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Abstract. An overview is given of work carried out in collaboration with late Professor Shuichi 

Tasaki on the multibaker map. In this collaboration, the nonequilibrium steady states and 

the diffusive modes of this model of deterministic diffusion were shown to be described by 

distributions that are expressed in terms of the nondifferentiable Takagi and de Rham functions, 

respectively. The link to more recent work is established with a proof of a fluctuation theorem 

for the current flowing across a multibaker chain connected to two reservoirs. 

1 Introduction 

This article is dedicated to the memory of Professor Shuichi Tasaki (1958-2010) with whom a 

fruitful collaboration was in progress since 1993 until he unexpectedly passed away the 6th of 

June 2010. This collaboration started with a study of the nonequilibrium steady states and 

the relaxation modes of the multibaker map [1, 2, 3], which is an exactly solvable model of 

deterministic diffusion [4]. Its dynamics is chaotic as it is the case in the hard-disk Lorentz 

gas [5, 6]. In spite of this complexity and thanks to the piecewise-linear form of the map, the 

programme of nonequilibrium statistical mechanics can be carried out in full mathematical terms 

for the multibaker modeL This programme consists in solving the Liouvillian time evolution of 

statistical ensembles of particles or trajectories transported by the Hamiltonian dynamics of the 

map. 

In this framework, we could construct the nonequilibrium steady states and the relaxation 

modes of the multibaker as the eigenstates of the Liouvillian dynamics associated with the 

corresponding eigenvalues known as Pollicott-Ruelle resonances [7, 8, 9, 10]. These eigenstates 

turn out to be given by distributions that are singular with respect to Lebesgue's measure and 
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showing fractal-like features [1, 2, 3]. In this way, a new class of fractal objects were discovered, 

which play a fundamental role in nonequilibrium statistical mechanics. In particular, these 

distributions explicitly show how the time-reversal symmetry is broken at the statistical level 

of description. JVIoreover, these studies confirmed the central role of dynamical large-deviation 

properties that were previously considered in chaos theory [11] and thereafter introduced in 

nonequilibrium statistical mechanics [12, 13, 14, 15, 16, 17]. Recently, our collaboration with late 

Shuichi Tasaki concerned the quantum fluctuation theorem for the currents crossing nanodevices 

such as quantum dots or quantum coherent conductors, a topic which has recently known major 

developments [18, 19, 20, 21, 22, 23, 24]. 

The purpose of the present paper is to give an overview of the advances carried out in 

collaboration with late Professor Tasaki from the mathematical resolution of the Liouvillian 

dynamics of the multibaker map [1, 2, 3] until the quantum fluctuation theorem published 

in 2009 [20]. vVith the aim to establish the link between both contributions, we show that 

the multibaker map obeys a current fluctuation theorem holding under nonequilibrium steady 

conditions. 

The paper is organized as follows. The multibaker map is presented in Section 2. The 

mathematical construction of its nonequilibrium steady states and its relaxation modes is re

viewed in Sections 3 and 4. Section 5 is devoted to a discussion of the time-reversal symmetry 

breaking as revealed by the analysis. In Section 6, the current fluctuation theorem is obtained 

for the multibaker map, which establishes the link with recent work. Conclusions are drawn in 

Section 7. 

2 The multibaker map 

2.1 The infinite multibaker map 

The multibaker map can be considered as a simplification of the Poincare-Birkhoff map in the 

hard-disk Lorentz gas [5]. In Lorentz gases, independent particles move in a spatially-periodic 

potential formed by a lattice of immobile obstacles. Lorentz gases are classical models of electron 

transport in crystals where the obstacles are the ions. Since the pioneering work by Lorentz 

in 1905 [25], different types of obstacles have been envisaged such as hard disks or screened 

Coulomb potentials [26, 27]. For such obstacles, the classical dynamics is known to be chaotic 

(see Fig. 1). The continuous-time dynamics is reduced to a discrete-time map with a Poincare 

surface of section intersecting the trajectories of the flow. In the case of the hard-disk Lorentz 

gas, the natural surface of section corresponds to the place where the particles bounce on the 

disks. As in other billiards, Birkhoff coordinates can be introduced as the arc of perimeter of 

the wall and the sine of the angle between the outgoing velocity and the normal to the wall 

at the point where the particle bounces [5]. In this way, a mapping is defined which describes 
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the bouncing ball dynamics from disk to disk across the lattice. The resulting map is area

preserving and has the main features of hyperbolic maps. However, the Poincare-Birkhoff map 

of the hard-disk Lorentz gas is too complicated for the Liouvillian time evolution to be exactly 

solvable. 

Figure 1: Hard-disk Lorentz gas with two trajectories starting from the same position but 
velocities which differ by one part in a million. 

/-1 l /+1 

Figure 2: Schematic representation of the action of the multibaker map (2) on several cells of 
its phase space. 

In the multibaker map, the lattice structure is kept but the Poincar€-Birkhoff map is replaced 

by a piecewise-linear map similar to the one of the famous baker map [4]. Several versions can 

be considered but the simplest one is the dyadic multibaker map: 

where 

{ 

( l - 1, 2x, ~) , 
t/>(l,x,y) = ( y+l) l + 1, 2x- 1, - 2- , 
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with l E :Z., 0 ::::; x ::::; 1, 0 ::::; y ::::; 1, and t E :Z. [1, 2J. This map, which is schematically depicted 

in Fig. 2, has several features of a microscopic Hamiltonian dynamics such as the time-reversal 

symmetry and the property of satisfying Liouville's theorem. Indeed, the velocity inversion is 

performed by the involution 

(} (l, x, y) = (l, 1- y, 1- x) , (3) 

which has the effect of reversing the multibaker map: 

(4) 

On the other hand, the map (2) is area preserving because its Jacobian determinant is equal to 

unity so that Liouville's theorem is satisfied. Moreover, the dyadic multibaker map is chaotic 

with a positive Lyapunov exponent equal to A. = ln 2. 

2.2 The time evolution of statistical ensembles 

As in Lorentz gases, ensembles of independent particles can be transported by the multibaker 

map. The density p(l, x, y) of these particles follows the Liouvillian time evolution: 

Pt+l (l, x, y) = Ppt(l, x, y)' (5) 

ruled by the Frobenius-Perron operator: 

Pp(l,x,y) = p [4>- 1(l,x,y)] (6) 

If a single particle is transported, Pt(l, x, y) represents the probability density to find the particle 

in (l, x, y) at the timet. The number of particles in the zth cell at the time t is defined by 

N,(l) = 11 

dx 11 

dy Pt(l, x, y). (7) 

Since the dyadic multibaker map is expanding by a factor 2 along the x-axis, the density Pt(l, x, y) 

may be supposed to become quasi uniform after a few iterations: Pt ( l, x, y) = Pt ( l, y). As a 

consequence of this assumption, the numbers of particles (7) evolve in time according to 

(8) 

This linear equation can be solved by considering particular solutions of the form, lVt(l) rv 

exp(ikl + st) to get the dispersion relation: 

k2 
4 2 4 s = ln cos k = - 2 + 0 ( k ) = - V k + 0 ( k ) , (9) 

which shows the diffusive character of transport in the multibaker map with the diffusion coef

ficient: 
1 

V-- 2. (10) 

Accordingly, the multibaker map defined by Eq. (2) is a model of deterministic diffusion along 

the infinite lattice l E Z. 
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2.3 The multibaker map connected to reservoirs 

In several circumstances, diffusion is considered in finite samples connected at both ends to 

reservoirs at different densities, as illustrated in Fig. 3 for the Lorentz gas. A modification of 

the multibaker map has been proposed that describes a similar situation where the particles 

follow translational motions in the reservoirs [2] 

( 

( l - 1, 2x, ~) , 

lj> L ( l 
1 

X' y) = ( l + 1, 2x - 1, y! l) , 
(l-1,x,y), 
(l+1,x,y), 

O~x~!, 
~<x~1, 
O~x~!, 
~<x~1, 

+l~l~L+l, 

-1~l~L-1, 

l ~ 0 or L + 2 ~ l, 
l ~ -2 or L ~ l. 

(11) 

In this case, the diffusive motion takes place in the part of length L between both reservoirs 

(see Fig. 4). Therefore, the transport equation (8) holds only for 0 ~ l ~ L and boundary 

conditions should be taken at the reservoirs where the densities are kept constant: Nt( -1) = P

and Nt(L + 1) = P+ for all times t > 0. The stationary solution of the transport equation 

presents an interpolating linear profile of density in agreement with Fick's law of diffusion. 

x=-L/2 · x=+L/2 

L 

Figure 3: Slab of the hard-disk Lorentz gas in between two particle reservoirs. 
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Figure 4: Finite chain of the multibaker map connected to two particle reservoirs at l < 0 and 
L < l. 

2.4 The time evolution of cumulative functions 

The inconvenience of the transport equation ( 8) is that it relies on the assumption that the 

density is uniform along the x-axis and only provides a coarse-grained description of the kinetics. 

A complete description is nevertheless available in terms of the cumulative functions defined as 

Ft(l, x, y) = fox dx' loy dy' Pt(l, x', y'). (12) 

The advantage of the cumulative function over the density is that it is more regular and is still 

defined even if the density is no longer a function but a singular distribution, as it turns out to 

be the case in the long-time limit of Liouville's dynamics. 

The time evolution of the cumulative function can be deduced from the expression (2) of the 

multibaker map and the definition (6) of the Frobenius-Perron operator: 

{ 

Ft ( l + 1, ~, 2y) , 
Ft+ 1 ( l' X 1 y) = 

Ft ( l + 1) ~' 1) + Ft ( l - 1) X! 1 
' 2y - 1) - Ft (l - 1' ~) 2y - 1) ' ~<y:=s;l. 

(13) 

This equation was the starting point of the 1994 and 1995 papers with Shuichi Tasaki [1, 2]. As 

shown in the following sections, it allows the construction of the nonequilibrium steady states 

and relaxation modes of the multibaker map. 

2.5 Many-body probability measures 

Both aforementioned versions of the multibaker are infinite many-body systems because the 

dynamics takes place on infinitely many cells, l E Z, where infinitely many particles are trans

ported. These particles form a gas with a finite non-uniform density extending at arbitrarily 

large distances. A probability measure can be introduced as a Poisson suspension [28, 29]. 

Let B denotes any domain of the one-body phase space M = Z ® [0, 1] ® [0, 1]. The domain 

B may belong to either one or several cells of the chain. The number of particles in the domain 

B is given by the measure: 

v(B) = l dx dy p(l, x, y), (14) 
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in terms of the particle density p(l, x, y). The many-body phase space M 00 is the direct product 

of infinitely many copies of.the one-body phase space M. A subset of the many-body phase 

space, CB,n c M 00
, can be defined as a set composed of the configurations of all the particles 

in the system such that n particles are found in the domain B C M. 

The probability measure of the Poisson suspension corresponding to the measure v is defined 

as 
[v(B)t 

J-t(CB,n) = n! exp [-v(B)] , (15) 

which is the probability to find n particles randomly distributed according to a Poisson distri

bution of average particle number equal to v(B). For non-intersecting domains B1 and B2, the 

measure factorizes as 

(16) 

With these assumptions, we can verify that the probability to find n particles in a domain 

B = B 1 U B2 composed of two non-intersecting domains B1 and B2 respectively containing n1 

and n2 particles is again a Poisson distribution. Indeed, the numbers n1 and n2 are Poissonian 

random variables of respective averages v(B1) and v(B2). Since n = n1 + n2, the statistical 

independence (16) implies that 

n 

J-t(CB,n) = L J-t(CBl,nl n CB2,n-nl) 
n1=0 

(17) 

with v(B) = v(B1) + v(B2). Q.E.D. As a consequence, the measure J-l is normalized to unity 

and, therefore, defines a probability measure. 

If the measure vis invariant under the one-body dynamics t/>, the probability measure J-l of 

the Poisson suspension defines an invariant probability measure with respect to the many-body 

time evolution. 

3 The nonequilibrium steady states 

The remarkable progress carried out in the early nineties is that the solution of the Frobenius

Perron operator could be obtained at the level of the phase space [1, 2, 5, 30, 31]. 

In particular, the nonequilibrium steady state has been constructed in terms of the Takagi 

function, introduced in 1903 as an example of continuous but nondifferentiable function [32, 33]. 

This function has its origin in the mixing of the densities coming from the left and right reservoirs 

in Fig. 4. In the long-time limit, the mixing leads to a steady distribution. At almost every 

point in the phase space, the value of the density is either P+ or P-, depending on the reservoir 
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from which the trajectory is coming. However, the corresponding domains are intertwined on 

arbitarily fine scales. Indeed, the finite multibaker chain contains a fractal invariant set of 

trapped trajectories which cannot escape to infinity in the past or the future and where the 

dynamics is chaotic. The unstable manifolds of this set form the lines of discontinuities of the 

asymptotic density. Accordingly, the steady density presents discontinuities in the stable phase

space direction, but is smooth in the unstable direction [5, 31]. In the limit where the length L of 

the multibaker chain is arbitrarily large, the fractal invariant set becomes dense in phase space 

so that the lines of discontinuities are arbitrarily close to any phase-space point. Therefore, we 

should expect that the corresponding distribution becomes singular. The cumulative function 

(12) should be introduced in order to represent such a distribution. Indeed, the calculation of 

this function shows that it is composed of a singular term beside a smooth term describing the 

linear profile of density interpolating between both reservoirs: 

Foo(l, x, y) = Pl xy + (vp) xT(y), (18) 

where T(y) is the nondifferentiable continuous function of the singular part such that T(O) = 

T(1) = 0 [1, 2]. Since the number of particles in the zth cell is given by N00 (l) = F00 (l, 1, 1) 

and should obey the transport equation (8) with the boundary conditions JV00 (-1) = P- and 

N 00 (L + 1) = P+, the profile of density is indeed linear 

with the gradient 

in agreement with Fick's law. 

pz = (V p) ( l + 1) + P- , 

P+- P
Vp= L+2 ' 

(19) 

(20) 

On the other hand, the cumulative function (18) of the steady state obeys Eq. (13) so that 

the extra function should satisfy 

T(y) = { 

~ T(2y) + y, 
(21) 

~ T(2y- 1) + 1- y, ~ < y ~ 1, 

which defines the Takagi function [32, 33]. This funct1on, which is depicted in Fig. 5, is 

continuous without finite derivative everywhere. Indeed, its derivative obeys 

{ 

dT(2y) + 1 
dT dy ' 
-(y) = 

dy ~; (2y - 1) - 1 ' 
(22) 

Therefore, its derivative is given by the sum: 

dT -oo 

-(y)= LEt, 
dy t=-1 

(23) 
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Figure 5: ~1ultiples xT(y) of the Takagi function versus the variable y, representing the singular 
part of the cumulative function of the nonequilibrium steady state of the dyadic multibaker 
map. The color changes for different values of the variable x. 

with ct = ±1 whether the point y undergoes the jump l ---+ l ± 1 under the tth iteration of the 

map </J. Therefore, the sum (23) gives the reservoir from which the trajectory is coming in the 

remote past. However, such a sum does not converge for every sequence of ±1 so that the Takagi 

function has no finite derivative everywhere. Consequently, the density of the nonequilibrium 

steady state 
dT 

Poo(l,x,y) = 8x8yFoo(l,x,y) = pz + (vp) dy (y), 

is given by a singular distribution. The implications of this result are multiple. 

(24) 

First, it shows that the nonequilibrium steady states should not be supposed to be given by 

regular distributions if their construction is conceivable in the phase space of the microscopic dy

namics. The fact is that this construction has been carried out for Lorentz gases, which confirms 

the singular character of these stationary distributions (5, 31, 34]. A direct consequence is that 

the density of these distributions cannot be represented in terms of a function. Instead, these dis

tributions should be considered of Schwartz type in terms of an application from a set of smooth 

enough test functions {A(l,x,y)} onto real numbers, (Ap00 ) = 'Lzf dxdyA(l,x,y)p00 (l,x,y) 

[35, 36]. Taking the test functions, i.e. the observables, as the indicator functions of phase-space 

subsets such that A(l, x, y) = 1 if (l, x, y) E B and zero otherwise, this framework is nothing 

else than the usual coarse-graining procedure. In this regard, the singular character of the 

nonequilibrium steady states justifies coarse graining at the fundamental level. 

Secondly, it is possible to calculate the time evolution of a standard coarse-grained entropy 

until a steady state is reached. Remarkably, this calculation shows that the entropy production 
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has the form expected from macroscopic laws because of the singularity of nonequilibrium steady 

states [5, 29, 37). The generality of this result has been established for diffusion processes 

simulated by molecular dynamics [38]. The same calculation also shows that the diffusion 

coefficient is given by the Green-Kubo formula as expected. The novelty is that this latter 

appears as the statistical average of the flux of diffusive particles over the singular part of the 

nonequilibrium steady state. Indeed, this part is at the origin of the time integral J
0
-= v(rt) dt 

of the particle velocity back to its entrance from a reservoir, which precisely corresponds to the 

sum (23). Similar considerations apply to the other transport properties, as shown elsewhere 

[5, 30]. 

4 The relaxation modes of diffusion 

The multibaker map can also be solved for its diffusive modes of relaxation toward the ther

modynamic equilibrium state. These modes are periodic in space with wavenumber k and they 

decay exponentially in time with a damping rate -s. For the slowest modes, the corresponding 

distribution may be assumed to be smooth and uniform along the unstable x-direction so that 

their cumulative function can be taken of the following form: 

Ft(l, x, y) =est eikl x fk(y). (25) 

Inserting in Eq. (13), the function fk(Y) giving they-dependence should satisfy the recurrence 

equation [3, 5] 

{ 

~ eik-s fk(2y)' 

fk(Y) = 
~ eik-s + ~ e-ik-s fk(2y _ 1), 

(26) 

This recurrence equation poses an eigenvalue problem for the damping rate -s. Indeed, if 

the function is evaluated at y = 1 and y = 1/2, we get the condition that fk(1) = 1 and, 

as a consequence, the dispersion relation (9), showing the consistency of the approach. The 

recurrence equation (26) actually defines the so-called de Rham functions [39], which are known 

to be continuous but nondifferentiable for 0 < !kl < 7fj3 [3, 5]. Related results have been 

obtained by other methods (40, 41]. These functions are depicted in Fig. 6 for 0 ::; k < 0. 7. In 

the complex plane, they form fractal curves of Hausdorff dimension: 

ln2 V 2 4 
DH(k) = ln(2 cosk) = 1 + >: k + O(k ) ' (27) 

which establishes a relationship between the diffusion coefficient V = 1/2, the Lyapunov expo

nent A. = ln 2, and the fractality of the modes [ 42]. This result also holds for the Lorentz gases 

having a positive Lyapunov exponent [43]. 

For k = 0, we recover the smooth equilibrium state. In the long-wavelength limit k ---+ 0, 

the diffusive modes behave as quasi stationary states and, indeed, the Takagi function (21) is 
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lmf 

Figure 6: The diffusive modes of the multibaker map represented by their cumulative function 
depicted in the complex plane (Re fk, Im fk) versus the wavenumber k. 

recovered by taking the derivative of the de Rham function with respect to the wavenumber 

[1, 2, 5] 

T(y) = -i Okfk(y) I . 
k=O 

(28) 

Since the slowest modes of diffusion are those with a vanishing wavenumber, the approach 

to the thermodynamic equilibrium turns out to be controlled by the Takagi function. As a 

consequence, the entropy production during the relaxation toward equilibrium behaves similarly 

as in nonequilibrium steady states and is positive because of the nondifferentiability of the Takagi 

function. This result applies to general diffusion processes simulated by molecular dynamics (38]. 

These diffusive modes are precisely the eigensolutions of the Liouvillian Frobenius-Perron 

equation of statistical mechanics associated with eigenvalues given by the Van Hove dispersion 

relation of diffusion [5, 30]. They play the same role as hydrodynamic modes in fluids [44, 45]. 

These eigensolutions provide a spectral decomposition of the Frobenius-Perron operator, which 

is valid for the forward time evolution at positive times. After completing the analysis of the 

multibaker, similar constructions were obtained for Lorentz gases (5, 30]. 

5 The time-reversal symmetry and its breaking 

The multibaker map is a model for which the programme of nonequilibrium statistical mechanics 

can be carried out exactly and completely starting from the Liouvillian equation of motion. The 

nonequilibrium steady states and the relaxation modes associated with the dispersion relations 
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are exactly obtained, although approximations should be invoked to obtain these modes for 

dilute gases in kinetic theory [46, 47, 48, 49, 50]. In this regard, the analysis of the multibaker 

justifies the existence of these relaxation modes on a fundamental ground. Furthermore, the 

exact construction of these states or modes allows us to inquire about the origins of the time

reversal symmetry breaking. 

For the dynamics of the multibaker map, the time-reversal transformation (3) applies the 

unstable manifolds which are parallel to the x-axis onto the stable manifolds parallel to they

axis. Therefore, a distribution which is smooth along the unstable direction but singular in the 

stable one is transformed into another distribution which is smooth in the stable direction and 

singular in the unstable one. Since the stable and unstable directions are distinct in the phase 

space of physical observables, a distribution and its time reversal represent physically different 

situations, which can be distinguished by observation. 

In particular, the density (24) of the nonequilibrium steady states is different from its time 

reversal if the gradient of concentration is non vanishing:· 

out of equilibrium: 

at equilibrium: 

P=(l, x, y) #- P= [8(l, x, y)] 

P=(l,x,y) = P= [8(l,x,y)] 

if \lp=f-0; 

if Vp=O. 

(29) 

(30) 

At the thermodynamic equilibrium where the gradient vanishes, the density (24) is identical to 

its time reversal: P=(l,x,y) = P+ = P-· In this case, the time-reversal symmetry is recovered, 

which justifies the principle of detailed balancing at equilibrium. However, under nonequilibrium 

conditions P+ #- p_, the time-reversal symmetry is broken by the statistical distribution. There 

is here no contradiction with the time-reversal symmetry of the Liouvillian equation of motion 

because we know that the solutions of an equation may have a lower symmetry than the equation 

itself, which is a well-known phenomenon called spontaneous symmetry breaking in condensed

matter physics. We have here such a phenomenon for the discrete symmetry of time reversal 

[45]. 

A deeper understanding is reached by considering the relaxation modes. For the multibaker 

map, the complete spectral decomposition of the Frobenius-Perron operator has been constructed 

in terms of the Pollicott-Ruelle resonances sin) = ln cos k- n ln 2 with n = 0, 1, 2, 3, .... The time 

evolution of the density can be expressed as 

Pt(l, x, y) = J dk Ck eskt eikl \Vk(Y) + ... (31) 

where ck is a coefficient specified by the initial density, Sk = si0\ \Vk(Y) = 8yfk(y), and the dots 

denote typically faster contributions due to further Pollicott-Ruelle resonances with n > 0. Here 

also, the eigendistributions are smooth in the unstable direction but singular in the stable one. 

They are thus transformed into different distributions under the time-reversal operation (3). An 
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Figure 7: (a) Pollicott-Ruelle resonances and anti-resonances in the complex plane of the rate 
s = -'Y + iw. (b) Time decay of the mean value of an observable A toward its equilibrium 
value according to the group of time evolution and asymptotic expansions of the forward and 
backward semigroups valid for either positive or negative times. 

essential point is that the expansion (31) is obtained by analytic continuation of the evolution 

operator from real toward complex frequencies with a negative real part in order to pick up the 

contributions of the Pollicott-Ruelle resonances (see Fig. 7). In doing so, the expansion becomes 

limited to positive times, defining the forward semigroup. A similar analytic continuation could 

be carried out toward complex frequencies with a positive real part now to get the contributions 

of the anti-resonances. This other expansion would only be valid for negative time and would 

define the backward semigroup. The eigendistributions of the spectral decomposition of the 

backward semigroup are the time reversals of those of the forward semigroup, which are found 

here above. Clearly, the time evolution toward the past is stretching phase-space domains in 

the y-direction so that the corresponding eigendistributions should indeed be smooth in the 

y-direction but singular in the x-direction. 

Here, we have a phenomenon of time-reversal spontaneous symmetry breaking arising when 

the group of time evolution is replaced by the asymptotic expansions of either the forward or 

backward semigroups. The representation by the group of the time evolution uses a spectral 

decomposition in terms of the continuous spectrum of real frequencies at Res = 0. This represen

tation of the time evolution is valid for both positive and negative times but does not reveal the 

characteristic times, which are intrinsic to the dynamics. These latter ones are obtained by car

rying out analytic continuations leading to the asymptotic expansions of the semigroups, which 

are only valid on a half-axis of time and for which the time-reversal symmetry is spontaneously 

broken. This symmetry breaking is the feature of all the singular distributions describing the re

laxation modes and the nonequilibrium steady states. Since the singularity of these distributions 

is at the origin of the entropy production, a fundamental understanding of the thermodynamic 
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time asymmetry is here established in terms of a symmetry breaking phenomenon similar to 

other ones known in condensed-matter physics. 

6 The current fluctuation theorem 

Here, we consider the multibaker map (11) connected at its ends to two reservoirs of particles 

at constant densities P±. After transients, the system reaches a steady state described by an 

invariant probability measure which is the Poisson suspension (15)-(16) associated with the 

invariant particle density P=(l, x, y). 

l l+l 

Figure 8: Schematic representation of the mechanism generating the current (32) in the multi
baker map. 

Between any two cells l and l + 1 in the multibaker chain and at every time step, there is a 

fluctuating current from left to right, which is defined as 

(32) 

where n 1 is the random number of particles in the right-hand side of the zth cell and nl+l the 

particle number in the left-hand side of the (l + 1)th cell (see Fig. 8). 

Since the multi baker maps the right-hand side of the zth cell onto the ( l + 1) th cell and the 

left-hand side of the ( l + 1) th cell onto the zth cell, the difference between the particle numbers nz 

and nl+1 gives the instantaneous current at the timet. In the steady state, the average values 

of these numbers are equal to 

(nz) Pl 
2 ' 
Pl+l 

2 ' 

(33) 

(34) 

where pz is the particle density in the zth cell, which should be divided by two because the 

transported particles only occupy one half of each cell. Because of Eq. (19), the mean value of 

the current (32) thus obeys Pick's law, 

(35) 
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with the diffusion coefficient V = 1/2. 

Here, we are interested by the fluctuations of the current. The aforementioned numbers of 

particles are random variables of the following Poisson distributions: 

P(nz) 2_ (Pz)nz e-q-. 
nz! 2 ' 

(36) 

1 (Pl+l )nz+l _ PZ+l 
---- e2. 
nl+1 ! 2 

(37) 

Moreover, these random variables are statistically independent because they count the particles 

in disjoint phase-space domains for which Eq. (16) holds. Now, the problem is to deduce the 

probability distribution of the instantaneous current (32). For this purpose, we have the 

Theorem: If n and n' are two independent random variables of Poisson distributions with 

average values v = \n) and v' = (n'), their difference is distributed according to 

P( m = n - n') = e -(v+v') ( ~') m/
2 

Im ( 2Vz7z7) , 

where mE Z and Im(z) is the modified Bessel function defined by {51} 

For m 2:: 0, this theorem is proved as follows: 

00 

P( m = n - n') = L P( n = i + m) P( n' = i) 
i=O 

oo i+m ti 
e -(v+v') ~ v ~ 

~ (i+m)! i! 
t=O 

-(v+v') m Loo (vv')i e v 
i=O i! (i + m)! 

e -(v+v') ( ~') m/2 Im ( 2Vz7z7) 

where Eq. (39) is used with z = 2v;;i/. A similar calculation holds form< 0. Q.E.D. 

Consequently, the probability distribution of the instantaneous current (32) is given by 

P (Jzll+l = m) = e-(pz+Pz+d/2 (___!!i__)m/
2 

Im (viPlPl+l) , 
Pl+l 

formE Z. This distribution is normalized to unity and has the mean value (35). 

(38) 

(39) 

(40) 

(41) 

If we compare opposite fluctuations of the current, we obtain the remarkable property that 

where 

P ( Jlll+l = m) = (_!!!:_) m = eA1 m , 

P (Jlll+l = -m) Pl+l 

Pt Az=ln--
Pl+l 
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(43) 



represents the local thermodynamic affinity driving the diffusive current out of equilibrium. 

We notice that the local entropy production in the zth cell is given in units of Boltzmann's 

constant by 

(44) 

which is always non-negative in agreement with the second law of thermodynamics. I'v1oreover, 

in the small-gradient limit \7 p -t 0, the local thermodynamic affinity becomes proportional to 

the density gradient, Az -:::::::: -\7 pj pz, and we recover the expected macroscopic expression for the 

local thermodynamic entropy production: 

(45) 

In order to obtain the current fluctuation theorem, the instantaneous current (32) should be 

cumulated over t successive time steps, which defines the number of particles transported from 

left to right during the time interval t: 

t 

.~.~It= LJlll+l(r). (46) 
T=l 

In the steady state, the mean value of this quantity is given by 

(47) 

In phase space, the observable ( 46) can be expressed as the difference between two sums of 

numbers of particles occupying disjoint incoming domains of various sizes in the two reservoirs. 

According to the property ( 17), a sum of particle numbers in disjoint domains { Bi} is again 

a Poisson distribution with the average value v (UBi) = Li v(Bi)· Since the difference of two 

independent Poisson distributions is distributed according to Eq. (38), we finally obtain the 

current fl. uct uation theorem: p (Aft = m) - eA1 m t ( 48) 
P (J_Vft = -m) - ' 

with l E Z, mE Z, tEN, and the local thermodynamic affinity (43). 

The current fluctuation theorem is an exact result for the multibaker map in the sense 

that it holds not only at long positive times but also at every time steps. It characterizes the 

invariant probability measure of the steady state given by the Poisson suspension (15)-(16). 

Furthermore, it is proved directly from the microscopic reversible area-preserving deterministic 

dynamics without any approximation. 

7 Conclusions 

\Vith the invaluable contributions of Shuichi Tasaki, a complete and deep understanding of the 

multibaker map and its ergodic properties is available today. These properties also concern the 
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many other versions of this model. Indeed, multibaker models exist to describe diffusion not 

only in one spatial dimension, but also in two dimensions, in random media, and in the presence 

of reactions or external fields [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. This latter case has been 

considered for volume-preserving maps with an extra energy variable [53, 54] and an equivalence 

was found with non-area-preserving multibaker maps, in which entropy production is associated 

with phase-space contraction, an issue that has been debated [63]. Quantum versions of the 

multibaker map have also been proposed [64J. 

The multi baker map is one of the simplest models of transport by diffusion for which the pro

gramme of nonequilibrium statistical mechanics has been carried out in full mathematical rigor 

up to the decomposition of its Liouvillian dynamics into exponentially damped hydrodynamic 

modes [44, 45). The mixing dynamics of the multi baker map induces the singular character of 

the distributions describing the nonequilibrium steady states and the diffusive modes. Thanks 

to its simplicity, the multibaker map allows us to understand the origins of the time-reversal 

symmetry breaking and of the thermodynamic entropy production. Therefore, the study of the 

multibaker map has brought us insights into the ideas and techniques needed to treat more 

realistic systems [65]. In particular, the construction of the nonequilibrium steady states and 

diffusive modes has been extended to the Lorentz gases [34, 43]. Moreover, the singularity 

of the nonequilibrium steady states has been shown to be instrumental for the calculation of 

the diffusion entropy production in many-body systems simulated by molecular dynamics (38]. 

Furthermore, the transport property of viscosity has been studied along similar lines [66, 67]. 

The mathematical construction of the diffusive modes uses dynamical large-deviation prop

erties as it is also the case for the current fluctuation theorem [18, 68]. Here, this theorem is 

proved for the multibaker map, directly from the deterministic dynamics without any approx

imation, contrary to what is done if stochastic processes are invoked. An important point is 

that the current fluctuation theorem concerns the many-body system of non-interacting particles 

described by the Poisson suspension more than the ergodic properties of the multibaker map in 

its one-body phase space. The current fluctuation theorem characterizes the Poisson invariant 

probability measure of the many-body system in some equilibrium or nonequilibrium steady 

state. The current fluctuation theorem is the consequence of microreversibility and the breaking 

of the time-reversal symmetry by the Poisson invariant probability measure out of equilibrium. 

The proof of this theorem for the multibaker map establishes the link with our most recent work 

with Shuichi Tasaki on the fluctuation theorem for currents in open quantum systems(20]. In 

this work, we considered open systems connected to more than two reservoirs so that the cou

pling between multiple currents becomes possible. This work was carried out from March 2006 

until the completion of the detailed proof in June 2008 and published in April 2009. During 

that period, Shuichi Tasaki also thought to perform a C* -algebraic proof of this theorem. 
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In conclusion, Shuichi Tasaki is leaving a deep and inspiring legacy by his fundamental 

contributions to the mathematical theory of irreversibility and: more generally, to condensed 

matter theory. 
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