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The relaxation to equilibrium is a fundamental irreversible process. It is our experience that iso­

lated thermodynamic systems would eventually relax to a stationary state called equilibrium[l, 

2]. In thermodynamics, this statement is regarded as requirements for the relevant choice of 

the model and its macroscopic descriptions. Recently, it is shown that equilibrium states are 

very popular in the extremely large Hilbert space of state vectors for macroscopic quantum 

systems[3, 4l 5, 6, 7, 8, 9, 10]. The expectation values with respect to a randomly sampled 

pure state are typically well described by equilibrium ensembles[3, 8, 10]. And it is expected 

that initial nonequilibrium state approaches to the typical state of equilibrium. Then it is rea­

sonable to explore a dynamical explanation for the macroscopically observed behavior of the 

relaxation to equilibrium[4, 5, 7]. Indeed the coarsgrained macroscopic quantities typically yield 

a decomposition of the total Hilbert space with a subspace of overwhelming dimension which 

represents equilibrium[4, 5). Based on this property, arbitrary state approaches and stays near 

equilibrium[4, 5], which is a version of quantum ergodic theorem[ll]. 

Professor S.Tasaki regarded the microscopic justification of the relaxation processes as an 

important unsolved problem. He also emphasized that the definition of the typical state or the 

choice of relevant measure for random sampling is crucial. Typical states are macroscopically 

entangled and role of entanglement would be also important[8, 10]. As he pointed out, the issue 

on the relaxation is also important in the context of nonequilibrium theorems[15, 16], which 

relies on the use of thermodynamic ensembles. For the isolated system, the relaxation is not 

guaranteed for the total density matrix itself. Indeed the total density matrix does not actually 

relax to a thermal state in the course of unitary time evolution. Also, for classical systems, 

there exist exceptional integrable systems which do not reach an equilibrium state even after 

a long waiting time due to the conserved quantities. For isolated quantum systems, there are 

1 E-mail: monnai@a-phys.eng.osaka-cu.ac.jp 

-440-



!Perspectives of Nonequilibrium Statistical PhysicsJ 

always conservative quantities such as projection operators on a specific energy eigenstates{7, 

10, 9, 13, 14]. Thermalization would not occur for the expectation values of these microscopic 

quantities, however, our interest lies in the expectation values of quantities consists of a sum of 

local quantities such as the magnetization of a long spin chain, the energy or number of particles 

in a certain part of a box, and other extensive quantities of thermodynamics. 

We insist that the expectation values of macroscopic quantities typically show relaxation 

to the equilibrium values. Especially, it is pointed out that the off-diagonal elements of the 

density matrix does not contribute to the expectation values. In this article, we explain how 

the statement is made quantitative for the time-dependent unitary time evolution. And the 

explanation is numerically verified for a spin chain with a magnetic field. This article is organized 

as follows. In Sec.2, we present our model with the precise external forcing procedure. In Sec.3, 

the relaxation of the expectation values are explained. In Sec.4, we show that the entropy at 

final state is well-defined. Sec.5 is devoted to a summary. 

2 Macroscopic systems 

Let us consider a macroscopically large but finite initially isolated system. After initial time 

t = 0, an external forcing acts on the system, and the total Hamiltonian H(t) depends on time. 

Until t = 0, the density matrix describing the initial state is assumed to be microcanonical 

specified by an energy E 
1 

p(O) = D(O) 8(E- H(O)), (1) 

where D(O) is the density of the states. In actual, the energy scale is specified with a finite 

precision [E, E + 8E], and we assume that sufficiently many eigenenergies belong to the interval. 

In the course of time evolution, the external work is done on the system through the time 

dependence of H ( t). 

The deterministic external forcing acts during the time interval 0 :::; t ::; To, and switched 

off fort> To. It is expected that after a sufficiently long waiting time, i.e. at t = T ~To, the 

density matrix reaches a state which yields approximately the same expectation values as the 

microcanonical ensemble p(T) = a}r)8(E + ~E- H(T)) with an energy shift ~E due to the 

work done. 

3 Relaxation of the expectation values 

It is our statement that the microcanonical ensemble well approximates actual expectation value 

of macroscopic quantity A whose maximum eigenvalue polynomially depends on the system size 

and contains various matrix elements with respect to the eigenenergy 

TrU p(O)U+ A~ Trp(T)A. (2) 
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This evaluation shows that the relaxation to equilibrium is explained as the property of the 

expectation values instead of the density matrix. 

The actual final state is reached by a unitary time evolution 

Up(O)U+ 

e -*H( T)(T-To) U (To )p(O)U (To)+ e kH( T)(T-To) 

L Cn,miEn)(Em!, (3) 
n,m 

where we presented the eigenstate of H(T) as H(T)JEn) = EniEn), 

Cn,m = e--k(En-Em)(T-To)(EnJU(To)p(O)U(To)+JEm), and U(To) = T{e- J:o kH(t)dt}. After t = 

To, the total system is isolated, and evolves by the Hamiltonian H(T). On the other hand, the 

off-diagonal elements of the physical quantity A is negligible compared to the diagonal elements: 

i) The off-diagonal matrix element \EniAIEm) is typically negligible in the macroscopic limit. 

Physically, this would be reasonable since it means that transition amplitudes between 

macroscopically different states due to the perturbation A are extremely sma11Il7]. 'vVe 

shall give a quantitative explanation of this statement. The analysis is based on the high­

dimensionality of the Hilbert space as in Refs.[3, 6, 8, 10]. Let us diagonalize the quantity 

A as 

(4) 
n 

and define its square root 

(5) 
n 

Here the spectrum {An} is assumed to be nonnegative. 'vVithout loss of generality, the 

operators bounded below such as energy and number of particles can be made into this 

form. We also define state vectors { J<Pn) = BIEn)} so that the matrix element is expressed 

as the inner product 

(6) 

The states {J<Pn)} are chosen from the extremely large Hilbert space H with various di­

rections. Thus we assume that the sequence of the normalized vectors 

{ -J~:~(<P 1 ), -J/::/<1?
2
), ••• } is regarded as a uniformly random sampling from dimH dimen­

sional unit sphere as we will confirm for the case of a spin chain. It is then straightforward 

to show that the mean square of the inner product is smaller than ~i~~ (3j, which we will 

show later. Here IIAjj is the maximum of the eigenvalues of A. 

Let us derive the inequality for the inner product 

(7) 
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where the bracket shows the average with respect to the uniform random sampling of 

V I<P,.} from the unit sphere. Uniform random sampling is expressed by the vector rep­
(<Pni<Pn) 

resentation of V I<Pn) in an orthogonal complete basis as 
(<I>n I<Pn} 

rL = (cos el' sin el cos e2, sin el sin e2 cos e3, ... 'sin el sin e2 ... sin ed-d with d = dim 'H. 

Hereafter we use the abbreviated notation for the dimension d. The angles (Ji are uni­

form random variables on the real axes. We are interested in particular cases where IIAII 
polynomially depends on the system size. On the other hand, the dimension dim'H grows 

exponentially as the system size increases. Then inequality (7) shows that the off-diagonal 

elements Eq.(6) is extremely small for the macroscopic system. We numerically show that 

Eq.(7)2) actually holds and hence random sampling assumption is reasonable for a quan­

tum spin chain. The spin chain is regarded as a nice example, since it provides macroscopic 

quantities, which is a sum of the local quantities. The Hamiltonian of the spin chain is 

chosen as 
N-1 N N 

H = -J L a-jaj+1 +a :Laj +I' :Laj, (8) 
j=l j=l j=l 

where J stands for the exchange interaction between neighboring sites, and a constant 

magenetic field B = (a, 0, !')is applied. aj is the i, = x, y, z component of the Pauli matrix 

at the site j. As a macroscopic quantity, we consider the square of the x component of 

the total magnetization 
N 
~ i 2 A= (L..Jaj) . 
j=l 

(9) 

Other choices of A are possible, but we use Eq.(9) which guarantees a well-defined square 

root B = I.:j':1 a]. For example, if we choose A as i component of the total magnetization, 

we still observe behavior resembles to Fig.l. The system sizes 6 :.; N :.; 11 are explored. 

Note that the dimension of the total Hilbert space is 2N and can be large for relatively 

small 1V. By diagonalizing the Hamiltonian matrix H, numerical eigenvectors lEn) are 

obtained, and the absolute values of all the matrix elements j(EmiAIEn)l are shown in 

Fig.l. The data are shown only for parameters J = 1, a = 1, and I' = 0.5, however, 

we have confirmed similar behavior for various values of I'· To verify that Eq.(7,12) is 

satisfied quantitatively, we also show the matrix elements j(EwooiAIEn)l with a fixed 

value of m = 1000 for N = 11. The statistical mean value of the off-diagonal elements 

agrees with the theoretical estimation <.A ~ 1~1 as shown in Fig.2. This estimation is 

considered as a generic property of macroscopic observables A, since it is expressed only 

by the typical value of A and the dimension d. Thus for large d = 2N, the directions of 

J<I>n) are orthogonal to each other, and are considered to be distributed on the dimH- 1 
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Figure 1: The absolute values of matrix elements I(EmiAIEn)l of A= (l:::j":1 o-j?. The average 
of the off-diagonal elements is the same order as the average of the diagonal elements divided by 
v'd. The system size is N = 8. We have confirmed qualitatively similar results for 6 :S N :S 11. 

8 

6 

n 
0 500 1000 1500 2000 

Figure 2: The absolute values of matrix elements I (EwooiAIEn) of A = (I:_f=1 aj)2 .y and 
z components give similar results. The lines show average of the off-diagonal elements 
(l(EwooiAIEn)l) = 0.173, and the average of the diagonal elements divided by ..f2N, 0.138. 
These two lines are mutually very close. 
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dimensional unit sphere without any bias to a specific direction. 

(10) 

is immediately derived, since the expectation values of each component are the same and 

their sum should be unity. For concreteness, we also show the Eq.(lO) in an alternative 

way. The square inner product is calculated as 

(I ( <I>n I<Pm) 12 ) 

( <I>ni<Pn) (<Pm I<Pm) 

1~ 1~ 2 e I a(r cos th, ... , r sin e1 ·. ·sin ed-d I de de 
= N · · · COS 1 r-1 1 · · · d-1 o o a(Bt, ... ,Bd-br) -

1r 1r 

N fo 2 
· · · fo 2 

(1- sin2 BI) sind-2 
81 sind-3 

82 · · ·sin Bd-2dB1 · · · dBd-1 

1 
_ (d- 2)rU¥) r(£¥) 

r(d21) r(~)d 
1 

= d' 

where N = 11~-::i ;(~?r\ is the normalization factor. 

Since lEn) and !Em) are normalized, 

( <Pn I<Pn) ( <I>m I<Pm) 

(EniAIEn) (Em!A!Em) 

< IIAII2
· 

(11) 

(12) 

The inequality (7) derives from Eqs.(10,12). From Eq.(7), the coefficient Cn,m of Eq.(3) 

is safely replaced by (En)U p(O)U+JEm)8n,m in the evaluation of TrU p(O)U+ A. The off­

diagonal elements of U p(O)U+ does not contribute to the expectation value of macroscopic 

quantity A. 1'1ore quantitatively, the error caused by neglect of the off-diagonal elements 

is indeed negligible by random phase approximation, since there are d2 terms of 0( ~) 

with various phases. 

ii) The diagonal elements of the density matrix U p(O)U+ is well-approximated by those of a 

microcanonical state with respect to H(T). It is important to note that the initial micro­

canonical state specifies an energy scale E. Indeed the diagonal elements are expressed 

as 

(EnJU p(O)U+jEn) 

O(;(O)) (Eni8(UH(O)u+- E) lEn) 

O(;(O)) ~8(Em- E)j(En[Em)[
2

, (13) 
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where we introduced the normalized eigenstates of UH(O)U+ as UH(O)U+[En) = EnlEn), 

i.e. U[En(O)) = lEn) with an eigenstate of H(O), [En(O)). The set of states {[En)} and 

{[En)} are related by a unitary transformation Ln [En)\Enl· In the presence of perturba­

tion, [(En[Em)l2 = [(En[U[Em(O))I 2 would be non negligible only when the conservation 

of the energy is well-satisfied after the long waiting time, i.e. En ~ Em + ~E with the 

energy change ~E from the initial to final times caused by external perturbation during 

0:::; t:::; To. 

We show a quantitative estimation of ~E. The matrix element \En[Em) is evaluated as 

8nm + (Em1:~1~En) (1- 8nm) up to the first order of the perturbation H(T)- UH(O)U+, 

where the factor {Em[H(T)[En) would be of order liHCJ)II
2 

as in Eq.(7). Then it is 

immediately shown that Em contributes to (En/Em) only when Em and En are sufficiently 

near [Em-Enl:::; !J-a, otherwise the ratio (Em1:~i~En) is negligible. Such [Em) is expanded 

as )Em) = Ln dn,mlEn), where the coefficient dn,m is non negligible for En sufficiently near 

Em. The energy change ~E is determined as 

~E = \Emi(H(T)- UH(O)U+)IEm/ 

"""' 2 -L...t [dkm[ Ek- Em 
k 

rv En- E, (14) 

which is almost independent of the suffix n, and does not depend on the quantity of interest 

A. Here we evaluated as Lk [dk,ml 2 Ek ~ Em ~ En and Em = E from the Dirac delta 

in Eq.(13). The important property used here is a continuity of the mapping, i.e. when 

lEn- Eml is small enough compared to [i{-, [En- Eml is also sufficiently small. 

Therefore the third line of Eq.(13) has a sharp peak at En= E + ~E as a function of En 

and is proportional to the function 8 (En - E - ~E) as 

(En[U p(O)U+[En) 
1 

~ O(T) 8(En- E- ~E) 

1 
{En[ O(T) 8(H(T)- E- ~E)[En), 

(15) 

where the density of the states at t = T is determined uniquely from the normalization, and 

H(T)[En) = En\En) is used. The diagonal elements is thus given by the microcanonical 

ensemble. 

Then as far as the expectation value is concerned, the state U p(O)U+ should be well-described 

by the microcanonical ensemble p(T). 
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4 Entropy at final state 

Given the relaxation to equilibrium, the equilibrium entropy at final time S(T) is well-defined. 

Since the microcanonical and canonical ensembles are quantitatively equivalent in the macro­

scopic limit due to the specification of the energy scale, we consider the canonical ensemble 

p(s) = z(s)e-f3H(s) at t = s. At timet= s, the nonequilibrium entropy is defined as the energy 

minus the free energy calculated from the canonical ensemble with the Hamiltonian H ( s) and 

the partition function Z ( s). The nonequilibrium entropy at final time is written as 

s;:) = /3(E(T)- F(T)) 

e-i3H(T) 

= TrU p(O)U+ log Z(T) 

~ -Trp(T) log p(T), 

(16) 

where E(T) and F(T) = -~ logfl(T) are the internal and free energies, respectively. Then the 

nonequilibrium entropy at t = Tis equal to the equilibrium value due to the relaxation of the 

expectation value of A = log p(T). 

5 Summary 

In conclusion, by assuming that the initial state is prepared as a microcanonical ensemble, the 

actual state at time t = T can be replaced by another microcanonical ensemble in the evaluation 

of macroscopic quantities. The derivation is based on the high dimensionality of the Hilbert 

space, and restrictions for the system size dependence of observables as well as the perturbative 

treatment of the unitary transformation of the energy eigenstates. The validity of the uniformly 

random sampling assumption for J [<I>n) is numerically verified for a nonintegrable spin chain. 
(<I>n [<I>n) 

It is also remarked that the initial state can be out of equilibrium, i.e. the initial density matrix 

is p(O) = Uo 0 (0)5(E- H(O))U(j with a unitary transformation Uo, since this can be regarded as 

the state evolved from an actual initial state Ufi p(O)Uo = n(o)5(E- H(O)). 
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