [2 'k]a 

N'-+oo N'-+oo k=l 1f~ 
(75) 

which are the classical Bernoulli polynomials. 

At t = 0} provided only small values of n with n ~ N contribute to the summation in Eq. 

(58), the discrete difference goes to the continuous derivative in the limit N-+ oo. We recover 

the classical Euler-Maclaurin expansion (20). Fort> 0 and N-+ oo in Eq. (67) we recover the 

classical expression (22). 

We interpret the existence of quantum decaying states as a signature of quantum chaos. The 

decomposition ( 67) shows that any density will approach equilibrium with the decay rates 1/2a. 

For 2t = N the quantum Bernoulli polynomials vanish identically and equilibrium is reached. 

7 Quasi-fractals 

\Ve consider now the quantum corrections in the Bernoulli map and the development of a quasi

fractals shape in the evolving quantum Bernoulli polynomials. 

Let us first now assume that n (in qn) is even such that n' = nj2t is an integer. Keeping the 

assumptions (70) and (71), both B 00 (qn, N) and Ba(q~,, N') give a representation of the quantum 

Bernoulli polynomials with different number of grid points, namely N and N'. The point qn = 

n/N = q~, = n' /N' belongs to both grids. If both N, N' >> 1, then Ba(qn, N) ~ Ba(q~,, N'). In 

words, after re-scaling by 2t, the quantum Bernoulli polynomials remain approximately constant 

at the points qn where n is even. Moreover, as discussed in the previous section they are 

approximately equal to their classical counterparts. They behave as decaying eigenstates of the 

FP operator. 

In contrast, if n is odd or more generally, if n' = nl2t is not an integer fort > 0, then q~, 

will not belong to the grid with N' points. \Ve expect a deviation from the classical Bernoulli 

polynomial. This deviation is due to the discretization of space, so it will give a quantum 

correction of the order of fi. In addition there will appear the quantum correction in Eq. (66). 
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Writing n = 2'(2r + 1) with both 1 > 0 and r integers the condition that n' = n/2t is integer 

is translated as 1 ~ t. vVe denote the set of integers n satisfying this condition as St. vVe have 

S0 {0, 1, 2, 3, 4, 5, 6, 7, 8, ... } 

s1 {o,2,4,6,8, ... } 

52 {0,4,8, ... } 

(76) 

At each time step, the quantum Bernoulli polynomials act as quasi-eigenstates of the FP operator 

only at the points in the sets St. At the other points we get deviations. The recursive nature of 

the sets in Eq. (76) means that these deviations appear in a self-similar fashion. This gives the 

evolving Bernoulli polynomials a quasi-fractal shape. 

In order to visualize this, we have employed a computer program to calculate the exact 

evolution of densities under the quantum Bernoulli map. As an example, at t = 0 we take as 

the initial state the polynomial Ba(qn, N) with a= 3 and N = 4096. At each step, we re-scale 

the density by 23 . If this were the classical Bernoulli map, the graphs would remain unchanged 

for t > 0, because B 3 (x) is an eigenstate of the FP operator with eigenvalue 1/23 . But for 

the quantum map we have a different behavior. The result is shown in Figure 2. We see the 
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Figure 4: Zoom-in of Figure 3 
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Figure 5: Zoom-in of Fig. 4. If we zoom-in this figure, the self-similarity disappears. 

graphs developing the quasi-fractal shape mentioned above. We also notice that as t increases 

the graphs are shifted. This is due to the a term in the numerator of the right hand side of 

Eq. (68). Provided a<< N 1 = N/2t the shift is negligible, but as t increases the shift becomes 

noticeable. 

Figure 3 shows a zoom-in view of Ba(qn, N) with a= 3, IV= 4096 and t = 6. Figures 4-5 

show further zoom-in views. 

The self-similarity of the graphs stops when the space resolution is of the order of 1/ N "' n 
(see figure 5). For this reason, we call this evolving state a quasi-fractal. 

When N-+ oo, the quasi-fractal behaves as a true fractal. At the same time, when N-+ oo, 

the amplitude of the fractal deviations from the classical Bernoulli polynomial gets smaller and 

the graph looks smoother. Eventually, it just looks like the classical Bernoulli polynomial (see 

Figures 6 and 7). 

8 Concluding remarks 

vVe summarize the main results. We constructed the quantum Bernoulli map by coupling the 

quantum baker map to an external environment that produces instant decoherence at each time 

step. 

vVe described the quantum Bernoulli map in terms of decaying quasi-eigenstates of the 

Frobenius-Perron operator. These states are analogous to the classical Bernoulli polynomials. 

We found conditions under which these quantum states approach the classical ones. Moreover 

we found a quantum analogue of the generalized spectral representation of the classical Bernoulli 
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map. We also found a quantum analogue of the Euler-l\!Iaclaurin expansion. In this expansion 

the classical Bernoulli polynomials are replaced by their quantum counterparts; derivatives are 

replaced by differences. 

\Ve have suggested that a signature of quantum chaos may be the presence of decaying 

eigenstates (or quasi-eigenstates) like the ones we have described in this paper. 

One interesting finding is that even after decoherence, the quantum Bernoulli map shows 

quantum corrections with respect to the classical Bernoulli map. The quantum corrections 

give a quasi-fractal shape to the evolving quantum Bernoulli polynomials. These corrections 

vanish in the classical limit. At the same time, as the classical limit is approached, the quasi

fractal approaches a true fractal. In a sense, this fractal is hidden in the classical limit. To our 

knowledge this is a feature chaotic quantum systems that has not received attention before. 

An open question is: do quasi-fractals like the ones we described here appear in other chaotic 

quantum systems? Self-similarity in quantum systems has been discussed in other contexts. For 

example in [7, 14], self-similarity has been discussed in the context of non-linear resonances. 

Refs. [16, 17, 18] have discussed singular spectra or fractal spectra of quantum systems, that 

appear, for example, with quasi-periodic lattices. Ref. [19] gives an interesting discussion on 

fractals generated by a quantum rotor. The self-similarity discussed in the present work is of 

a different origin. Still, it would be worthwhile to investigate any connections with these other 

works. 

Another question for future work is wether the quantum baker map can be described along 

the lines developed in this paper (i.e. using quantum Bernoulli polynomials and difference 

operators). 
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A The quantum Bernoulli polynomials 

In this appendix we show that the functions 

(77) 

are polynomials of degree et in Qn· Let us first state two properties of these functions, which are 

easily proved: 
N-1 

L Ba,N(Qn) = 0 (78) 
n=O 
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and (for n > 0) 

Ba,N(Qn)- Ba,N(Qn-d 

Bl,N(q.n) - Bl,N(Qn-d 

(ajN)Ba-l,N(qn), a > 1 

1/N, n > 0 

From the last equation we find that 

We can find Bl,N(qo) using Eq. (80) together with Eq. (78), which gives 

N 

L qn + NBl,N(qo) = 0. 
n=l 

Using 
N-1 N2 N 
l:n=---
n=l 2 2 

we get 

In a similar way, using 

we find that 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

We can continue in this way for a = 3, 4, · · · showing that Ba,N( qn) are polynomials of degree 

a. JVIoreover, recalling that 1/JV rv 1i and consulting a table of classical Bernoulli polynomials 

[6], we find that 

(86) 

for a= 1, 2. Similar relations must hold for a> 2 with a~ N, because of Eq. (75). 
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