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Abstract 

Results concerning the statists of r-adic processes and their fractal properties are re­
viewed. The connection between singular eigenstates of the statistical evolution of such 
processes and popular fractal curves is emphasized. 

1 Introduction 

Among the many important scientific achievements of Shuichi Tasaki were his contributions to 

the statistical properties of piecewise Enear maps and the characterization of their eigenstates. 

In particular his work was key to understanding the role played by singular measures in the 

statistical evolution of chaotic maps and its connection to the mathematics of fractals (1, 2]. 

This field, which attracted much attention in the non-equilibrium statistical physics community 

in the mid-1990's [3, 4], had been popular among many Japanese mathematicians, in particular 

early in Tasaki's scientific career [5]. In this respect, it is perhaps not surprising that one 

of Tasaki's favorite examples of fractals, which helped understand how the non-equilibrium 

states of volume-preserving strongly chaotic systems acquire fractal properties (6], was actually 

introduced by Teiji Takagi [7], the founder of the school of modern mathematics in Japan, who, 

more than a century ago, had proposed it as a simple example of a continuous but nowhere 

differentiable function. 

It is the purpose of this article to review some of Tasaki's contributions to this field, and 

draw observations which aim to underline the similarities between the so-called hydrodynamic 

modes of diffusion of simple model systems and some popular fractals, which include the von 

Koch and Levry curves. 

1 In memory of our friend and colleague Shuichi Tasaki whose untimely death cut short a remarkable scientific 
career 

2 rdorfma.n@umd.edu, thomas.gilbert@ulb.ac. be 
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2 Singular measures of dyadic processes 

The statistical properties of coin tosses are full of mathematical wonders and Shuichi Tasaki 

was well aware of it. Thus assume a fair coin tossing game and a sequence {WI, ... , Wk} of k 

binary digits, Wi E {0, 1 }, i = 1, ... , k, where say the symbol 0 stands for heads and 1 for tails. 

The probability measure which assigns probability 1/2 to every symbol irrespective of which of 

heads or tails came at the previous toss is invariant under such a process, which in particular is 

to say that every set of k binary digits has the same measure 1/2k. No surprise there. 

Consider however an arbitrary number p, 0 < p < 1, and let P,p denote the probability 

measure which assigns measure p to heads and 1- p to tails. This measure is itself invariant 

under fair coin tossings [8). 

The reason is simply that the set { w1, ... , Wk} is the union of the two disjoint sets of length 

k+ 1, 

(1) 

Since P,p({O,wl, ... ,wk}) = PP,p({wb ... ,wk}) and P,p({1,wl, ... ,wk}) = (1-p)p,p({wl, ... ,wk}), 

we have that the probability measure of the left and right hand sides of equation (1) is the same, 

irrespective of the choice of the value p. Vile might say, in other words, that P,p is as good an 

invariant measure as the uniform measure p,1; 2 is. 

There is however an essential difference here, which is that p,1; 2 is the natural invariant 

measure for the fair coin tossings. For p #- 1/2, P,p is in fact a singular measure, which can 

be thought of as a singular Lebesgue function [9]. Using the isomorphism between fair coin 

tossings and the angle-doubling map, x 1------7 2x(mod 1), it is a simple exercise to identify P,p 

with the measure lifted on the corresponding cylinder sets of the unit interval, whose cumulant 

P,p([O, x]) is the unique function fp(x) satisfying 

f (x) _ { pfp(2x), 
P - (1- p)fp(2x- 1) + p, 

0:::; X< 1/2, 
1/2:::; X< 1. 

(2) 

Except for p = 1/2, for which f 1; 2 (x) = x, JP is strictly increasing and continuous, but has zero 

derivatives almost everywhere with respect to the Lebesgue measure [10]. A specific example is 

shown in figure 1 (a). 

Notice however that P,p is in fact the natural invariant measure of the biased coin tossing 

which gives probability p to heads and 1- p to tails. Its cumulant corresponds to a uniform 

measure, which can be identified as the solution of the more general functional equation 

{ 
f (q)(x) 

(q) X = p p q ' 
fp ( ) (1- )f(q) cx-q) + p p 1-q p, 

0:::::; X< q, 

q:::;x<l. 
(3) 

Setting q = p indeed yields JJP\x) = x. On the other hand, the function JJl-p), illustrated in 
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Figure 1: (a) Lebesgue's singular function /p, equation (2), and (b) f~l-p)' equation (3), both 
with p = 2/3. Here and below, unless otherwise stated, the curves are computed over 214 points. 

figure 1 (b), is of the Lebesgue singular type and arises as the cumulant of the natural invariant 

measure of a dissipative baker map, projected along the contracting direction [9]. 

3 Complex-valued measures of dyadic processes 

Though equation (2) is a functional equation characterizing a probability measure, it is not 

in itself restricted to real values of the parameter p. The uniqueness of its solutions is indeed 

warranted for every complex parameter p such that Jpl, 11- P! < 1 [11, 12]. In such cases the 

solutions of equation (2) are self-similar sets on the complex plane and it is a simple calculation 

to show that their Hausdorff dimension is the solution dH of the following equation [131, 

(4) 

A graphical representation of its solution is shown in figure 2. 

Note in particular that the parameter values p = 1/2(1 + ez'P), 0 ::::; <p < 21r, define a circle 

of complex parameters such that the dimension (4) is equal to dH = 2. Curves with parameters 

whose values lie inside that circle have Hausdorff dimension between 1 and 2. Curves with 

parameters which verify the conditions jpj < 1 and j1 - pj < 1, but which lie outside that circle 

have Hausdorff dimension 2 [12] 

As shown by Tasaki and collaborators [2], the functions /p with complex parameter 

ezk 1 
p(k) = 2 cosk = 2 (1 + ttank), (5) 
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Figure 2: Hausdorff dimension (4) of the curves JP defined through equation (2). 

with k a real number such that Jkj < 1r /3, occur as representations of the left eigenvectors of 

the Frobenius-Perron operator of an expanding piecewise linear map of the real line related to 

the angle-doubling map. 

The same curves also occur as special cases of hydrodynamic modes of diffusion, associated 

with multi-baker maps on a ring [14), where k is the associated wavenumber. The dynamics is 

defined according to 

( ) { 
( n - 1, 2x, ~), 

n, x, y ~----+ (n + 1, 2x- 1, Y!1 ), 
0:::; X< 1/2, 
1/2:::; X< 1, 

(6) 

where n = 0, ... , N - 1 and n ± 1 are understood to be taken modulo N. Given an initial 

distribution, the relaxation of statistical ensembles to the uniform equilibrium measure takes 

place exponentially fast at rate rv N-2 and is best characterized in terms of the cumulant 

measure 1-lt(n, (0, 1], [0, yJ) of phase points (n, x, iJ), with 0 ~ x < 1 and 0 :::; f) < y, after t 

iterations: 

f.-lt(n, [0, 1L [0, y]) = L ak cost(k)Fk(y)e~kn, 
k 

(7) 

where k = 21rmjN, m = 0, ... ,N- 1 are the wavenumbers, the coefficients ak are set by 

the initial distribution, and Fk are solutions of the system of equations (2) with the choice of 

parameter (5), Fk(x)- fp(k)(x), viz. 
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The dimension ( 4) of these curves can be computed explicitly [2]: 

k log2 
dH( ) = log(2\ cos k\) · 

(9) 

In particular, for k = 7r/4, we obtain a curve of Hausdorff dimension dH(7r/4) = 2 which 

covers positive areas of the plane and corresponds to the Levy dragon [15]. Another remarkable 

value of the parameter is k = 1r /6, for which we have the dimension dH(rr /6) = log 4/ log 3. 

These two curves are displayed in figure 3. 
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(a) Fractal curve with dimension log 4/log 3 (b) Levy dragon with dimension 2 

Figure 3: Specific examples of hydrodynamic modes for the dyadic process defined by the 
functional equations (8). 

In the context of hydrodynamic modes of diffusion [16}, the complex curves defined by 

equation (2) acquire a clear physical meaning, which comes about when the parameter kin (5) 

is small: lkl << 1. The Hausdorff dimension (9) then becomes [14] 

k2 
dH(k) = 1 + 

210
g

2 
+ O(k4

), (10) 

which provides a relation between the Hausdorff dimension of the hydrodynamic modes, the dif­

fusion coefficient of the process and the positive Lyapunov exponent of the underlying dynamics 

(6). Furthermore, considering the functional equation (8), we obtain the equivalent of a gradient 

expansion for Fk [17], 

(11) 

where T(x) is the Takagi function [7], which can be defined through the functional equation: 

T ( ) { x + ~ T ( 2x), 0 :; x < 1/2, 
X = 1- X+ ~T(2x- 1), 1/2:; X< 1. 

(12) 

See figure 4. 

The result (11) should be compared with that ofHata and Ya.maguti [18, 19], who recover the 

Takagi function as the derivative of the curves JP, equation (2), with respect to their parameter, 

T(x) = afp(x)jEJpjp=l/2· 
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Figure 4: The graph of the function Fk, equation (8), with k = 1/10 (a), approaches that of the 
Takagi function (12) (b). 

4 Levy, von Koch and Heighway curves 

The Levy dragon shown in figure 3(b) is but one example in a long list of popular fractal 

curves which are most often defined recursively through iterated function systems (20] or using 

£-systems [21]. The von Koch curve [22] and the Heighway dragon, popularized in Martin 

Gardner's Mathematical games [23], are two other similar examples. In analogy with equation 

(2), it is simple to identify linear contractions which generate these sets [24, 25]. 

The solutions of equation (2) with complex parameters produce a family of curves somewhat 

similar to the Levy dragon. Looking at the iterative construction of these solutions, we start 

from the initial line segment joining Fk(O) = 0 and Fk(1) = 1 and obtain Fk(1/2) =elk /(2 cos k). 

At the next iteration, we add the two points Fk(1/4) and Fk(3/4). The result on the complex 

plane is a collection of two isosceles triangles whose long edges correspond to the two smaller 

edges of the triangle formed by the three initial points Fk(O), Fk(1/2) and Fk(1). The next 

iteration produces four smaller isosceles triangles which are stacked upon the small edges of the 

two existing ones. See figure 5(a). 

A similar construction, which consists of stacking up the triangles alternatively upwards and 

downwards from one iteration to the next, as shown in figure 5(b), produces curves similar to 

the von Koch curve. They are most easily obtained as the self-similar sets associated with a 

linear contraction similar to equation (2), but that further involves complex conjugation: 

(x) _ { pg;(2x), 0:::; x < 1/2, 
9

P - (1- p)g;(2x- 1) + p, 1/2 ::; x < 1, 
(13) 

where* denotes the complex conjugation. Equations (2) and (13) share the same real solutions 

but have different sets of solutions for complex parameter values. Nonetheless they share the 

same Hausdorff dimension (4). As pointed out by de Rham [12], the choice p = 1/2(1 + z/../3) 
produces the von Koch curve. 
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Figure 5: Comparison between the first few steps of the iterative constructions of (a) the Levy 
curve and (b) the von Koch curve. 

Taking the parameter pas defined by equation (5), we write Gk(x) = gp(k)(x), for which we 

have the functional equation: 

0 ::; X < 1/2, 

1/2 ::; X < 1. 
(14) 

As illustrated in figure 6, the choice of parameter k = rr /6 corresponds to the von Koch curve. 

For k = rr /4 we obtain a Peano-like curve. 
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Figure 6: Specific examples of solutions of the functional equation (14) yield (a) the von Koch 
curve and (b) a Peano-type curve. 

As such, the functional equation (14) is different from equation (8) so its solutions do not 

correspond to hydrodynamic modes of the dyadic multi-baker map (6). It is however straight­

forward to see that they are the hydrodynamic modes associated with the four-adic map, 

l 
(n, 4x, ~), 
( n - 1, 4x - 1, Y1 1 

) , 

(n, x, y) ~----+ (n + 1, 4x- 2, Y!2), 
(n, 4x- 3, Y13

), 

0 S X< 1/4, 
1/4 S X< 1/2, 
1/2 S X< 3/4, 
3/4 S X< 1, 

(15) 

with wavenumbers halved. Note that the iterative construction of the von Koch curve using a 

four-adic process amounts to skipping every odd step in the dyadic-based iterative construction 
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shown in figure 5(b). The former is often preferred over the latter in the literature, see for 

instance [26], even though the dyadic representation based on equation (14) is indeed the most 

compact. 

The Heighway dragon and related curves can also be obtained through functional equa­

tions similar to equation (2). They are based upon iterative constructions which combine both 

upwards and downwards triangles, as shown in figure 7. 

(a) 

(b) 

Figure 7: First few steps of the iterative constructions of asymmetric curves similar to the the 
Levy and von Koch constructions of figure 5. 

The Heighway dragon is in fact a particular case of a hydrodynamic mode of a dyadic map 

similar to the multibaker map (6), where the angle-doubling map is replaced by the tent map 

x f-7 2x if 0:::; x < 1/2 and 2(1- x) if 1/2:::; x < 1, namely 

( ) { 
( n - 1, 1 - 2x, ~), 

n, x' y f-7 ( n + 1, 2x - 1, 1 - ~), 
0:::; X< 1/2, 
1/2:::; X< 1. 

(16) 

Note that the tent map here appears upside down along the expanding direction. This choice 

of combination of maps along the x and y coordinates is taken so the map has the property of 

being time reversal symmetric under the induction (n, x, y) f-7 (n, 1- y, 1- x), which is also the 

case of the multi-baker map (6). Another such map, very similar to equation (16), is 

( ) { 
( n - 1, 2x, 1 ;Y ) , 

n,x,y f-7 (n+1,2(1-x),Y!1 ), 

0:::; X< 1/2, 
1/2:::; X< 1. 

(17) 

Here the usual tent map acts along the expanding direction. For the sake of our argument 

however, we prefer using (16) since the tent map appears along the contracting direction under 

the time-evolution of phase-space densities. 

Using, for the evolution of statistical ensembles under (16), an expansion similar to equation 

(7), we identify the modes 

{ 

e•k ( ) 
p X = 2coskpk 2

X ' 
k( ) 1 - e-•k P (2(1 - x)) 

2cosk k ' 
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The value k = 1r j 4 yields the Heighway dragon, as shown in figure 8. The map (17) produces 

modes which can be obtained from equation (18) by a simple symmetry. 
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Figure 8: Examples of different solutions of equation (18) with (a) k = 7T /6 and (b) k = 1r /4. 
The latter is knwon as the Heighway dragon 

Finally, by analogy with equation (14), we obtain another set of associated fractals by com­

plex conjugating the function on the right-hand side of the functional equation, 

Q (x) = { 2~::kQk(2x), 
k 1 - e-•k Q* (2(1 - x)) 

2cosk k ' 

0 ~X< 1/2, 
1/2 ~X< 1. 

(19) 

Examples of solutions are shown in figure 9. Here again these curves can be identified as the 

hydrodynamic modes of a four-adic map. 
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Figure 9: Two different solutions of equation (19) with (a) k = 1rj6 and (b) k = Jr/4, which is 
another example of Peano-type curve. 
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5 Complex measures of r-adic processes 

The above considerations are not limited to dyadic processes. Consider for instance the iterated 

systems shown in figure 10 The functional equations whose solutions reproduce these familiar 

(a) 

{b) 

(c) 

Figure 10: These three examples of iterative constructions of fractal curves are based upon triadic 
processes which can be conveniently written under the form of functional equation systems (20)-
(22). 

curves are based upon triadic processes: 

u.{x) = { 

v.(x) = { 

Wk(x) = { 

0 :::; X < 1/3, 

1/3 :::; X < 2/3, 

2/3:::; X< 1, 

0 :::; X < 1/3, 

1/3 :::; X < 2/3, 

2/3 :::; X < 1, 

0 :::; X < 1/3, 

1/3 :::; X < 2/3, 

2/3 :::; X < 1, 

(20) 

(21) 

(22) 

Equation (20) defines the hydrodynamic modes of diffusion of the triadic multi-baker map (14]. 

Equations (21) and (22) correspond, on the other hand, to the hydrodynamic modes of nine-adic 

multi-baker maps associated with random walks with assigned probabilities 1/9 to jump by two 
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units to the left or right, 2/9 by a single unit, and 1/3 to remain put. Notice in particular that 

equation (21) produces the Sierpinski gasket [27] fork= 7r/3, as shown in figure 11. 

Re(U,) 

1T 
k= -

3 

OA 0.6 

Re(W,) 

Figure 11: Examples of different solutions of equations (a) (20), (b) (21), and (c) (22), with 
k = 1r /3, here computed over 39 points. 

Further examples of piecewise linear maps and their associated eigenstates can be found in 

[28]. 

6 Concluding remarks 

In [6], Tasaki and Gaspard showed that the Takagi function describes the non-equilibrium sta­

tionary state of a multi-baker map, and used its properties to show that this system obeys Fick's 

law, which provides an expression of the mass current as minus the product of the mass density 

gradient and diffusion coefficient. This result thus provided a derivation of a phenomenological 

law of thermodynamics in terms of the phase-space dynamics of the model, which subsequently 

lead Gaspard to identify the fractality of the non-equilibrium stationary states as the source of 

entropy production [29]. A recent survey of these results with further extensions can be found 

in (30]. 

In this paper we have presented some of these results in the more general context of fractal 

curves and self-similar sets defined by linear contractions, and emphasized their connections with 

the statistical properties of maps that generate the associated functional equations. Shuichi 

Tasaki contributed in important ways to our understanding the connection between singular 

functions and the statistical properties of r-adic maps. Vile are deeply saddened that we are not 

able to talk to Shuichi about the excursion into the world of fractals described here. We know 

that we would have learned still more about them, and benefited from his careful and clear 

explanations. 
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