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1 Introduction 

Professor Shuichi Tasaki was one of the greatest visionaries in science who understands not only 

physics but also mathematics and - most importantly - the philosophy of science. With the 

talented and fruitful ideas and views, he possessed a generous and great personality as well and 

has attracted so many people. There would be many difficult questions in life. One of the most 

difficult ones to accept is that the precious opportunity to talk with him and hear his beautiful 

ideas was deprived from us. As one of his pupils, I would sincerely like to dedicate this memorial 

article to him as a joint work with him. 

More than eleven years has passed since I first met him. It was the year when I started 

my master course in \Vaseda University. As many students go thorough, I was struggled with 

the foundational issues on quantum mechanics. Fortunately, there were many people at Waseda 

university who could share and discuss the same problem, and I gradually understand that 

there are several different kinds of questions - about theory and experiment, about physics, 

mathematics and philosophy, about interpretation and its actual use, etc. Around that time, 

Professor Tasaki had moved to Waseda University, and it didn't take much time to know that he 

is a quite rare researcher who can grasp and integrate all these problems together. Since then, 

I was blessed with a wonderful time to hear and learn so many things from Professor Tasaki. 

This forms into my basis not only on science but also my life nowadays. 

Among many problems I could discuss with him, in this article let me focus on one theme 

- on the general property on correlations - since we even had a plan to write the paper about 

this. Unfortunately we later noticed that the similar result had already pointed out by Takesaki 

[1] in the theory of C* algebra, and we deferred this plan for a while. Now I feel a great regret 

that we didn't continue this, since we immediately noticed that the property of correlations 

universally holds in any physical theories. Moreover, the property has an important application 

1 E-mail: gen[atmark]sic.shibaura-it.ac.jp 
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in the context of quantum key distribution. Therefore, I believe the fact should be widely known 

and I would like to use this opportunity to put this into shape in the most general setting as 

much as possible and give its rigorous proof. 

The property of correlations we will discuss is the following: 

[A] If the state of a physical system {in which you are interested) is pure; then the system has 

no correlations with any other systems (environments). 

This fact is indeed generally true and has many interesting implications. First, experimentalists 

can assure that their systems has no correlations with any other environment once they check 

that their system is in a pure state. Notice that whether your system is in a pure state or not can 

be locally checked (e.g., with a state tomography) even if you don1t have any knowledge about 

the environment. Indeed, in quantum theory, this fact is used as one of the principal reasons 

for the unconditionally security of some of the protocols of quantum key distribution [2]: Once 

Alice and Bob assure to share a pure state, then it is guaranteed that their composite system is 

safely isolated from other system which is possibly prepared by an eavesdropper. Notice that, 

in quantum theory (but not in classical theory), a pure composite system can have correlations, 

i.e., entanglement. Therefore, Alice and Bob can use their correlations (entanglement) to share 

the secret keys, which is safely uncorrelated from an eavesdropper. Second, the contraposition of 

the statement [A] tells that if there are correlations between a system and its environment, the 

reduced state is a mixed state. In particular, since a pure composite system can have correlations 

in quantum theory (but again not in classical theory), the reduced state can be a mixed state 

even if the total state is in a pure state, which is one of the peculiar features of quantum systems. 

This origin of mixtures is sometimes called improper mixture [3]. 

The importance of statement [A] has been pointed out by d'Espagnat and a simple proof 

is given in quantum systems with finite levels [5] 2 , although the mathematical part of this had 

been proved by Takesaki in a C* algebraic setting {See Lemma 4.11 in [1]). However, in a 

next section, we show that the statement is indeed a universal fact which is true in any and all 

operationally valid physical theories. This was also pointed out by other group [6] independently 

in a slightly restricted setting. 

2 General Probabilistic Theories 

We start from reviewing the general framework to use probability [7, 8, 9, 10, 11], recently 

referred as general probabilistic theories [6, 12, 13]. This framework covers not only the classical 

theory of probability but also quantum theory and indeed mores; any operationally valid physical 

2 0ne can find the rigorous proof in infinite dimensional Hilbert space in my doctor thesis [4]. 
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theory you can think of should be included here3 . Our basis is operational and we use the notion 

of a physical system, a state (preparation), a measurement (of an observable), and a composition 

of systems. In particular~ we assume that in each fixed physical system there is a physical law 

to determine a probability to get a measurement outcome in a given state: \Ve denote by 

Pr{ x E .6. IX, 8} (1) 

the probability to obtain an outcome x in an event .6. when performing a measurement X under 

a state 8. For instance, in the theory of classical probability, a physical system is represented 

by a measurable space (Q, A)4 • A measurement is a random variable X : Q -+ R and a 

state is a probability measure J.L on Q. The probability to obtain an outcome in an event 

.6. E A is then given by Pr{ X E a IX) J.L} = J.L( x-I (a)). Another typical example is the 

theory of quantum mechanics: A quantum system is represented by a Hilbert space 1{. A 

measurement of an observable X is represented by a self-adjoint operator (though most generally 

by a positive operator valued measure) and a state is represented by a density operator p on 

1{. The probability (1) is given by the Born's rule: Pr{x E .6. jX, p} = tr(pEx (a)) where 

Ex ( ·) is the spectral measure of X. However, one can go further to formulate the most general 

framework of probability, which is explained in details in the following. 

In order to have an operational meaning in the theory, we require the following natural 

assumptions [A1]-[A4]: 

[Al] (Probability) As mentioned above, we require that in each physical system, there exists 

a physical law to predict a probability (1), which satisfies the Kolmogorov's axiom of probability. 

Precisely speaking, we assume that an each measurement X possesses an intrinsic measurable 

space (nx,Ax), which determines the sets of outcomes and events5 , and Mx,s(·) := Pr{x E 

. IX, s} with states gives a probability measure over nx: (i) 0::; /1X,s(.6.) ::; 1 for any a E Ax' 

(ii) J1X,s(r2x) = 1, and (iii) (Countable Additivity) J.LX,s(al U a2 U · · ·) = I:i J1X,s(ai) for 

mutually exclusive events a1, .6.2, ... E Ax. 

[A2] (Identification of States) We naturally identify states s1 and 8 2 iff the statistical prop­

erties for any measurement X under s1 and 82 are the same. Namely, s1 = s 2 if and only 

if 

Pr{x E .6. IX, 81} = Pr{x E .6. IX, 82} V.6. E Ax 

3 There are several motivations to consider this general framework: one of them is for the inquiry of physical 
principles of quantum theory [13, 14] 

4 0 is a sample space and A is a a-algebra over n, i.e., the set of all the events. In the following, readers who 
are not familiar with the measure theory can always replace n to the set of real numbers JR and fl. E A to an 
interval [a, b] C JR. 

5If one (supposed to be a physicist) feels that this is artificially too general, think that Ox = JR and Ax = B(JR) 
(the Borel set over JR) for any measurement X. However, in general, each measurement could have different and 
arbitrary set of measurement outcomes. 
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for any measurement X. (This usually gives an operational definition of states6 .) 

[A3] (Probabilistic Mixture of States) We assume that for any states 81 and 82 and for any 

probability p E [0, 1) there exists a state 8 which satisfies 

Pr{xE.6.[X,8}=pPr{xE.6.[X,81}+(1-p)Pr{xE6.[X,82} \7'.6-EAx, (2) 

for any measurement X. A typical preparation (realization) of such state is given by a prob­

abilistic mixture of states [15]: one can operationally prepare 8 by preparing state 81 with 

probability p and state 82 with probability 1- p. Note that (2) then follows from the definition 

of conditional probability and the countable additivity of probability. Notice that from [A2] 

such state is uniquely determined by the fixed states 81, s2 and p E [0, 1]; in the following we 

denote it by 8 = (p; 81, 82) [9]. In the classical and quantum theories, this is given by a convex 

combination of states7 . For instance, (p;pl,P2) = PPl + (1- p)p2 with density operators PI,P2 

and p E [0, 1]. 

Now we have an operational definition of a pure state. A state is called a pure state iff there 

exist no preparations with nontrivial probabilistic mixture8 • In other words, 8 is a pure state 

iff 8 = (p; 8t, s2) for states 81,82 and p E (0, 1) implies 8 = 81 = s2. For instance, in quantum 

systems, a density operator on 1{ represents a pure state iff it is a one dimensional projection 

on 1{. A state is called a mixed state if it is not a pure state. 

[A4] (Composition of Systems and Relativistic Causality) In order to consider the compo­

sition of physical systems A and B, we also assume that there exists a physical law for a joint 

probability: 

Pr{ X E 6., y E r [X, Y, s} (.6. E Ax' r E AY) (3) 

for any local measurements X of A and Y of B, which gives the joint probability to obtain 

outcomes x E 6. and y E r when we perform a joint measU?~ement of X and Y under a composite 

state s. Additionally, we assume the relativistic causality (16] (sometimes referred as the no­

signaling condition): 

Pr{ x E 6., y E Oy JX, Y, s} = Pr{ x E .6., y' E Oy1 [X, Y', s} (\f .6. E Ax) ( 4) 

for any measurement X of A and for any possibly different measurements Y and Y' of B. 

(The same assumption for the change of A and B, of course, should be assumed.) Notice 

that Pr{ x E .6., y E Oy [X, Y, 8} gives the marginal probability distribution of X subject to 

no-communications between A and B. Therefore, condition (4) assures the impossibility of an 
6 0ne can also consider an identification of measurements with the same philosophy, but logically this is 

unnecessary for the following discussion. 
7 Indeed, there always exists a vector representation of states so that 3 = (p; s1, 82) is given by a convex 

combination of states [9]. However, in the following discussion, we don't resort to any mathematical representation. 
8 \Ve say that state 3 has a preparation with nontrivial probabilistic mixtures if there exists states s1, 82 which 

are different from 3 and p E ( 0, 1) such that 3 = (p; 81, 82). 
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instantaneously sending of an information (by means of changing Y and Y') from B to system 

A, which could be located far away each other. Of course, in both classical and quantum 

systems, this is satisfied9 , assuring the peaceful coexistence of (especially) quantum mechanics 

and relativity theory. 

Now the reduced state SA of A from a composite states can be well-defined as a state which 

satisfies 

Pr{x E ~IX, sA}:= Pr{x E ~,y E Qy IX, Y,s} (V~ E Ax) (5) 

for any measurement X of A with an arbitrary fixed measurement Y of B 10 . In quantum 

systems, the reduced state of A is described by the reduced density operator PA := trB p as 

one observes Pr{x E ~,y E Oy IX, Y,p} = trAB(pEX(~) 0 EY(f!y)) = trAB(pEX(~) ®liB)= 

trA((trB p)Ex (~)). 

Next, a correlation in a composite state is operationally defined. We say that a composite 

state s has no correlations iff there are no statistical correlations for any pair of local measure­

ments X and Y, i.e., 

Pr{xE~,yEf jX,Y,s}=Pr{xE~ jX,sA}Pr{yEf IY,.sB} (V~EAx,fEAv) (6) 

for any measurements X of A and Y of B. Otherwise, we say a composite state s has non-zero 

correlations. For instance, in a quantum mechanics, a state with no correlations is represented 

by a product of the reduced density operators: p = PA ® PB· 

Now we are in position to prove the general property of correlations. First, we notice that a 

preparation of local states by a conditioning is possible: Let s be a composite state and let fix 

a measurement Y of Band an event r E AY· Then, unless Pr{y E r !Y, sB}-=/:- 0, there exists a 

local state s2''r) of A which satisfies 

P { A !X (Y:r)} Pr{x E ~,y E r IX, Y, .s} 
r X E u , s ' = ----=---------

A Pr{y E r IY, .ss} 
(V~ E Ax) (7) 

for any measurement X of A. Indeed, since the right hand side of (7) is the conditional prob­

ability with a given r, the preparation of .s2''r) is realized by a preparation of state .s with a 

conditioning of a measurement Y to be in an event r. 

9 In quantum case, the composite system is described by the tensor Hilbert space 1lA ® 1-lB and the joint 
probability of a measurement of self-adjoint operators X on 1-lA and Y on 1-lB under a density operator p on 
1-lA ®1-lB is given by trAB(pEx (.6.) ® EY (r)) with spectral projections Ex(-) of X and EY (-) of Y. Since 
EY (ny) =liB for any Y, condition (4) follows. 

10 Alternatively, one can define the reduced state as follows: Operationally, one can define a measurement of 
X of A in a composite state s of A + B while no measurements on B are performed and let Pr{ x E .6. IX, 0, s} 
denotes the probability to obtain an output x in .6. E Ax in this situation. Relativistic causality then should also 
holds as Pr{ x E .6., y E ny IX, Y, s} = Pr{ x E .6. IX, 0, s} for any Y. Then, the reduced state sA is defined as the 
state which satisfies Pr{x E .6. IX, SA}= Pr{x E .6. IX,0,s}, which is the same as (5). 
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The rigorous statement of [A] is now given by the following theorem: 

Theorem 1 In any general probabilistic theories with [A1} - [A4), if the reduced state SA from 

a composite state s of A + B is a pure state, then s has no correlations. 

Proof Assume that sA is a pure state. Fix arbitrary measurements X of A and Y of B and 

~ E Ax, r E AY. VVe prove (6) for each case (I)-(III) below: 

(Case I) If Pr{y E r jY, sB} = 0, then we have Pr{x E ~' y E r jX, Y, s}:::; Pr{x E flx, y E 

r jX,Y,s} = Pr{y E r jY,sB} = 0 and thus (6) holds. 

(Case II) If Pr{y E r jY, BB} = 1, then Pr{y E r 0 JY, BB} = 0 where r 0 denotes the 

complement of r. Note that, since Pr{ X E ~' y E r 0 jX, Y, s} :::; Pr{ X E flx' y E r 0 IX, Y, s} = 

Pr{y E r 0 jY,sB} = 0, we have Pr{x E ~,y E r IX, Y,s} = Pr{x E ~,y E fly IX, Y,s} = 

Pr{x E ~ JX, sA} and thus (6) holds. 

(Case III) If 0 < Pr{y E r JY, sB} < 1, we have local states s5{'r) and s5{'rc) (see (7)) which 

satisfy 

(y:rc) 
Pr{x E ~ jX,sA' } 

Pr{x E ~,y E r IX, Y, s} 
p 

Pr{x E ~,y E r 0 jX, Y,s} 

Pr{y E rc jY, BB} 
Pr{x E ~jX,sA}- Pr{x E ~,y E r jX, Y,s} 

1-p 

where p := Pr{y E r jY, sB}· From (5), (8) and (9), the reduced state SA satisfies 

(Yr) (Yr0 ) 
Pr{x E ~ jX,sA} =pPr{x E ~ jX, sA' } + (1- p)Pr{x E ~ jX,sA' } 

(8) 

(9) 

for arbitrary measurement X of A and ~ E Ax. This means that the reduced state sA can be 

prepared as a probabilistic mixture of state s5{'r) and s5{'rc) with probability p and 1- p. Since 

SA is a pure state and 0 < p < 1, we have 

In particular, from the first equality and (8), we have Pr{x E ~ JX, sA} = Pr{xE6,y~r IX,Y,s} 

and thus (6) holds. This completes the proof. • 

Note that [Al-A4] are minimum required assumptions for any physical theory with notions 

of probability as well as pure state and correlations11 . Therefore, a statement [A] has been 

proved to hold universally in any operationally valid physical theories. 

\Ve conclude this article with a short discussion on the application of Theorem 1 to a key 

distribution. In a usual argument of quantum key distribution, the unconditional security can be 

11 Note that a similar (and indeed almost parallel) argument is possible without no-signaling condition in [A4] 

by defining a reduced state of A depending on the choice of a measurement Y (or without measurement) of B. 

However, such argument would be too artificial to present here. 
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proved provided that, of course, quantum theory is correct. However, Theorem 1 can assure the 

security of key distribution not resort to the validity of quantum theory but to more general and 

natural assumptions [A1]-[A4]. (For instance, the security of quantum key distribution remains 

to be guaranteed even if there are some defeats in quantum theory ~ though nowadays this 

might be merely an armchair plan.) Precisely speaking, we notice that Theorem 1 is not enough 

for this application: First, as is also mentioned in Sec. 1, the legitimate users, Alice and Bob, 

should have non-zero correlations in order to share the secret k~ys. Therefore, there must exist 

a pure composite state (of Alice and Bob) with non-zero correlations. This holds in quantum 

systems (with an entanglement) but not in classical systems. Next, Alice and Bob, who are 

supposed to be located far away, should make sure that their composite system is a pure state. 

In order for Alice and Bob distantly can do this, another assumption is necessary: 

[A5] (Local Tomography): A composite state is characterized by information of correlations, 

which assures that a composite state is locally determined by means of local measurements and 

communications. 

This is of course valid in both classical and quantum systems. \Vhat we have shown is that 

the property of correlations in Theorem 1 is correct only with [A1]-[A4], but to use this fact for 

the application of key distribution, we need a pure entanglement and [A5] as well. Fortunately, 

these can be operationally checked in experiments. 
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