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A few words of remembrance of Shuichi Tasaki by L. Accardi 

Our paths with Shuichi first met in the 1990's while I was living my three year teaching 

experience at Nagoya University. These first meetings developed into a tradition, per­

petuated for several years and leading to periodic meetings between us which took place 

cyclically in a few venues such as: the universities of vVaseda, Nagoya, Tohoku or Tokyo 

University of Science, Kyoto International Institute for Advanced Studies or RIJ\1S, in 

Japan; the Solvay Institute in Europe and the series of the Solvay and of the quantum 

probability conferences in various parts of the world. 

His early scientific education took place in the framework of Prigogine's group of which 

he later became one of the most appreciated representatives, led in those years by our 

common friend Joannis Antoniou who Prigogine had selected as his successor in his later 

years. This experience left a permanent track in his interests for irreversibility, in partic­

ular transport and non equilibrium phenomena, which accompanied him throughout his 

scientific carrier. 

Given this scientific horizon, it was more than natural that he developed an interest for 

the stochastic limit of quantum theory which in those years was asserting itself, through 

a large multiplicity of results and applications to different fields of physics, as the natural 

mathematical approach to the description of these phenomena. 

This community of interests led us to organize some conferences and workshops together 

(see the volume [5]) and the only occasion in which we wrote a joint paper came out 

very naturally from our scientific works and our discussions as follows. Tasaki became 

interested in the C* algebraic approach to nonequilibrium phenomena and obtained sev­

eral interesting and new results in the study of a single harmonic oscillator interacting 

with two chains of oscillators at different temperatures in the infinite volume limit regime 

[27]. Stimulated by his talk at the l\!1eijo \Vinter School, organized by Professor T. Hida 

in January 2003, Accardi, Imafuku and Lu studied, in the stochastic limit regime, the 

case of a single harmonic oscillator coupled to the continuous analogue of two chains of 

oscillators at different temperatures, ie. two free boson fields [4]. Also in this case it 
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was possible to compute several quantities of physical interest. However the formulas ob­

tained were quite different and a direct comparison seemed to be impossible also because 

in the C* algebraic approach case these formulas looked quite complicated. It became 

soon clear that the correct way to compare the two limits was to introduce, also in the C* 

algebraic approach case, a weak coupling parameter and, after the infinite volume limit, 

letting it tend to zero possibly with appropriate rescalings. The problem was to make 

this idea precise and this led to introduce, also in the C* algebraic approach, the notions 

of slow and fast degrees of freedom which had become familiar in the stochastic limit. To 

concretely realize this program took some time, but eventually it was possible to prove 

that, in the (appropriately rescaled) weak coupling limit, the results of the C* algebraic 

approach coincide with those of the stochastic limit approach [3]. 

Slightly later Accardi and Imafuku, pursuing the stochastic limit approach, introduced 

the notions of dynamical detailed balance, of local KIVIS condition, computed the adjoint 

of the non equilibrium generator in the stationary state and several other relations of 

interest [2]. 

These notions, their mutual relationships, their generalizations are the object of the 

present paper. 

The last letter I have from ST dates back to 1\1arch 5, 2005 and concerns the final touches 

to our joint paper. In the final part of this letter he writes to be very interested in these 

new notions and asks me to send him some material about them. I did, since I have 

always drawn great benefit and insight from discussions with him, but I never received 

any feed back. Only a few years later I was able to understand that around those years he 

should have begun a struggle quite different from the one scientists do in their attempts 

to understand aspects of nature. 
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Abstract 

We give a general definition of the local KMS condition and we prove its equivalence with a nonlinear 
Gibbs prescription. We discuss the irreversible (H, ,8)-KMS condition, its connections with the local KMS 
condition and we study the irreversible (H, ,8)-KMS condition for Markov generators of stochastic limit 
type. We introduce a definition of weighted detailed balance based on the notion of current decomposition 
and discuss invariant states with constant micro-currents. As an example, we construct a non-equilibrium 
steady state for a quantum spin chain coupled to two reservoirs at different temperatures and study its 
cycle dynamics and entropy production. 

1 Introduction 

1.1 Multiplicity of characterizations of equilibrium states 

The notion of equilibrium states of physical systems is sufficiently well understood in the sense that 
there exist several characterizations of this class of states which, although based on different ideas, when 
applicable to the same class of systems, define the same objects.· For discrete systems, i.e. with a pure point 
spectrum Hamiltonian H, the most explicit description of an equilibrium state at inverse temperature ,8 
is the Boltzmann-Gibbs prescription 

e-f3H 
p=--z (1) 

meant in the sense that the right hand side of (1) defines a density operator. The KMS condition (see 
section 2) is more general because it is not restricted to discrete systems. In addition to this there are 
various types of variational principles, applicable to different classes of systems, . . . . 
A further, more recently discovered, kind of characterization [8], [18] relates equilibrium states with 
Markov evolutions and was motivated by the Friedrichs-van Hove limit of open systems (t ~---+ t/ >..2 , 

>.. ---7 0). More precisely in the 1970's it was realized that, if a Markov semigroup 

is obtained in the limit of weak coupling of a discrete systems with Hamiltonian H with an environment 
(Boson field) in a state of thermal equilibrium at inverse temperature ,8, then under some rather general 
conditions on the interaction, the Gibbs state of the discrete system, at the same inverse temperature 
of the environment, is an invariant state for the reduced evolution (7t) and the pair {p := ef3H /Z, (7t)} 
satisfies the following two conditions: 
(i) The Markov semigroup (7t) has a p-adjoint (see Definition 4) which is a Markov semigroup. 
(ii) Denoting £; the generator of the p-adjoint semigroup of (7t), there exists a self-adjoint operator 
Ll. = Ll. * such that 

(2) 

Furthermore Ll. commutes with H. 
Motivated by this result and since in the classical case the above conditions, with Ll. = 0, characterize 
the detailed balance property for the pair {p, (7t)}, Kossakowski, Frigerio, Gorini, and Verri [18, 19] 
proposed to take conditions (i) and (ii) as definition of Quantum Detailed Balance (QDB) for the pair 
{p, (Jt)}. Following the pattern used in classical probability these authors did not mention the role of the 
Hamiltonian H in their definition of QDB, but they proved that equilibrium states of an environment can 
be characterized by the property of producing, in the weak coupling limit for a sufficiently large class of 
discrete Hamiltonians and of interactions, pairs {p, (7t)} which satisfy the QDB condition. 

1.2 Lack of characterization results for non-equilibrium steady states 

Non equilibrium, like nonlinearity is a term that covers an infinity of totally inequivalent situations. 
Therefore any attempt to characterize such a variety of behaviors in terms of a few qualitative properties 
would be naive and probably doomed to failure. 
A more realistic program is to look for some interesting candidates that, within the huge class stationary 
states for a given Hamiltonian, singles out some special sub-class of states with properties that are rich 
enough to go beyond the equilibrium situation, but concrete enough to allow explicit study and, in some 
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cases, explicit solutions. 
\Ve expect that the simplest classes of such states should be characterized in terms of properties that gen­
eralize the known characterizations of equilibrium states. Moreover we expect that, in analogy with the 
situation in the equilibrium case, different characterizations lead to the same, or at least strictly related, 
states. 
A huge literature exists on out of equilibrium phenomena, but up to recent times principles character­
izing non-trivial classes of non-equilibrium states, based on ideas comparable for generality to the KMS 
condition or to quantum detailed balance, do not seem to have emerged. 

1.3 The stochastic limit approach to non-equilibrium steady states 

The theory of open systems studies the interactions between the slow and the fast degrees of freedom of 
(typically infinite) dynamical systems. In many, but by far not all, concrete examples, an open system is 
realized by switching an interaction between a discrete quantum system and a quantum field. In these 
models, the slow degrees of freedom include all the observables of the discrete system, but also some slow 
observables of the field and this fact allows in particular to define the energy and quanta microcurrents, 
which play a crucial role in the study of non-equilibrium phenomena. In the following we only consider 
these kind of models. This separation between slow and fast scales is emphasized by the rescaling t........,. tj ...\2 , 

,.\--+ 0. 
The weak coupling and low density limit study the reduced (Markovian) dynamics of the slow degrees of 
freedom in the above mentioned limit (see [21, 9, 11] ), and the references therein. 
The stochastic limit extends this picture by proving that, in the above limit, the fast degrees of freedom 
become a quantum white noise, by constructing not only the reduced, but the full limit dynamics, proving 
its unitarity and deducing the white noise and stochastic differential equation satisfied by this dynamics. 
The reduced Markovian dynamics is obtained as a corollary through the quantum Feynman-Kac formula. 
Furthermore, while in the weak coupling or low density limit only vacuum or equilibrium states were 
considered, the stochastic limit technique can be performed starting from a general class of non-equilibrium 
states of the environment. 
In [2] these features were applied to the study of non-equilibrium phenomena as follows. Starting from a 
boson field with commutation relations [ak,al,J = 8(k- k') (k is the momentum variable), one considers 
the class of mean zero gauge invariant (hence stationary under the free field evolution) Gaussian states 
with covariance 

( T I ) 1 ( ') akak = ef3(w(k)) - 18 k - k (3) 

where w(k) ~ 0 is the energy density of the field and f3 : JR+ --+ JR+ is a general nonlinear function 
satisfying some regularity conditions (see Theorem 1). In general these are non-equilibrium states of the 
field. The equilibrium case (with chemical potential equal to zero) is obtained when f3 is a linear function 
,B(x) = /3x with /3 > 0. 

1.4 Non-equilibrium and time reversal: the stochastic limit approach 

In section 1.1 we discussed a deep relationship between the notions of equilibrium and detailed balance. 
On the other hand the term detailed balance is used in the physical literature as an equivalent formula­
tion of the property of reversibility introduced in the theory of Markov processes. In fact every classical 
Markov process has a canonically defined time reversed one and the reversibility of a classical Markov 
process amounts to be isomorphic to its time reversed process. Accardi and Mohari [7] proved that a 
similar picture can be constructed in the quantum case. 
However the physical notion of equilibrium has a meaning only when referred to a specific Hamiltonian 

, evolution, while the purely probabilistic notion of detailed balance does not involve any Hamiltonian 
evolution. \Vithout such a notion it is not possible to relate in a canonical way a Markov semigroup to a 
Gibbs state and one has to fall back to ad hoc prescriptions e.g. that the Gibbs state is invariant under 
the Markov semigroup. 
The stochastic limit provides an ideal ground to overcome this impasse because it produces Markov pro­
cesses that are canonically associated with Hamiltonian evolutions. Moreover, since the stochastic limit 
can be performed forward and backward in time, it also provides a natural tool to compare the physical 
and the probabilistic time reversals. More precisely: performing the stochastic limit in the forward and 

-321-



backward directions of time one obtains two quantum Markov processes which, by construction, are one 
the time reversed of the other. A natural question is therefore how this duality is reflected by the structure 
of the generators of the associated semigroups and their invariant states. 

This issue was considered in [2] for a generic Hamiltonian H (see Theorem 7.3) with the additional 
assumption that the susceptibility coefficients are all different from zero and led to the following conclu­
sions: 
- The invariant state (unique under the above assumptions) is common for the two semigroups (forward 
and backward) and has the form 

where Z is a normalization factor. 

e-f3(H)H 
p= z 

- If p is the common invariant state, the backward generator is the p-adjoint of the forward one. 

(4) 

-In the non equilibrium case the Kossakowski, Frigerio, Gorini, Verri quantum detailed balance condition 
(2) must be modified by the addition of a current operator Tip: 

£ - £; = 2i(.6. · ] - IIP (5) 

The relation (5) was called in [2] Dynamical Detailed Balance (see equations (102), (126), (127) in [2]). 
The possibility to consider, in the stochastic limit, the Heisenberg evolution also of some field degrees of 
freedom, allowed to deduce a natural interpretation of the operator Tip in terms of micro-currents, due 
to flows of quanta and of energy between the field and the discrete system. 
For this reason it is reasonable to call the operator IIp the current operator. 
Condition ( 4) is clearly a non-linear generalization of the Gibbs (KMS) condition. Notice that the function 
{3, defining the stationary state (4) of the discrete system, is the same one defining the non-equilibrium 
state of the field. Thus condition ( 4) is a non-equilibrium generalization of the situation that was dis­
cussed in section 1.1: this is the similarity principle in the stochastic limit of quantum theory. In [2] it 
was proved that condition (4) is equivalent to a local KMS condition (see section 2 below). 

1.5 Results of the present paper 

We have seen that, from the stochastic limit approach to non equilibrium phenomena three general princi­
ples characterizing, a priori different, classes of non equilibrium states emerged: the local KMS condition, 
the irreversible KMS condition, the dynamical detailed balance condition. The study of the mutual rela­
tionships among these conditions begun in [2] and it was proved that, for a very special class of Markov 
semigroups- the generic ones (see section 7.3), they are equivalent. 
However many open problems were left open in [2]: the extension of these results to Markov semigroups 
of stochastic limit type (see section 7) but non generic, the possibility to include Markov semigroups not 
of stochastic limit type; the connections with previous approaches to non equilibrium phenomena. These 
problems were considered by Fagnola and Umanita in the papers [15, 16, 17] and led to the introduction 
of some notions, such as privileged representation of a Markov generator with respect to a state, which 
plays a crucial role in the present paper. 

The content of the present paper is the following. In section 2 we formulate a general definition of the 
local KMS condition and we prove its equivalence with the nonlinear Gibbs prescription (4). In section 3 
we discuss the irreversible ( H, ,6)-KMS condition and its connections with the local KMS condition. In 
section 4 we study how the irreversible (H, {3)-KMS condition for a Markov generator £ is related to a 
weaker property enjoyed by all Markov generators of stochastic limit type (i.e. the property of mapping 
the commutant of H into itself). 
After recalling, in section 5, some known facts about the adjoint of a Markov generator with respect to 
a state, in section 6, we generalize the notion of dynamical detailed balance (DDB) by introducing the 
definition of weighted detailed balance (WDB) for general (bounded) Markov generators, which allows to 
get rid of the restriction, implicitly used in [2], to Markov generators of stochastic limit type. In section 
7 we extend the result of [2] showing that all Markov generators of stochastic limit type with respect to 
an Hamiltonian H satisfy a weighted detailed balance condition. 
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In section 8 we establish a connection between WDB and the cycle description of Markov generators used 
in the Qian-Kalpazidou approach and we apply this connection, in section 8.1, to discuss invariant states 
with constant micro-currents. In section 9 we construct an example of a non-equilibrium steady state for 
a quantum spin chain coupled to two reservoirs at different temperatures, and for this model discuss cycle 
dynamics and entropy production (10). 
Finally Appendix I and Appendix II (resp. sections 11 and 12) recall some standard notions and results 
of the stochastic limit frequently used in the present paper. 

2 The local KMS condition 

We denote B(H) the von Neumann algebra of all bounded operator on a separable Hilbert space Hand 
Tr(1t) the corresponding space of trace class operators. In the following we will be mostly concerned 
with bounded generators, but we try to state the main definitions and problems so that the extension to 
unbounded ones becomes as transparent as possible. 

Definition 1. Let be g·iven a von Neumann algebra A acting on a Hilbert space 1t, a self-adjoint operator 
H affiliated with A and a Borel function 

Denote 
Ut: A 3 x---+ ut(x) := eitHxe-itH =: x(t) E A (6) 

the 1-parameter automorphism group of A generated by H (Heisenberg evolution). A normal state r.p on 
A is said to satisfy the local KA1S condition with respect to the function {3 and the Heisenberg dynamics 
(6) (simply the (H, {3)-KMS condition, or the local Kk!S condition, if no confusion is possible), ij, for 
each x,y E A: 
(i) The map 

IR + i{3(spec(H)) 3 t + i[3()..) r--+ r.p(xy(t + i{J(A))) 

is well defined by analytic continuation of the map t E IR r--+ r.p( xy( t)). 
(ii) Denoting EH( · ) the spectral measure of H and introducing the complex valued measure 

for each t E IR the integral 

exists. 
(iii) In the notations (6},, (9) for all t E IR the following identity holds: 

r.p (xy(t + i[3(H))) = r.p (y(t)x) 

(7) 

(8) 

(9) 

(10) 

Remark. If His bounded and {3 is a locally bounded function (bounded on bounded sets), then the 
operator exp([J(H)H) is bounded and for all x E A and t E IR one has: 

y(t + i,B(H)) ei(t+if3(H))H xe-i(t+if3(H))H = e-f3(H)H eitH xe-itH ef3(H)H 

e-(3(H)H x(t)ei3(H)H. (11) 

In the general case the operator exp(,B(H)H) is well defined by the spectral theorem and affiliated with 
A. Moreover both linear multiplicative maps on 8(11) 

B(1t) 3 x ~---> e-f3(H))H xef3(H))H B(H) 3 x ~---> ef3(H))H xe-f3(H))H (12) 

can be shown to preserve the trace on B(H) (and also on A, if A is semi-finite). Therefore the maps (12) 
are densely defined on B(1t) and, in the following, whenever these maps will be used, it will always be 

-323-



understood that their arguments are in their domains. 
vVith these notations the local KMS condition (10) can be re-written in the more intuitive form: 

tp ( xe-i3(H)H y(t)ef3(H)H) = tp (y(t)x) ; \fx, y E B(H) , \It E 1R (13) 

Differentiating (13) at t = 0 one finds 

(14) 

where 
i5(y) := i[H1 y] y E B(H) n Domain(i[H, · ]) 

is the infinitesimal generator of the Heisenberg dynamics. 
The identity (14) gives the infinitesimal form of the local KMS condition. 

Let H = H* E B(1t) be a positive self-adjoint operator (Hamiltonian) with discrete spectral decom­
position 

H = L EP£ = L EmPm (15) 
cESpec(H) mEN 

and let (3: IR+ -----+ IR+ be a Borel function such that e-.B(H)H E Tr(1t). For a density operator p E Tr(H) 
with corresponding normal state on B(1t) 

p( · ) := Tr (p( · ) ) , (16) 

one can define p(xy(t + i,B(H))) by means of (9). Here the spectral resolution of His atomic, hence the 
integral is reduced to a double series. 

Theorem 1. The following are equivalent: 

(i) p satisfies the local (H, (3)-KMS' condition 

p (xy(t + i(3(H))) = p (y(t)x), \fx, y E B(1t) , Vt E IR (17) 

(ii) e-f3(H)H is trace class and 

Z -1 -f3(H)H 
P = Pi3J-I := f3 e · , (18) 

Proof. (i) =} {ii). We observed (see (13) and the remark before it) that (17) can be more explicitly 
written in the form: 

tr(pxe-f3(H)Hy(t)ef3(H)H) =tr(py(t)x); \fx,yEB(1t), VtEIR 

Putting t = 0 and using the cyclicity of the trace we find 

tr (xe-f3(H)Hyef3(H)H p) = tr (xpy) 

Since x E B(H) is arbitrary, this is equivalent to 

Vx, y E B(1t) 

e-(3(H)H yef3(H)H p = py, 

which holds if and only if 

yef3(H)H p = ef3(H)H py ; \fy E B(1t), 

and this implies that, for some scalar A (# 0 because tr(p) = 1), one has: 

ef3(H)H p = .\1 
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In particular pis invertible and the condition tr(p) = 1 implies (18). 
Thus condition (ii) is necessary for the validity of (i). 
Let us prove that it is also sufficient, i.e. that (ii) ::::? (i}. 
This follows because the identity (17), given (13) and (18), can be rewritten in the form: 

p(xy(t + i,B(H))) = tr (pxe-f'(H)Hy(t)ef'(H)H) 

= z{J-1tr (xe-{J(H)Hy(t)) = tr(py(t)x) = p(y(t)x) 

Remark. 

(23) 

0 

(i) Notice that when {J(H) = {3 (constant), the state (18) is the usual Gibbs state at inverse temperature 
{3. 

(ii) Our condition that {3: JR.+ ____,.JR.+ excludes the case that some value of (3 could be +oo. This means 
that every state of the form (18) is faithful. We will see that some equivalent formulations of the 
KMS condition are meaningful also for non faithful states. However in the present paper we will 
restrict or attention to faithful states. 

(iii) Since H ~ 0 and adding a constant to H does not change the dynamics, one can suppose that 
H > 0, i.e. that H is invertible. With this convention, if p is any invertible density operator which 
is a function of the Hamiltonian then, for some function 

F: JR+- JR.+ 

P = z-le-F(H) = z-le- FW) H 

So that, defining (3(H) := F(H)H-1 p has the form (18). Thus the local KMS condition distin­
guishes, among the faithful invariant states of a dynamics, those which are functions ofthe dynamics, 
. . {H}" 1.e. m . 

3 The irreversible (H, ;J)-KMS condition 

In the following, by a Markov semigroup (resp. Markov generator) we mean a weak* -continuous semi­
group (resp. generator) of completely positive (resp. conditionally completely positive), normal, identity 
preserving maps on B(1i). We will freely use the convention introduced in the remark after Definition 1. 

In the present section we introduce an irreversible generalization of the local KMS condition, relating 
a Markov semigroup with a state (see the identity (41) of [2]). \Ve prove that, under general additional 
conditions on the Markov generator the two conditions characterize the same family of states. 

We start by the following proposition motivating our definition of irreversible (H, {3)-KMS condition. 

Proposition 1. Suppose that the Hamiltonian H given by (15) is non degenerate, namely eigenvectors En 

are distinct and their eigenspaces are one-dimensional, then the infinitesimal local (H, (3)-KMS condition 
(14) is equivalent to the local (H, (3)-KMS condition (13). 

Proof. Let \em) and \tn/ be the eigenvalues corresponding to the eigenvectors Em and Em The rank-one 
operator \Em) (En I satisfies 
8(\Em)(En\) = i(Em- En)\Em)(En\· It follows that the range of the map D contains all rank-one operators 
\Em)(En\ with n =/= m. 
By the arbitrarity of x E B(1t), the infinitesimal local (H, (J)-KMS condition (14) yields as in the proof 
of Theorem 1 (formula (20)) -

\tm,)(En\ ef'(H)H p = ef'(H)H p ltm)(Enl· 

It follows that ef'(H)H PEm = ef'(H)H PEn for all n =/= m, namely ef'(H)H p is a multiple of the identity 
operator and the conclusion follows as in the proof of Theorem 1. 0 

We now introduce the irreversible KMS condition in infinitesimal form. 
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Definition 2. Let .C be a lVfarkov generator, p a state on B(1t), and (H, (3) as in section {2). The pair 

(p, .C) is said to satisfy the infinitesimal form of the irreversible (H, (3)-Kll!IS condition 

tr(pxe-f3(H)H .C(y)el3(H)H) = tr(p.C(y)x) 

for all x E B(1t) andy E Domain(£) for which the left hand side of {24) is well defined. 

Remark. In the notation (16), (24) becomes 

p ( xe-f3(H)H .C(y)ef1(H)H)) = p (.C(y)x) 

(24) 

(25) 

Comparing this with (14) we see that (24) (or (25)) is a natural irreversible generalization of the infinites­

imal form of the local KMS condition which is equivalent to the local KMS condition in generic cases 
described in Proposition 1. Denoting 

the Markov semigroup generated by .C and with the notation 

y(t) := Tt(y) y E B(1t) (26) 

vVith this notations the integral form of condition (24), called in the following the irreversible (H, /3)-KMS 

condition for the pair (p, Tt) ), is: 

p ( xe-f3(H)H y(t)ef3(H)H) = j5 (y(t)x) t ~ 0 , V x, y E B( 1t) (27) 

which is clearly a generalization, to irreversible evolutions, of the local KMS condition in its formulation 

(13). 
Taking derivative at t = 0 shows that (27) implies (24). 

Remark. Condition (27) with t = 0, implies that the state p has the form p = z-le-l3(H)H. This is an 

immediate consequence of the proof of (i) =? (ii) in Theorem 1. Hence, by replacing p = z-le-f3(H)H 

in the right-hand side of (27), we get tr (z- 1e-f3(H)Hxe-B(H)Hy(t)ef3(H)H) = tr (z- 1xe-f3(H)Hy(t)) = 

(py(t)x), t ~ 0 Vx, y E B(1t). Therefore (27) does not impose any condition on the pair (p, Tt) fort> 0. 

As a consequence the irreversible (H, (3)-KMS condition, introduced in infinitesimal form in Definition 2, 

is not equivalent to (27). 

4 Markov generators associated with a given Hamiltonian 

The irreversible (H, (3)-KMS condition, in infinitesimal form of Definition 2, implies a strong connection 

of the Markov semigroup (Tt) (and of its generator) with H: it must be in some sense associated with H. 

The stochastic limit of quantum theory (in absence of external forces) gives rise to such a class of Markov 

semigroups: they have the property to leave invariant the commutant algebra of an Hamiltonian operator 

H (which in the stochastic limit is interpreted as the Hamiltonian of the small system coupled to the 

environment). 
Recall that the commutant algebra { H}' of a self-adjoint operator H is, by definition, the commutant of 

the (abelian) von Neumann algebra generated by the spectral projections of H. 
In fact the property of leaving { H}' invariant is a consequence of a very detailed structure of the above 

mentioned class of Markov semigroups which implies several other properties and which will be described 

in section 12 below. In the present section we concentrate our analysis on the connections between this 

property and the irreversible (H, (3)-KMS condition. 
In the following, operators commuting with a self-adjoint operator H will be called H-diagonal (simply 

diagonal if no confusion is possible). 

Definition 3. Let H be a self-adjoint operator. A Markov semigroup (Tt) with generator £ is called 

associated to H if: 
Tt ({H}') ~ {H}' (28) 

or, in infinitesimal form: 
.C (Domain(£) n {H}') ~ {H}' (29) 
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We now fix the Hamiltonian (15). Since it has discrete spectrum the map 

B(H) 3 X f-+ Eo(x) := L PnXPn 
nEN 

is a normal Umegaki conditional expectation (completely positive norm one projection) onto the commu­
tant of H, i.e. the diagonal algebra. Therefore: 

{H}'={xEB(H): [x,H]=O}={xEB(H): E 0 (x)=x} 

The elements of the operator space 

B(H)off := {x- Eo(x) : x E B(H)} = {x E B(H) Eo(x) = 0} 

= {x E B(H) X= L PmXPn} 

will be called the off-diagonal space. 
A Markov generator £ is associated with H if and only if: 

£ o Eo = E0 o £ = Eo o £ o Eo 

and one easily verifies that this is equivalent to say that 

x E Domain(£){::} E 0 (x) , x- E0 (x) E Domain(£) 

and 
£(Domain(£) n B(H)af f) s:;; B(H)aff 

Lemma 1. Let H and ,6 be as in Theorem ( 1) and suppose that: 
{i) £ be a Markov generator satisfying {32}. 
(ii) p is a Junction of H. 

(30) 

(31) 

(32) 

(33) 

Then, if either x or y are diagonal, the identity (24) (infinitesimal form of the irreversible (H, (3)-KMS 
condition) holds for any choice of the function (3. 

Proof. If y E {H}', (32) implies that also £(y) E {H}'. Therefore, taking the traspose in a base 
diagonalising H, 

tr(pxe-f3(H)H £(y)el3(H)H) = tr(pef3(H)H C(y)e-f3{H)Hx) = tr(p£(y)x) 

Since pis a function of Hand £(y) E {H}' we conclude that: 

tr(pef3(H)H £(y )e -f3(H)H x) = tr( £(y) px) = tr(px£(y)) 

which is (24). 
If x E {H}', since pis a function of H, we have: 

tr(pefJ(H)H £(y)e-f3(H)Hx) = tr(pef3(H)Hx£(y)e-f3(H)H) = tr(px£(y)) 

which is again (24). 
Remark. Notice that the above proof of Lemma 1 cannot be applied in general if, instead of assuming 
that p is a function of H, one only assumes that p E { H}'. 

Lemma 2. In the assumptions of Lemma 1, the identity (24) holds for any choice of the function (3 
whenever x and y are in the off-diagonal space. 

Proof. Suppose that x,y E B(H)aff· Then 

tr(pef3(H)H £(y)e-f3(H)Hx) = L L tr(pe(J(H)H Pm£(y)PnPhe-f3(H)HxPk) 

m#nh#k 

L L tr(pe(J(H)H Pm£(y)Pne-f3(H)H xPk) 

L L L tr(pef3(H)H Pm£(y)Pne-f3(H)H xPk) 
n mf-nk=/=n 

-327-



Since p is a function of H this is equal to 

= L tr(pef3(H)H Pk.C(y)Pne-f3(H)H x) 

n¥k 

Since y, hence .C(y), is off-diagonal, this is equal to 

tr(pef3(H)H .C(y)e-f3(H)H x) 

and the identity (24) becomes equivalent to: 

tr(pef3(H)H .C(y)e-f3(H)H x) = tr(ef3(H)H p.C(y)e-!3(H)Hx) = tr(p.C(y)x) 

where the first identity in (34) holds because pis a function of H. 
Now notice that, if z E { H}', then 

tr(ef3(H)H p.C(y)e-f3(H)H z) = tr(ef3(H)H p.C(y)ze-f3(H)H) = tr(p.C(y)z) 

Therefore, for any z E { H}', (34) is equivalent to 

tr(e-B(H)H p.C(y)e-f3(H)H (x + z)) = tr(p.C(y)(x + z)) 

(34) 

(35) 

But, since x is arbitrary off-diagonal and z is arbitrary diagonal, x + z is arbitrary in B(1t). Therefore 
(35) is equivalent to: 

ef3(H)H p£(y)e-{3(H)H = p£(y) 

for every off-diagonal y. But, under this condition, it is clear that the identity (34), and therefore (24), is 
satisfied. This proves the statement. 

Theorem 2. Let H and f3 be as in Theorem (1) and let be given: 
(i) a Markov generator£ associated with H, i.e. satisfying (32}, 
(ii) a density operator p which is a function of H. 
Then (24) (infinitesimal form of the (H, {3)-DDB condition} holds for any choice of the function {3. 

Remark. 

(i) It should be emphasized that the above theorem does not require the invertibility of p: any function 
of the Hamiltonian H would do. 

(ii) Since any element of B(1i) can be written in a unique way as a sum of a diagonal and an off diagonal 
part, Lemma (1) allows to reduce the proof of (24) to the case in which both x and y are in the 
off-diagonal space and, in this case the validity of (24) is guaranteed by Lemma 2. 

(iii) Theorem 2 says that, if£ is a Markov generator associated with H, then for any density operator 
p, which is a function of H i.e. such that p E { H}", the pair (p, £) satisfies the infinitesimal form 
of the irreversible (H, {3)-KMS condition. It is therefore natural to ask oneself if, under the same 
condition on £, there exist other density operators with the same property. 

The following theorem answers this question. 

Theorem 3. Let H, f3 be as in Theorem 2 and let p be a state on B(1i) and£ a Markov generator (not 
necessarily associated with H). 
Then the pair (p, £) satisfies the infinitesimal form {24}, of the irreversible (H, i3) -KMS condition, if and 
only if: 

ef3(H)H p E {Range(£)}' (36) 
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Proof. Since the pair (p, £) satisfies the infinitesimal form (24), one has for all x, y E B('it): 

tr(ef1(H)H pxe-!3(H)H £(y)) = tr(p£(y)x) 

if and only if 
tr(e-f3(H)H £(y)ef1(H)H px) = tr(p£(y)x). 

Since x E B(1t) is arbitrary, this is equivalent to: 

e-f1(H)H £(y)ef3(H)H p = p£(y) if and only if £(y)ef3(H)H p = ef3(H)H p£(y) 

Since y E B('it) is arbitrary, this is equivalent to (36). 

Corollary 1. If the Markov generator£ satisfies (24) and the commutant of the range of£ is trivial, 
i.e. 

{Range(£)}' = <C • 1 (37) 

then p has the form (18). 

Proof. The thesis follows because (36) implies that ef3(H)H p is a multiple of the identity and we have 
seen that this implies that p has the form (18). . 

5 Time reversed and adjoints of a Markov generator 

The theory of stochastic limit allows us to associate in a canonical way to a system with free Hamilto­
nian H, interacting with an environment, two Markov processes: the forward and the backward process, 
obtained by taking the stochastic limit respectively in the forward and backward time direction. 
Like all Markov processes also these ones are canonically associated to Markov semigroups, the forward 
and the backward (or time reversed) semigroup, whose structure depends not only on H but also on the 
free Hamiltonian of the environment, on the interaction and on the initial state of the environment. The 
generators of the forward and the backward semigroup are related by a kind of duality relation intro­
duced in [2] and called dynamical detailed balance condition. If the initial state of the environment is an 
equilibrium one, this reduces to Kossakowski, Frigerio, Gorini, Verri detailed balance. 

In the following sections we will analyze the connections between the above mentioned duality and 
some known operator-theoretical duality notions between Markov semigroups or their generators. For 
this reason, in the present section, we recall some of these duality notions and their properties. 

If£ : V ~ B('it) -+ B(1t) is any linear operator, with a dense domain V, the trace dual of£ is by 
definition the linear operator£* : V* <;;;: Tr('it)-+ 'fr('it), with domain V*, defined by the relation 

wE V*, X E V. (38) 

A density operator p E V* is called £-stationary if 

(39) 

For Markov generators the following notions of duality with respect to a fixed state pis often used. 

Definition 4. Given a densely defined linear operator <P on Dom( <P) ~ B('it) and a normal state p on 
!3(1t), the linear operator ( <P;, Dom( <P;)) is the adjoint of ifJ with respect to the scalar product induced by 
p on B(1t), i.e. 

(x, y)P =: tr (px*y) x, y E B(1t) 

More explicitly, the pair ( <P;, Dam( <P;)), where Dom( <P;) is 

{x E B(H) : 3z E B(H), vy E Dam(<P), tr(pzy) = tr(pxifJ(y)} 

and 
tr (p<P;(x)y) = tr (pxifJ(y)), v y E Dom(ifl), 

is called the p-adjoint of ifJ and we denote it simply by <P;. 
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Remark. 

(i) Due to the non-commutativity, there are other choices for a scalar product on B('H) induced by p. 
In fact for every real parameter s E [0, 1) one can define a s-scalar product by means of (x, Y)s = 
tr(p1

-
8 xp8 y). Fagnola and Umanita have shown that, concerning detailed balance, there are two 

prototype cases: s = 0, (that we consider in this work) and s = 1/2, see [16, 17]. 

(ii) If£, is a Markov generator written in the standard GKSL form: 

(42) 

and p is invertible, then the formal expression for c; is 

From this it is clear that, even if£, is Markov generator, in general its p-adjoint does not need to 
be densely defined or to map the bounded operators into themselves. Furthermore, even if either of 
these properties holds, in general it will not be a Markov generator. 

(iii) Putting x = 1 in ( 41) one finds that 

If Dom(£;) is dense, this is equivalent to say that p E Dom((£;)*) and (.c;)*(p) = 0. In any case, 
for x = 1, this implies that pis £;-stationary even if .c; is not a generator. 

From now on we assume that Dom(£;) is dense. 

Lemma 3. Suppose that Dom(£) is dense and consider the following statements: 

(i) p is £-stationary 

(ii) c; satisfies 

Then 

- {ii) implies {i) 

(43) 

- if p is invertible, {i.e., it has a dense range, therefore its inverse is densely defined, but not necessarily 
bounded), then {i) implies {ii) . 

Proof. ( 41) implies the following identities: 

tr( c;(1)yp) = tr(pc;(1)y) = tr(p.C(y)) = tr( C*(p)y) ; \fy E Dom(£) 

Thus if (ii) holds then, for ally E Dom(£), tr( C*(p)y) = 0 and (i) follows from the density of Dom(£). 

Conversely if (i) holds then, with x = 1 (41) implies that 

for ally E Dom(£). 
Since Dom(£) is dense and the map y ~---+ yp is invertible and bounded because such is p, this implies that 
also pDom(£) is dense and therefore (43) holds. 
The pairs (p, £) such that .c; is a Markov generator can be characterized, if £, is uniformly bounded, as 
follows (see e.g. [15] Theorem 3.1 p. 341). 
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Theorem 4. If C is uniformly bounded and p is faithful, then the following statements are equivalent: 

(i} c; is a Jvfarkov generator (in this case it is uniformly bounded}, 

(ii} denoting 

the modular group of p, £ commutes with at, i.e. Cat= at£, Vt;::: 0, 

(iii) £ commutes with a -i, i.e. C a -i = a -i £. 

6 Weighted detailed balance for Markov generators 

In the paper [2] it was shown that the dynamical detailed balance condition implies a very special relation, 
which is a natural generalization of the quantum detailed balance condition of Frigerio, Kossakowski, 
Gorini, Verri ([181), between a Markov generator with an invariant measure p and its p-adjoint. 

In this section we introduce the notion of weighted detailed balance, which generalizes the dynamical 
detailed balance condition. 

For simplicity, from now on we work with bounded Markov generators£. These Markov generators 
can be written in the standard Gorini-Kossakowski-Sudarshan and Lindblad (GKSL) form 

C(x) = i[H, x]- ~ L (L'kLkx- 2L'kxLk + xL'kLk), 
k~l 

(44) 

where H, Lk E B(Ji) with H = H* and the series I:k>I L'kLk is strongly convergent. \Ve shall consider 
special GKSL representations of these generators. The-following theorem (see [24]Theorem 30.16 for the 
proof), describes these representations. 

Theorem 5. Let£ be the generator of a norm-continuous QMS on B(1i) and let p be a normal state on 
B(Ji). There exists a bounded self-adjoint operator Hand a finite or infinite sequence (Lk)k>l of elements 
of B(Ji) such that: 

(i) tr (pLk) = 0 for each k;::: 1, 

(ii) l.::k~l L'kL is a strongly convergent sum, 

(iii) ifl.::k~o [ck[2 < oo and co+ I:k~l ckLk = 0 for complex scalars (ckh2':.o, then ck = 0 for every k;::: 0, 

(iv) the GKSL representation (44) holds. 

If fi, (ik)k~ 1 is another family of bounded operators in B(Ji) with ii self-adjoint and the sequence 
(ik)k~l is finite or infinite then the conditions (i) - (iv) are fulfilled with H, (Lk)k?. 1 replaced by 

ii, (ik)k2':1 respectively if and only if the lengths of the sequences (Lk)k~ 1 , (ik)k2':1 are equal and for 
some scalar c E IR and a unitary matrix ( Ulj )l,J we have 

H=H+c, Lj = LuljLj. 
j 

Let k be a Hilbert space with Hilbertian dimension equal to the length of the sequence (Lk)k, with (fk) 
an orthonormal basis of k. This Hilbert space is called the multiplicity space of the completely positive 
(CP) part of£. \:Ve can identify the unitary matrix (ujk)j,k2':.l in the above basis (fk)k2':.l with a unitary 
operator on k. 

Following the terminiolgy in [15], a special representation of a bounded Markov C with respect to an 
invariant faithful state p by means of operators H, Lk is called privileged if H commutes with p and 
pLk = AkLkp for some Ak > 0. 

Privileged representations characterize those bounded GKSL generators whose p-adjoint c; is also the 
generator of a uniformly continuous QMS, see Theorem 4.3 in (15]. 

Theorem 6. The p-adjoint c; of a GKSL bounded generator£ is the generator of a uniformly continuous 
Qlll!S if and only if there exists a privileged GKSL representation of£ with respect top. 

With every privileged, representation of a GKSL generator £ corresponds a privileged representation 
of its adjoint c;, see Theorem 4.4 in [15]. 
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Theorem 7. If the p-adjoint c; is a GKSL generator, for every privileged GKSL representations of£ 
by means of operators H, Lk as in (44), there exists a privileged GKSL representation of c; by means of 

operators fi, Lk such that: 

(i} fi = - H - a for some a E JR., 
- 1 

(ii) Lk = .\~ 2 L'k for some Ak > 0. 

Theorem 8. Given a special GKSL representation by means of operators H, Lk, of a bounded Markov 
generator £ of a norm continuous QMS (7t)t:?0 with faithful invariant state p, then the following are 
equivalent: 

(i) There exists a sequence of positive weights q := (qk)k and operators H',L~ of a (possibly another) 
special representation of£ such that the difference c;- £ has the structure 

c;- £ = -2i[K, ·]+II, (45) 

where K = K* is bounded and 

II(x) = L(qk- l)L~*xL~. (46) 
k 

(ii} c; is a bounded GKSL generator, the operators H, Lk yield a privileged representation of£ with 

fi, Lk the operators in the corresponding privileged GKSL representation of c;, given by Theorem 1, 

and there exists a sequence of positive weights q := ( Qk) and operators H", L~ of a (possibly another} 
special representation of £ such that, 

(47) 

Proof. Let us prove that (i) implies (ii). Any II of the form (46) is a *-map, i.e. II(x)* = II(x*). It 
follows that c; is also a *-map, being a sum of maps with these properties. Since, by assumption, £, II 
and K are bounded and pis faithful, we can apply a result of Majewski and Streater (see Theorem 6, p. 
7985 in [22J) and conclude that£ is a GKSL generator. Hence, by Theorem 6, we can assume that H, Lk 
are operators of a privileged representation of£. Then we have that H and L:k L'kLk commutes with p 
and ( 45), ( 46) imply that 

(48) 
k k k 

with L~ operators of a special representation of£. By Theorem 5, we can write L~ = L:z ukzLz with 
u = ( ukl) unitary operator on k. Now a direct computation shows that 

Therefore we can simplify the right-hand side of ( 48) and find 

Then we can apply Theorem 30.16 in [24] on Kraus' representations of normal completely positive maps 
to conclude that there exists a unitary operator v = ( Vkl) on k such that 
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Conversely, assume (ii) holds and let us compute the p-adjoint of <I>(x) = Lk Lk,xLk, the CP part of 
£. Since the GKSL representation of£ by means of the operators H, Lk is privileged, by Theorem 7 the 
p-adjoint of the CP part <I>(x) = 'Ek L'kxLk of£ is 

~(x) = L L'kxLk, 
k 

where Lk = ;..;! L'k. A direct computation using (47) with L~ = 2.:1 UklLl yields 

~(x) L:Lt.xLk = LqkL~*xL~ 
k k 

L L~*xL~ + L(qk- 1)L~*xL;' 
k k 

<I>(x) + L(qk -1)L~*xL~. 
k 

Since Hand Lk L'kLk commute with p, we obtain (45) and (46) with Lk' = L~. This proves (i). 

Definition 5. A uniformly continuous quantum Markov semigroup ('lt)t?.D satisfies a weighted detailed 
balance condition with respect to a faithful.invariant state p, if its generator£ satisfies any one of the 
two equivalent conditions in Theorem 8. 

Corollary 2. Assume that H, Lk are operators of a privileged representation of the bounded Markov 
generator£ with respect to a faithful invariant state p. Then the following are equivalent: 

(i} the generator£ satisfies the quantum detailed balance condition of Prigerioj Kossakowski, Gorini, 
Verri [18} 

£- £; = 2i[H, ·] (49) 

{ii) £ satisfies a weighted detailed balance condition with respect to the faithful invariant state p with 
weights 

q = (1, 1, ... ) 

i.e., qk = 1, Yk. 

Proof. The thesis is an immediate consequence of Theorem 8 combined with Theorem 5.1 in [15]. 

Remark. 

(i) Roughly speaking, according to condition (ii) in Theorem 8 and Corollary 2, detailed balance holds 
if and only if each operator Lk of a privileged representation of c; coincide with some operator L~ in 
a privileged representation of £. vVeighted detailed balance allows deviations from this equilibrium 
situation by associating with each operator Lk of a privileged representation of c;, a positive multiple 

1 

q[ L~ of some operator L~ of a privileged representation of £. 

(ii) The connection of the notion of weighted detailed balance with dynamical detailed balance, as well 

as an intuitive idea of the meaning of the correspondence Lk f-+ q! L~ entering in the weighted 
detailed balance condition, is given by the physical models considered in Theorems 9 and 11, which 
correspond to the situation originally considered in (2] and give rise to simple unitaries permutating 
each operator Lj with its adjoint. 

To finish this section let us consider a simple example. 

Example 1. (A quantum 3-level system). Consider the QMS on B(C3 ) generated by 

£(x) = aS*xS + (1- a)SxS*- x, 

where 8 is the unitary right shift defined on the orthonormal basis ( ej )osi::::2 of C3 by Sej = ej+l, the 
sum must be understood modulo 3, and a E (0, 1). 
This QMS arises in the stochastic limit of a three-level system dipole-type interacting with two reservoirs 
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under the generalized rotating wave approximation. One can easily see that the normalised trace p = I /3 
is a faithful invariant state, i.e., .C*(p) = 0, where .C* is the pre-dual generator: 

.C*(p) =aSpS*+ (1- a)S*pS- p. 

Clearly the p-adjoint is .c; = .C*. Moreover, the above GKSL representations of .C and .c; by means of 

operators H = 0; L 1 =a~ S, L 2 = (1- a)~ S* and fi = 0; L1 = a~ S*, L2 = (1- a)~ S, respectively, 
are privileged. Indeed, this representation are special since tr(S) = tr(S*) = 0 and I, S, S* are linearly 

independent. Moreover, Ll = a~ 1 L2, L2 = {l-~)~ Ll. \i\Teighted detailed balance holds since Ll = 
(1-a)2 n2 

1 II ""' 1. If • II II Q: 1-Q • 
qf L 1 , L2 = q:j L 2 w1th L 1 = L2, L2 = L1 and Q1 = l-a, Q2 = ----a-· Hence, quantum detailed balance 
holds if and only if a= 1/2. Fagnola and Rebolledo proved in [14] that for a=/=- ~ this system has non-zero 
entropy production, that characterizes non-equilibrium systems. 

7 Markov generators of stochastic limit type with respect to an 
Hamiltonian H 

The origins, from the stochastic limit approach, of the special class of generators described in the present 
section are briefly outlined in Appendix II (see section (12)). In the following we will freely use the nota­
tions introduced in Appendix I (see section (11)). LetHE B(7-i) be a self-adjoint operator (Hamiltonian) 
with discrete spectral decomposition 

H= (50) 
crnESpec(H) 

and denote B+ the set of its strictly positive Bohr frequencies (i.e. the set of strictly positive eigenvalues 
of eitH ( . )e-itH): 

B+ := {w = Er- Er' > 0: Er,Er' E Spec(H)} =Spec+ (ut) (51) 

Definition 6. A Markov generator .C on B(1i) is said to be of of stochastic l-imit type with respect to the 
Hamiltonian (50) if it has the form: 

.C(x) = i[.6., x}-

where, in the notations of Appendix I below (section {11)), for each wEB: 

.6. = .6.* E {H}' 

Dw E Ew(B(1i)) 

(52) 

(53) 

(54) 

(55) 

The numerical coefficients (53) have a spec·ial structure given by the stochastic limit and described in 
Appendix II below. 

7.1 Canonical form of Markov generators of stochastic limit type 

Introducing the set 
Ih := {w E B+ : either f -,w =/=- 0 or f -,w =/=- 0} 

it is convenient to write the generator (52) in the form 

£(x) = i[.6.,x]- L Lw(x) 
wEB-e. 

with 
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L:w(x) = 

L (r -,w (~{D!Dw,x}- DLxDw) +r+,w (~{DwDi,x}- DwxD!)) 
wEB-+-

Remark. Notice that, while B+ depends only on H, B+ depends also on£. 
For wEB+, the operators Dw in (57) have the form 

L Pr::mDP€n = L D(t::m,cn) 

{(c;tn,E:n)EB+ (w,D)} {(c;rn,cn)EB+(w,D)} 

where by definition 

B+(w, D):= {(sm,En) E B+(w) Pc;=DP::n =/= 0} 

and for some DE B(H), denoting 'v'(sm,En) E B+(w): 

Recall that (see Appendix I) for any x: 

{(c:=,t::n)EB+(w)} 

Now for each w E B+ consider the generator (see (52)) 

L:w(x) =: r -,w (~{DLDw,x}- D!xDw) +r+,w (~{DwD!,x}- DwxD!) = 

1 t 1 t ( -'- -'-) = 2r -,w{DwDw,x} + 2r +,w{DwDw,x}- r -,wD~xDw + r +,wDwxD~ 
Using (55), for each x E B(H) one finds 

r -,wD!xDw + r +,wDwxD! = 

L L (r -,wDl€m,cn)xDc€M,cN) + r +,wD(e:m,€n)xDt€M,cN)) 
{(sm,t::n)EB+(w,D)} {(cA.f,e:N )EB+(w,D)} 

L (r -,wD[c;=,En)xDcc;M,€N) + r+,wD(Ern,En)xD[EM,EN)) 
{((.sm,cn),(c;M ,EN ))EB+ (w,D)2} 

With these notations 

Lemma 4. 
(c:,c:'), (c:,c:") E B+(w) =? c:' = c:" 

(c:', c:), (c:", c:) E B+(w) =? c:' = c:" 

(c:,c:') =/= (c:",c:'") E B+(w) =? c: =!= c:" and 
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(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 



Proof. (66) follows from: 

f ~ II ~ Q (' ) (" ) f II E -c=W=E -c=? = E -E- E -E =E -E 

( 67) follows from: 
I II 0 ( ') ( ") If f E-E =W=E-E =? = E-E - E-E =E -E 

Finally ( 67) implies that, if E = E", then one must have also E1 = E"' against the assumption. Similarly 
(66) implies that, if E1 = E"', then one must have also E = E11 against the assumption. Thus (68) follows. 
In view of the following result, Lemma 4 is of crucial importance for the thesis of the present paper. 

Lemma 5. For any wEB+ and for any (Em, En) and (EM, EN) in B+(w) one has: 

Proof. We know, from (61), that 

Therefore, if (Em, En) = (EM, EN), then 

nt?n,c:n)n(Ern,En) =PEnn+ Pc:rnPc:.,.,nPc:n =penn+ PErnnPEn E {H}' 

while, if (Em, En) =f (EM, EN), then 

From (68) we know that 

and 

in both cases (69) holds. 

(69) 

Lemma 6. Suppose that h' E { H}' and p is a function of H. Then the linear map x ~ { x, h'} is 
self-addjoint with respect to the p-scalar product. 

Proof. 
Tr(p{h',x}y) = Tr(ph'xy) + Tr(pxh'y) = Tr(pxyh') + Tr(pxh'y) 

= Tr(pxyh') + Tr(pxh'y) = Tr(px{y, h'}) 

Corollary 3. For any wEB+ and for any (Em, En) and (EM,EN) in B+(w), if pis a function of H, then 
the linear operators 

are p-self-adjoint. 

Proof. Since 
(70) 

the thesis is an immediate consequence of Lemma 6. 
Corollary 3 implies that the anticommutator part of the generator (65) is p-self-adjoint for any state p 
which is a function of H. Let us consider the completely positive part of (65), i.e. 

\lf(x) := (r -,wntErn,c:n)xn(r:;M,EN) + r +,wn(c:m,En)xntEivi,EN)) 
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Therefore 

(D(cm,en) · DleM,eN)): =PrnP-;;
1 

(DleM,eN) · D(em,en)) 

where (X); denotes the p-adjoint of X 
Similarly 

Tr(pDlcrn,en)XD(e_l'vl ,eN )Y) = Tr(pDlem,en)XD(eM ,eN )P-1 py) 

-1 -1 Tr(Dt -1 D ) = Pm PnPM PN (em,en)pxp (CJ<,.r,eN)PY 

= p~1pnTr(Dle-m,en)pXD(eM,eN)Y) 

= P~1 PnTr(pxD(eM,eN)YD~em,en)) 

Therefore 

(ntern,cn) · D(cM,eN)): =P~1Pn (D(cM,eN) · Dlem,e,J) 

In conclusion, the p-adjoint of w(-) is 

(w);(-) =p~1Pnf-,w (D(e:M,cN) · Dlem,e:n)) +PmP;;
1
r+,w (nteM,eN) · D(cm,en)) 

and we conclude that the adjoint of Lw is: 

(£w); 

= '"""' { ~r _ {Dt De- ) x} + ~r {D( )Dt x} ~ 2 ,w (em,En) ::.J\f,cN ' 2 +,w Em,En (EM,eN)' 
{((cm,En),(EM ,EN ))EB+(w,D) 2 } 

- (P~1 Pnf-,w(D(cM,eN) Dle:m,en))+PrnP;;
1
r+,w(D[eM,eN) · D(e:=,e,,,)))} 

'"""' {1 . t 1 t = ~ 2f -,w{D(ern,en)D(eM,EN)'X} + 2f+,w{D(em,EnJD(e:M,EN)'X} 
{ ((ern,en),(eM ,eN ))EB+(w,D) 2 } 

- (r-,w (D(eM,EN) · Dlern,en)) +f+,w (Dle:M,cN) · D(em,en)))} 

I: 
{((e= ,en),(e:M ,eN ))EB+(w,D)2 } 

{((p~1 Pn-1)f-,w(DceM,EN). ntem,cn))+(PrnP;;
1

-1)f+,w(DleM,EN). D(e=,en)))} 

Thus, introducing the w-current operator 

ITw,p :=- L 
{ ((em ,En),(eM ,EN ))EB+ (w,D) 2 } 

{ ( (p~1Pn- 1)r -,w ( D(EM,EN) ntem,En)) + (PrnP-;;
1 

- 1)f +,w ( ntEM,EN) . DceTn,En)))} 

one obtains 
(£w); = £w + ITw,p 

In conclusion the p-adjoint of the generator (57) has the form 

(£); = -i[L}., · J- L {£w + ITw,p} 
wEB+ 
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7.2 Markov generators of stochastic limit type satisfy a weighted detailed 
balance condition 

Since the set { (em, en) E B_,_ ( w, D)} is at most countable we can fix an identification of this set with the 
set of numbers: 

{(em, en) E B+(w, D)}= Iw,D := {0, ... , IB+(w, D)!- 1} S: N 

With this identification the generator (63) can be written in the form 

""" 1 t 1 t £w(x) = ~ 2r -,w{DjDk,x} + 2r +,w{DiDk,x} 
{(j,k)EI~,D} 

- ( r -,wD]xDk + r +,wDjxDk) 

Now, for j E L,v, define: 

1 1 

/2j := r -,j ; /2j+l := r +,j ; L2j := lijDJ ; L2i+l := lij+l Dj 

Notice that, with this notation, the new index k varies in the set 

Iw,D = {0,1, ... ,2IB+(w)!-1} 

Moreover one has: 

L + rl/2 D* 1/2 -l/2L 
2j := -,w j = l2j l2j+l 2j+l 

\iVith these notations (72) becomes: 

Lw(x) 

L ( ~{L2jL2k+l, x} + ~{L21+1L2k, x}- (L21 xL2k+l + L2jxL2k)) 
{(J,k)EJ~ D} 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

The definition (71) of the set L,v shows that each index j in the set (86) defines exactly one pair 
(c:m, en) E B+(w, D) of eigenvalues of H. Conversely, any such a pair is naturally associated, through 
(73), to two indices 2j and 2j + 1 of the iw,D given by (74). 

Definition 7. An index j E Iw,D with the property just described ·is said to correspond to the o-rdered pair 
(Em, En) of eigenvalues of H. 

Theorem 9. For each wEB+ (see (56)) the expression (76) of the Markov generator of stochastic limit 
type Lw, associated with a discrete spectrum Hamiltonian H 

H= (77) 

and with a faithful invariant state of the form 

p= (78) 

(i.e. which is a function of H) is a privileged decomposition with eigenvalues ( Aj) defined as follows: if 
the index j E I corresponds to the ordered pair (Em, En) in the sense of Definition (7), then: 

{ 

-1 
\. ·= PnPm ·_. 
/\; . -1 

Pn Pm' 

if j is even 

if j is odd 
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Moreover the lv!arkov generator .Cw, in the expression (76}, satisfies a weighted detailed balance condition 

in which Lk = q~ L~, where L~ = L:j UkjLj with u = (uk,j)k,jEI the unitary (permutation} operator 
whose elements are defined by 

{ 

£ zf k is even Uk+l,j l 
Uk,j := 

Jk-l,j , if k is odd 

and, in the notation, (73}, (79}, the sequence of weights q = (qk) is given by: 

if k is even 

if k is odd 

(80) 

(81) 

Remark. Notice that the eigenvalues of the privileged decomposition do not depend on (em, en) = 
wEB+. 
Proof. One can easily see that the representation (76) is special. For j = (em, en) even one has, using 
(61) 

1. 1. 1 1 
pL2j = 'Y2jPD(c:rn,sn) = 'Y2jPPemDPc:n = 'Y2jPmP;; PsmDPe,P = AjL2jP 

where the (Aj) are defined as in (79). 

1 1 1 

PL2j+l = 'Yij+lpDj = 'Yij+lp(D(c:m,en))* = 'Yij+IPPsnD* Psm 

-1 ~ * -1 ~ * 
= PnPm 'Y2j+1PsnD Pc:mP = PnPm 'Y2j+1D(c:m,sn)P 

-1 ~ * -1 
= PnPm 'Y2j+l Dj P = PnPm L2J+1P 

This implies that the representation (76) of .Cw is privileged with eigenvalues (Aj) given by ('79). 
Finally, let us verify that condition ( ii) in Theorem 8 holds. 
From (75) we see that for every j E fw,D we have 

Hence defining for 2j, 2j + 1 E fw,D 

\-1 -1 
q2j := "'2k 'Y2j'Y2j+1 

if j is even 

if j is odd 

and, using (80) to define the unitary operator u = ( Uk,j )k,jEI, one obtains the relation: 

- _.! l If 

Lk = >..k 2 L% = qk Lk 

with L~ = Lj UkjLj. This finishes the proof. 

(82) 

(83) 

(84) 

Theorem 10. Let£ be a generator of stochastic limit type with respect to an Hamiltonian H of the form 
(77). Suppose that, the representation (57} of£: 

.6. E {H}' (85) 

and that p E { H}" is a faithful £-invariant state of the form (78}. Then the representation {76) of£ is a 
privileged representation with eigenvalues (>..j) defined by {79} and£ satisfies a weighted detailed balance 
condition with respect to p, wh'ich can be explicitly described. 

Proof. We know that, for each w E B+, the representation (76) is a privileged decomposition of .Cw 
with eigenvalues (>..j) and that .Cw satisfies a weighted detailed balance condition with respect top, given 
explicitly by Theorem 9. Moreover, under assumption (85) one has 

([i.6., · D; = -[i.6., · ] 

From this the thesis immediately follows. 
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7.3 Generic Markov generators of stochastic limit type satisfy a weighted 
detailed balance condition 

The simplest class of Markov generators on B(1i), of stochastic limit type with respect to a discrete 
spectrum Hamiltonian H is obtained when the Hamiltonian H is generic in the sense of [6], i.e. 

Definition 8. A Markov generator {6}, of stochastic limit type with respect to a discrete spectrum Hamil­
tonian H is called generic if: 
{i) H has a simple spectrum 
{ii) for any wEB+, there exists a unique ordered pair (c:m, En) of eigenvalues of H such that 

Em- En= W > 0 

{this is equivalent to say that the strictly positive eigenvalues of eitH ( · )e-itH are simple}. 

In the present subsection we shall prove that this special class of generators satisfy a weighted detailed 
balance condition. It is convenient, for simplicity of notations, to rewrite the Markov generator (52) 
exploiting the genericity assumption and simplifying the set of indices, so to make the multiplicity space 
clear. To this goal we denote 

B+ := {wj E B+ : either r -,w -=F 0 orr -,w -=F 0} 

Since the set B+ is at most countable, we can write 

hence denoting 
r ±,j = r ±,Wj 

the generator (52) can be written in the form 

and 

£(x) = i[~, x]-

Defining, for each j E B+: 
1 1 

'Y2j := r -,j ; 'Y2j+l := r +,j ; L2j := rybDj ; L2j+l := 'Yij+l Dj 

we have that 
j E {0 :::; j :::; 2jB+ I - 1} =: I 

finally write the generator (52) in the form 

where 

£(x) = <I>(x) + G*x + xG 

<I>(x) = L LjxLj 
jEI 

1 . 
G = --<I>(I)- ~6:.. 

2 

(86) 

(87) 

(88) 

(89) 

(90) 

Recalling the definition of the operators Dj (see Appendix I), if the index j E I corresponds to the ordered 
pair (t:m, En) of eigenvalues of H, then we can write: 

1 1 1 

L2j = 'Y} Dj = 1] Ej(D) = ~f] (EniDIEm)IEn)(E=j 
1 1 1 

£2]+1 = 1}+1Dj+l = 'Y}+IEJ(D)* = 'Y}+I (EnjDjEm)IEm)(Enj 

since by genericity En i- Em, one has: 

tr(pLj) = 'Yl (EnjDjEm)i'r(piEn)(Eml) LPktr(jEk)(Eklicn)(Em!) 
k 
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= rJ (EniDlcm)tr(IEn)(t:ml) = 0 (92) 

It follows that, if 0 = c0 + l:.:::j CjLj then 

O=tr((co+ l:cjLj)*(co+ LcJ'Lj')) = l:icjl2 

j j' j 

and therefore Cj = 0 for all j :;::: 0. Therefore the set {1, (Lk)kEI} is linearly independent, hence I is the 
multiplicity space of£. 

Theorem 11. The expression {90} of a Markov generator£, of stochastic limit type associated with a 
generic Hamiltonian H and with a faithful invariant state of the form 

p= (93) 
E~<ESpec(H) 

is a privileged decomposition with eigenvalues (.Xj) defined as follows: if the index j E I corresponds to 
the ordered pair (Em, En), then: 

{ 

-1 
\. ·= PnPm ' 
/\J • -1 

Pn Pm' 

if j is even 

if j is odd 
(94) 

Moreover the Markov generator£, in the expression {90}, satisfies a weighted detailed balance condition 
- ! If If 

in which Lk = Qf Lk where Lk = l:j UkjLj with u = (uk,jh,jEI the unitary (permutation) operator whose 
elements are defined by 

·- {8k+l,j , if k is even 
Uk,j .-

bk-1,j , if k is odd 

and the sequence of weights q = (qk) is given by (94} and, in the notation {88}: 

·- {.Xk 1rkrk~1 , if k is even 
Qk .- \-1 -1 ·; k . dd 

/\k rk rk+1 , zJ 2s o 

Proof. For j even one has, if the (.Xj) are defined as in (94): 

1 1 1 
pLJ+1 = r]+l (t:niDIEm)PIEm)(Enl = r}+I (EniDJcm)PmP~ icm)(EniP = AJ+1LJ+IP 

(95) 

(96) 

This implies that the representation of£ by means of operators (LJ )J and L). is privileged with eigenvalues 
(.Xj) given by (94). 
Finally, let us verify that condition ( ii) in Theorem 8 holds. 
From (91) we see that for every j E I we have 

Hence denoting for 2j, 2j + 1 E I 

if j is even 

if j is odd 

,-1 -1 ,-1 -1 
Q2J := /\2j r2J'Y2j+1 Q2j+r := /\2J+l r2j r2j+l 

and, using (95) to define the unitary operator u = (uk,j)k,jEI, one obtains the relation: 

This finishes the proof. 

(97) 

Remark. Notice that, if the index k E I corresponds to the ordered pair (Em, En) in the sense of Definition 
7, then the identity (96) implies that, for generic Markov generators of stochastic limit type, one has: 

(98) 
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Combining this with (94) and (88), we see that in this case the current operator llp in the weighted 
detailed balance condition (i) of Theorem 8, takes the form 

where 

llp(x) = L (L(Gk -l)ukjUkz)LjxLz 
j,l k 

= L ((G2k- l)L~k+1 xL2k+I + (G2k+l -l)L~kxL2k) 
k~O 

L ((PmGmn -l)GnmD::nnxDmn + ( PnGnm -l)GmnD~mXDnm) 
PnGnm PmGmn { (m,n):E 171 -En >0} 

L ( JmnP-:.
1 
n::nnxDmn + JnmP~1 D~mXDnm) 

{(m,n):Ern -En>O} 

(99) 

(100) 

In [2] it was proved that the quantities Jmn have a natural interpretation as (micro)-currents of quanta 
from the level Em to the level En. This is the operator II arising in the dynamical detailed balance of 
Accardi-Imafuku in [2]. The case of all currents equal zero, corresponds with the notion of quantum 
detailed balance in the sense of (49). But in section (9), we will show that even relatively simple physical 
situations can give rise to generic Markov generators with non-zero currents. 

8 Cycle description of Markov generators 

It is known that generic Markov generators with respect to an Hamiltonian Hare associated with H in the 
sense of Definition 3 and that their invariant states coincide with the invariant state of the classical Markov 
chain induced by their restriction on {H}' = {H}". This allows to reduce the problem of describing the 
invariant states of these generators to a problem on classical Markov chains. 
In this section we discuss the connections between the notion of weighted detailed balance of Markov 
generators and the cycle decomposition of such generators due to Kalpazidou and Qian [20], [25]. These 
connections will be used in the following sections to analyze the properties of some non equilibrium states 
arising from concrete physical models. 
We shall consider the case of generators of the form (52) with finite dimensional state space: 

and H generic. Clearly in our assumptions Spect(Hs) finite. Under these assumptions the following two 
propositions are an immediate consequence of Kalpazidou's cyclic decomposition for the currents (100) 
Jmn = PmGmn- PnGnm 1 see [20], and Theorems 2.1.2 and 2.2.10 in [25]. 

Proposition 2. Assume that: 
- H is generic, 
- S = Spect(H) is finite 
-the diagonal restriction of the QMS generated by a ~Markov generator of the form (52) is a finite classical 
l.Vfarkov chain irreducible, recurrent and stationary with faithful invariant state (measure) p. 
Then 

£(x)- .c;(x) = 2i[~, x]-

L L (we- We_)Jc(m,n)(p~1 D':nnxDmn- p:;/DmnxD::nn) = 
{(m,n):Em>En} eEC= 

= 2i[K,x]- L (we- We_) L Je(m,n)(p~1D::nnxDmn- p-;.
1

DmnxD::nn) 
eEC= {(m,n):E=>En} 

(101) 

Where in Kalpazidou-Qian's notations, We are the cycle skipping rates of the classical Markov chain, C= 
is the set of cycles andJe(m,n) is thepassagefunctionforthe cyclec, i.e., Je(m,n) = 1 ijthe edge (m,n) 
belongs to the cycle c and zero otherwise. Notice that only those edges (rn, n) that belong to a cycle give 
a non-trivial contribution. 
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Theorem 12. The following are equivalent: 

(i) The adjoint generator c; satisfies quantum detailed balance condition ( 49), 

(ii) The associated classical Markov chain is reversible, 

(iii) The classical1\!arkov chain is in detailed balance, 

(iv) The classical {or diagonal restriction) generator Q = (qi,j)i,jES satisfies Kolmogorov's reversibility 
condition: 

for any finite collection (cycle) {Eo, ... , E5 } of different elements of S, s 2: 2 and Eo = Es. 

(v) We= We_, Vc E C00 , 

(102) 

(vi) The classical entropy production rate ep in the sense of Qian (Definition 2.2.3 of Qian's book), equals 
zero. 

8.1 Invariant states with constant micro-currents 

Theorem 13. Assume H is generic, S = Spect(H) is finite and the diagonal restriction of a GKSL 
generator£ of the form (52) is the generator of an irreducible, recurrent and stationary classical Markov 
chain with a faithful invariant state (measure) p. Then £ satisfies a WDB condition (45 )-(46) with a 
current operator II of the form (99)-{100) with constant currents up to the sign. 

Proof. Under the above assumptions, in the notation (100) and given the explicit form (99) of the 
current operator IIp, equation IIP*(p) = 0 takes the form 

'\:"' (Jmn D* Jnm * D ) LJ --DmnP mn + --DmnP mn = 0 
Pm Pn 

{(m,n):crn><'n} 

(103) 

Equivalently, given the form (93) of p and the fact that Dmn := lcn)(Em[: 

L Jnm(icm)(t:m[- icn)(Enl) = 0 (104) 
{(m,n):crn><"n} 

Notice that the above equation (104) is equivalent to a system of homogeneous d linear equations for the 
currents Jmn given by (100). Indeed, (104) yields the system 

J01 + Jo2 + J03 + · · · + Jod = 0 

Jw + J12 + J13 + · · · + J1d = 0 

J2o + J21 + J23 + · · · + hd = 0 

that together with the linear equations Jmn = -Jnm determine all currents. 

(105) 

(106) 

(107) 

(108) 

(109) 

Due to the above Theorem, Kolmogorov's reversibility condition holds if and only if Jmn = 0 for all m, n 
and the GKSL generator satisfies a detailed balance condition. 
Now assume that Kolmogorov's reversibility condition does not hold, i.e., there exists a non-empty set of 
cycles 

C = {c ={Eo, ... ,t:8 } : Ej E S,s 2::2, with Eo= E8 , such that 

(110) 

For generators of the form (52) one has that Qij > 0 if and only if %i > 0, therefore all factors in the 
above product are positive and consequently the corresponding currents JEj<"J+l are non-zero whenever 
the oriented edge (Ej, Ej+l), 0:::; j :::; s, belongs to a cycle in C. With this subset C of cycles corresponds 
an oriented graph with vertices (or nodes) in the elements of S and oriented edges 

-343-



The incidence matrix of this graph coincides with the matrix of system (105), where all currents equal 
zero with the exception of those corresponding with edges of the graph. Now we apply the well known 
fact that the null space of the incidence matrix coincides with the cycle space of a graph, see for instance 
[12], to obtain a non-trivial solution of (105) given by Jmn = rJ(Em, En)JEof'.l with rJ(E=, En)= 0 if the edge 
(Em, En) does not belong to some cycle c E C and rJ(Em, En)= ±1 otherwise, the sign depending on whether 
Jmn has the same direction as JEo£1 or the opposite direction, according to the cycle orientation. 
Since the classical Markov chain is irreducible, one can reach i:tny final level E f starting from any initial 
level Ei: i.e., the graph is connected. This implies that every cycle has at least one edge or node in common 
with some other cycle in the set C. Hence, if two cycles have a common edge, since the current associated 
with this common edge is the same, the values of currents in both cycles coincide up to the sign. 
If the cycles have a node but not an edge in common, then we can consider the cycle formed by concate­
nation. This finishes the proof. 

9 Example: A non-equilibrium steady state for a quantum spin 
chain 

Following the approach in the above section, see also [2], let us consider a quantum chain consisting of two 
spin interacting with two boson fields in equilibrium at different temperatures so that the global system 
is in non-.equilibrium. The Hamiltonian of the spin chain is defined by means of 

where ,\1 , .\2 and 1 =/= 0 are real numbers, ax, aY, az are Pauli matrices and we set af for az ® I. 
For A.1,.\2 < 1 -12 the spectral representation of the above Hamiltonian is given by 

3 

H = L EdEz)(Ed 
l=O 

where 

and with respect to the basis 
e_ ® e+, e_ ® e_, e+ ® e+, e+ ® e_ 

(111) 

(112) 

where e± are unit vectors in C2 such that axe± = e=F and aYe± = ±ie=F, the coordinates of (kj) )o::;j:.-::;3 
are given by 

with 

IE1) = c~~ ( 21, 0, 0, (,.\1 + r\2)- y'(r\1 + r\2) 2 + 412) 

IE2) = c~! ( 21, 0, 0, (r\1 + r\2) + y'(.\1 + .\2)2 + 4'"'(2) 

IE3) = c;~ ( 0, 2, (.\1- A.2) + y'(.\1- .\2)2 + 4, 0) 

co= co(A.I, .\2) = 4 + ((.\1- r\2)- y'(A.1- .\2)2 + 4 )
2 

c1 = c1(.\1J r\2) = 4')'2 + ((.\1 + .\2)- y'(.\1 + .\2)2 + 4')'2 )
2 

c2 = c2(,.\1, .\2) = 4')'2 + ( (.\1 + .\2) + J (.\1 + .\2)2 + 4·--P) 
2 

c3 = c3(.\1, .\2) = 4 + ((r\1- .\2) + V(AI- .\2)2 + 4 )
2 
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Notice that Eo < E1 < E2 < E3 and the set of Bohr frequencies is given explicitly 

F = {w = Er- Er': Er,Er' E Spec(H)} = {w10,w2o,W3o,w21} (114) 

with 

W32 = Eg - E2 = W10 

Hence we are in the case of a non-generic Hamiltonian. For simplicity we will write simply 

The interaction of the spin chain with the two non-equilibrium boson fields is described by the Hamiltonian 

where ..\ is a coupling constant, 

H=Ho+..\ L H1j 
j=1,2 

Ho =H+HB 

HB = 2.;:= I wJ(k)a},kai,k 
J 

[aj,k, a}',k'] = Ojp8(k- k'), 

HIJ =I dk(gj(k)Dja},k + gj(k)D]aJ,k) 

where Dj = uj, 

- = (0 0) (]' 1 0 

(115) 

(116) 

aj,k and a},k are the annihilation and creation operators of the j-th field (j = 1, 2) and gj(k) is a form 
factor. 
The initial state of each field is a Gibbs state at constant temperature f3j 1 and chemical potential /1j with 
respect to the free Hamiltonian (in this example we assume Mi = 0, j = 1, 2), i.e., the mean zero gauge 
invariant Gaussian state with correlations 

(117) 

The Schrodinger equation in the interaction picture is 

!!:_U(>.) = -··'H (t)U(>.) Ur(>.) _ itH -itHo dt t z.,, I t , t - e e (118) 

where 

j=l,2 

=I:I:I:jdk 
j=1,2 wEF l,m 

(119) 

(g ·.z (k)E (l m)a~ ei(wJ(k)-w)t +g~ (k)Et(z m)a·ke-i(wJ(k)-w)t) 
J, ,Tn w , J,k ];l,m w ' J, 

with 
9j;l,m(k) = 9j(k)(El 1 DjEm) (120) 

Ew(l, m) = L \Er- wjEz)(EmiEr)IEr- w)(Erl, w =Em- Ez, Em > Ez 
ErEFw 
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Fw = { Er' E Spec( H) : Er' - w E Spec( H)} 

The spectrum of H is not degenerate but, 

Hence the state PH,(3 = (po, · · · , Pn), Pn = e-f3(en)E,. with /3( En) = E;;- 1log Pn is non-generic. 
After some simple computations we get 

Ew32 = Ew10 (2,3) = jE2)(E3j 

Ew2o = Ew2o (0, 2) = ko) (E2j 

Ew31 = Ew2o(1,3) = IEI)(E3j 

This shows that the contribution due to the two frequencies that do not satisfy condition (152) equals 
the contribution of the same frequencies in the generic case. Therefore the generator of this semigroup 
belongs to the generic class defined in section (7.3). 
The master equation for the reduced dynamics of the spin chain is given by 

\Vith .6.., l±,j,w given by (163), and (164), respectively. Taking 

gj(k) = e-~lkl2 

j = 1, 2 using (164) and (120), after some computation we get for >. 1>.2 < 1- "'/2 and d = 3 

(c1 _ 41 2) . ( ef31w1 e/hw1 ) 
Qlo=f-,q-E0 =47r2 w1e-w1 4(3 +(c-o-4)2

8 ,. 
1 cocl e lwl - 1 e· 2Wl -

(121) 

(122) 

(123) 

And all remaining q~j s equal zero. 
Moreover, the restriction of the pre-dual generator to the diagonal sub-algebra, is the generator of a 
classical Markov chain whose Q-matrix is given by 

QOl 

-(qw + QI3) 

0 
Q31 

Qo2 

0 
-(Q20 + Q23) 

Q32 
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One can easily see that the classical Markov chain with the above Q-matrix is irreducible, i.e., for every 
Ej, Ek, there exists n 2 1 and E1, ···En such that qEjf'l, qc 1 E2 , • • • , qEnEk > 0. In other words, starting from 
any Ej it is possible to reach any Ek with positive probability. 
Moreover it has an invariant measure, that we identify with the generalized Gibbs state p. The explicit 
form of pis given below in equation (129). 

The Markov generator£ has the form (52). Hence it is a weighted detailed balance generator. There 
exists the minimal QMS generated by £ and we denote by 'Lt the pre-dual semigroup. 

To identify the cycles that does not satisfy Kolmogorov's reversibility condition, one can use formula 
(2.9) in Theorem 2.1.2 of [25], to evaluate the cycle skipping rates in terms of the matrix elements of Q. 
It follows that for all cycles we have We = We_ with the exception of the cycle 

c = (0, 2, 3, 1) 

It follows from the above Theorem 12 that Kolmogorov's reversibility condition does not hold for this 
cycle. Moreover we can prove the following. 

Proposition 3. Kolmogorov's reversibility condUion holds for the cycle (0, 2, 3, 1), i.e., 

for all values of W1, w2; if and only if the boson fields are at the same temperature, f31I = f32I· 

Proof. A simple computation using (123) shows that 

for all WI , w2 , if and only if 

for all WI, w2 . Where 
4(ef32w- 1) +(co- 4)2e(,62-i'h)w(ef3Iw- 1) 

f(w) = 4(ef3zw- 1) +(Co- 4)2(ef31w- 1) 

(c3- 4)2(ef3zw- 1) + 16!2e(.62-.6I)w(e.6Iw- 1) g( w) = ...:_._::._ _ __;___::.___,..---:.... _ _...:_ ___ ~ _ ____:__ 
(c3- 4)2(e.Bzw- 1) + l612(e.61w- 1) 

h(w)- (c3- 4)2(e.Bzw- 1) + 4e(f32-,6l)w(ef3Iw- 1) 
- (c3- 4)2(ei32w- 1) + 4(e·6Iw- 1) 

If f11 = (32, then f(w) = g(w) = h(w) = 1 and (125) clearly holds for all w1 , w2. 

(125) 

(126) 

Conversely, if /31 #- /32, let us say /32 > (311 then when .\1, .\2--+ 0 and 1--+ 1 we have w1 --+ 0 and w2 --+ 4 
therefore f((wr)) --+ 1, but fh((w2

)) approaches the value 
g WI Wz 

Therefore (125) does not hold for all WI, w2 • This finishes the proof. 

Corollary 4. If f31I #- ,B:;I then the GKSL generator of the Q111S associated with the above spin cha·in, 
satisfies a weighted detailed balance condition with constant currents J = J10 up to the sign. 

Proof. If /311 #- /321, then Kolmogorov's reversibility condition is violated for the cycle (0, 2, 3, 1) i.e., 

(127) 
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Then, associated with this cycle is the solution of system (105): J 20 = -J10, J30 = J10 , J 21 = -J10 
and all remaining Jmn 's equal zero. This proves the corollary. 
The invariant state p is a solution of the linear system, 

Cp= j, (128) 

with j = J 10(1, -1, 1, -1) and 

COl qw 0 

q~1) C = -qo2 0 q20 
0 -q13 0 
0 0 -q23 q32 

Direct computations show that the unique solution of (128) has the explicit form p = (p0 , Pb p2 , p3 ), with 

(q13q2oq32 + q10(q23q31 + q2o(q31 + q32)))J10 
Po= Det(C) (129) 

(qo2q23q31 + qo1(q23q31 + q2o(q31 + q32)))Jw 
Pl = Det(C) 

(qmq13q32 + qo2(q13q32 + qw(qsl + q32)))Jw 
p2 = Det(C) 

(qo2(qw + q13)q23 + q01q13(q2o + q23))Jw 
p3 = Det(C) 

\Vhere 
Det(C) = qo2q23q31q10- qo1q13q32q20· 

The value of the current ho is obtained in terms of the q~js from the normalization condition tr(jj) = 1. 

It is well known that, if an irreducible Markov chain has an invariant measure, then this is unique and 

has a positive mass at every site of the state space. Moreover it was proven in Proposition 5.2 of [10], 

that if the classical restriction of a generic QMS ('lt)c;:o is irreducible and has an invariant measure p, 

then this state is the unique 'It-invariant state and 

lim 'Lt(O') = p, 
t->= 

(130) 

in the trace norm for every initial normal state <J. Hence, as a consequence of the above result, the QMS 

associated with our quantum spin chain has a unique non-equilibrium (or dynamical equilibrium) invariant 

state p given up to normalization by (129) if and only if the boson fields are at different temperatures, 

i.e., f31 1 = f32 1
; and it is ergodic, in the sense that any initial normal state is driven by the QMS towards 

the dynamical equilibrium steady state p. 

10 Cycle dynamics and entropy production 

Our analysis of the cycle decomposition of a GKSL generator satisfying a weighted detailed balance reveals 

that, in a non-equilibrium stationary state of the small system coupled to the environment, there exists 

a dynamics associated with the set C of cycles violating Kolmogorov's reversibility condition. 
The first important question is to give a physical meaning to the current operator IIPH,,B in current 

decomposition (99). First of all notice that this is a CCP map, i.e., a quantum object. One can compute 

explicitly IIPH,/3 in the case of the spin chain of Example 1 above. In this case IIPH,e is not identically 

zero, it has a non-trivial contribution coming from the cycle (0, 2,3, 1). Moreover, denoting by IIPH,f3,* its 

predual, one can show that IIPH,f3•*(PH,p) is the diagonal matrix 

0 0 
0 0 
0 0 
0 0 -W(0231J ~+ W(1320)) 
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A naive interpretation of this quantity is the following: IIPH,/3(PH,t3) represents the net current (or flow 
of energy) between the fields through the small system, i.e., the spin chain. Indeed, at level Eo, the spin 
chain is taken a quantity wc0231)- w(132o) of energy from environment at temperature ,81 1 > /3:2 1 and the 

same quantity is transfer to environment at temperature /32 1 at level E3 . The quantity w(0231) - wc132o) 

can be computed explicitly in terms of the matrix elements qmn of the classical generator Q, i.e., in terms 
of the temperatures /311

, /321
. See equation (2.9) in Theorem 2.1.1, page 49 of Qian's book [25]. 

For an irreducible and stationary continuous time Markov chain, the notion of entropy production was 
defined by the Qian's and collaborators, see Chapter 2 in [25], in terms of the relative entropy of the 
probabilities of the Markov chain and its time reversed. This entropy production rate has a simple 
expression in terms of the cycle skipping rates We of cycles inC, indeed, 

(132) 

Therefore using again formula (2.9) in Theorem 2.1.2 of [25], to evaluate the cycle skipping rates in terms 
of the matrix elements of Q, one can evaluate the entropy production in both examples of the above 
section. Indeed, for the spin chain in Example 1, a direct computation show that 

where 

) 
W(0231) 

ep = (w(o231) - w(o132) log _..:._-"­
W(m32) 

qo2q23q31 qlO - qol q13q32q2o 
1 

qo2q23q31 q10 
3 - og 

Lj=O D( {j}c) q01q13q32q20 

D( {O}c) = q13q2oq32 + q10q23q31 + q10q20q31 + q10q2oq32 

D({1}c) = qo2q23q31 + qo1q23q31 + qo1q2oq31 + qo1q2oq32 

D( {2}c) = qm q13q32 + qo2q13q32 + qo2q10q31 + qo2q10q32 

D( {3}c) = qo2q10q23 + qo2q13q23 + qo1q12q2o + qo1q13q23 

(133) 

Therefore, entropy production is non-zero since Kolmogorov's reversibility condition is violated on the 
cycle (0231) and consequently 

11 Appendix (I): Eigenoperators of Ad( eitH) 

In the present Appendix we recall some useful notions from [6]. 

Theorem 14. (see Theorem 34 in {6}) Let H = H*EB(Jl) be a pure point spectrum Hamiltonian 

H= L EPE=LEmPm (134) 
EEspec(H) m 

Consider the associated 1-parameter automorphism group; 

(135) 

and the associated set of Bohr frequencies. 

(136) 

Then one has: 
Ut(x) = L e-itw Ew(x) ; 'Vx E B(Jl) , 'Vt E JR.+ (137) 

wEB 

where, for each w E B, the operator Ew is defined by ( 62) and the operators E;.,.; satisfy the identities 

Vx E B(Jl) (138) 
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EwEw' = Ow,w'Ew (mutual orthogonality) 

LEw(·) = idB(7-i) (normalization) 
wEB 

Eo(·)= 
{cnE Spec (H)} 

is the Umegaki conditional expectation onto { H}'. 

Remark. One easily verifies (see Proposition 33 of [6]) that 

(139) 

(140) 

(141) 

(142) 

Any element of this subspace will be called an w-eigen-operator of Ad(eitH). (140) is equivalent to 

B(H) = EfjEw(B('H)) 
w 

the sum being orthogonal in the sense that, if w' #- w, then 

Vx E B('H) 

The sum (143) is orthogonal also in another sense, specified by the following Lemma. 

Lemma 7. If p E { H}' (in particular if p E { H}"), then for any w, w' E B one has: 

Tr (pEw(x)* Ew' (y)) = Ow,w'Tr (pEw(x)* Ew(Y)) Vx,y E B('H) 

Proof. If p E { H}' then, using (142) and (138), we see that: 

Tr(pEw(x)* Ew'(y)) = Tr(eitH pE-w(x*)Ew'(y)e-itH) 

= Tr(p(eitH E-w(x*)e-itH)(eitH Ew'(y)e-itH) 

= eit(w-w')Tr(pEw(x)* Ew'(Y)) 

If w- w' #- 0, this is possible only if Tr(pEw(x)* Ew'(y)) = 0. 

Lemma 8. For any w,w' E B one has: 

Ew(B('H)) · Ew'(B('H)) ~ Ew+w'(B('H)) 

Ew(B('H))* = E_w(B('H)) 

Proof. For any t E R, w, w' E B and x, y E B('H) one has: 

(grading) 

eitH Ew(x)Ew'(y)e-itH = (eitH Ew(x)e-itH)(eitH Ew'(y)e-itH) 

= (eitwEw(x))(eitw'Ew'(Y)) = eit(w+w')E,,.;(x)Ew'(Y) 

(143) 

(144) 

(145) 

Thus Ew(x)Ew'(Y) E Ew+w'(B('H)) and this proves (144). (145) follows from (138) and the fact that 
B('H)* = B('H). 

Corollary 5. For all wEB and any operator A E {H}' = Eo(B('H)), one has 

[A, Ew(B('H))} ~ Ew(B('H)) 

{A, Ew(B('H))} ~ Ew(B('H)) 

~Moreover, Vw,w' E Band VDw E Ew(B(H)), one has: 

v:Dw, DwD: E {H}' = Eo(B('H)) 

v:Ew'(B('H))Dw ~ Ew'(B('H)) 
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Proof. All the identities are immediate consequences of Lemma 8. 

Lemma 9. Let F: spec( H)-+ lR be a Borel function. Then Vy and Vm, n EN 

in particular, if y has the form 

Then 

F(H)PmY = F(c:m)PmY 

yPnF(H) = F(c:n)YPn 

z E B(H) ; m, n E N 

ef3(H)H ye -{3(H)H = e{3(c:m)e= -en)eny 

Proof. Clear from the spectral decomposition (15) of H. 

11.1 The generic case 

The generic case is characterized by the condition 

(150) 

(151) 

(152) 

Let w E B+. Condition (152) is characterized by the existence of a unique pair (c:;:;-, c:~) such that 
c:t, c:~ E spec( H) and 

c:::; := c:-;!;- w E spec(H) 

or equivalently 
c:-;!;- c:;:; = w > 0 

In this case the spectrum of H is non degenerate so that 

Therefore 

n 

and, if w > 0, in the generic case 

For wEB+ define 

Then 

Ew = jc:-;};)(c:-;};j(-)jc:;:;)\c:;:;j 

Ew(x) = (c:-;};,xs::;)jc:-;};)(c:::;! 

E:(x) = E-w = (c:::;,x*c:-;!;)ic:~)(c:-;};j 

E_w = lc:::;)(c:::;j(-)ic:-;};)(c:-;};j 

E:(x) = E-w(x*) 

Ew-+ Ew(D) 

E:-+ E_w(D*) 

Ew(D)Ew(D)* = Ew(D)E-w(D*) = (c:~,D*c:;:;-)lc:~)(c:~! 

= (c:t,Dc:;;)jc:~)(c:j = Jw/c~)(c:;:;-1 

Ew(D)Ew(D)* = Ew(D)E-w(D*) = l8wl 2 ic:-;!;)(c:-;};j =: qwP
6

J; 

Ew(D)* Ew(D) = E-w(D*)Ew(D) = Jow\ 2 P
6

:; = qwPc::; 

Ew(D)*xEw(D) = E-w(D*)xEw(D) = qw(c:-;};, xc:+)P
6

:; 
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Ew(D)xEw(D)* = Ew(D)xE_w(D*) = Qw(c;;;, Acw)Pd 

~!c) = id~::ic) dw := d~+ - d -
'-'W Cw 

£(!c;:::)(c~l) = -idwlc-)(c+l- (r w,-; r w,+) Qwlc-)(c+l 

= [- (rw,-; r w,+) - idw] lc-)(c+l 

Under our assumptions the right hand side of (41) is equal to 

Let 

Therefore the right hand side of ( 41) is equal to 

and, using that: 

this is equal to 

12 Appendix (II): Stochastic limit of systems interacting with 
fields in a non-equilibrium state (level I) 

Consider a system interacting with a boson field in momentum representation 

whose initial state is a mean zero gauge invariant Gaussian state with correlations: 

N ( k) = --::-:-----;-::-:-,--
1

--;:--:-­et3(w(k))w(k) - 1 

(153) 

(154) 

f3(w(k)) is positive function (generalized inverse temperature) which is a natural generalization of the 
Gibbs factor, to which it reduces when (3(w) is constant: 

f3(w) = f3 (155) 

This class of (in general non equilibrium) states of the field includes many important examples, including 
the usual Gibbs states and the state of two equilibrium heat baths at different temperatures (and possibly 
different chemical potentials). 
The full Hamiltonian is given by 

()... is a coupling constant) (156) 
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where 

Ho = H + HB ; H := L c:tlc:t){Ezl ; Hs := J w(k)atak (157) 

H1 := j dk (g(k)Dal + g*(k)Dtak) (158) 

Using the stochastic golden rule (see [1]) one deduces the white noise Hamiltonian equation 

! Ut = -i L ( Dwbl:w + D!bt:w) Ut 
wEF 

(159) 

driven by the Boson white noises 

b (k) - lim ~e-i(wj(k)-w)tj>.? a 
w,t - A---+0 A k (160) 

the limit being meant in the sense of operator valued distributions. 
The operators Dw, in the white noise Hamiltonian equation (159), are defined by 

Dw := Ew(D) (161) 

where Dis the operator which enters in the interaction Hamiltonian (158) and Ew is defined by (62). The 
state of the limit white nose will be of the same type as (154) but with correlations 

\b~,t(k)bw',t'(k')) = Oww'27r8(t- t')o(k- k')o(w(k)- w)N(k) 

(bw,t(k)b~',t'(k')) = Oww'27r8(t- t')o(k- k')o(w(k)- w) (N(k) + 1) 

From this, using a standard procedure of the stochastic limit approach (causal normal order of the white 
noise Hamiltonian equation) one deduces the master equation for a system density operator: 

d . (1 ) dtp(t) = -z[Ll, p(t)] - L r -,w 2 { D!Dw, p(t)} - Dwp(t)D! 
wEF 

- L r +,w (~ { DwD!, p(t)} - D!p(t)Dw) 
wEF 

where the operators Dw are as above and: 

Ll = i L (Im(r_w)D!Dw- Im(r+w)DwD!) 
wEF 

r'f,w = 2Re /=f,w;::::: 0 for w > 0 

r 'f,w = 0 for w ::; 0 

/- = J dkjg. (k)j2 -i(N(k)+l) ,w w w-w(k)-tO 
_ J 2 ef3(w(k))w(k) • lgw (k)l2ef3(w(k))w(k) 
- 7r dk Jgw(k)j e.acwCkJw(kJJ_ 1 o(w(k)- w)- zP.P f dk (w(k)-w)(e!3CwCkJJw(kl-I) 

- ef3(w)w J dk I (k)j2 -'( (k) ) ·p J l9w(kW e-6(w(k))w(k) 
- 7r e.B(w)w)-1 9w U W - W - z .P dk w(k)-w e.6(w(k))w(k)_l 

-· e,a(w)w Gw "G 
-. 7r e.6(w)w_1 27!" - 'l -,w 

J dkl (k) j2 -iN(k) l+,w = 9w w-w(k)-iO 

= 7r J dk Jgw(k)j2 
ef3(w(k)}w(k)_ 1 8(w(k)- w)- iP.P J dk ~(i~'".!.~ e.6Cw(k)}w(k)_ 1 

= 7r e.6(w}w_ 1 J dk Jgw(k)j 28(w(k)- w)- iP.P J dk ~(k~k2~ e!3(w(k)}w(k)_ 1 

- 1r 1 Q..,;_ iG 
- e6(w)w_l 271" - +,w 
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(163) 

(164) 

(165) 

(166) 

(167) 



and we have defined 

~; := 1 dk [gw(k)j28(w(k)- w) ?:: 0 

·- 1 [gw(k)[2 ef3(w(k))w(k) 
G_ w .- P.P dk --:-:(---:-:-.,..,----.,.----,---, w(k)- w eJ3 w(k))w(k) _ 1 

·- 1 [gw(k)l
2 

1 
G+,w .- P.P dk w(k) - w eB(w(k))w(k) - 1 

Notice that both Gw and 

G-,w- G+,w = P.P1dk l~wjk)i
2 

=: Iw 
w k -w 

are independent of ,8. From equation (164) we then obtain~ for w > 0: 

ef3(w)w Gw ef3(w)w 
r -,w = 2Re 1- w = 2r. J3( ) = J3( ) Gw ' e w w - 1 27r e w w - 1 

r + w = 2Re 1+ w = 27r B( ) \ Gw 
' ' e· w w - 1 2r. 

1 G 
eJ3(w)w) - 1 w 

Notice that r ± ,w are both ?:: 0 if 
w>O=?,B(w)>O 

vVith these expressions for the parameters the master equation (162) becomes: 

d 
dtp(t) = £*(p(t)) = -i[.6.,p(t)] 

J3(w)w ( 1 ) - L ef3~w)w - 1 Gw 2 { D!Dw, p(t)} - Dwp(t)D! 
wEF 

- L ei3(wL _ 
1 

Gw (~ { DwD!, p(t)} - D!p(t)Dw) 
wEF 

Remark. 
We have to check if the generator 

£ = i[.6., (·)] 

e6(w)w ( 1 ) - L ef3(w)w _ 1 Gw 2 {D!Dw,(·)}- D!(·)Dw 
wEF 

- L eJ3(w): _ 1 Gw ( ~ { DwD!, (·)}- Dw(·)D!) 
wEF 

satisfies equation (24), i.e. 

Tr(peJ3(H)H £(y)e-J3(H)H x) = Tr(px£(y)); \fx, y E B(1t) 

Acknowledgments 

(168) 

(169) 

(170) 

(171) 

The financial support from CONACYT-Mexico (Grant 49510-F) and the project Mexico-Italia "Dinamica 
Estocastica con Aplicaciones en Fisica y Finanzas", are gratefully acknowledged. 

-354-



!Perspectives of Nonequilibrium Statistical PhysicsJ 

References 

[1] L. Accardi, Y.G. Lu, I. Volovich, Quantum Theory and Its Stochastic Limit, Springer-Verlag 2002. 

[2] L. Accardi and K. Imafuku, QDynamical Detailed Balance and Local KiviS Condition for 
Non-Equilibrium States, International Journal of Afodern Physics B 18 (4-5) (2004), 435-467. 
quant-ph/0209088 

[3] L. Accardi, S. Tasaki: Nonequilibrium steady states for a harmonic oscillator interacting with two 
Bose fields - stochastic limit approach and C* algebraic approach. 
in: Quantum Information and Computing, Proceeding International conference QBIC08, (2003) Eds: 
L. Accardi, M. Ohya, N. Watanabe vVS (2006) 
http:/ jwww.worldscibooks.com/mathematics 

[4] L. Accardi, K. Imafuku, Y.G. Lu, in Fundamental Aspects of Quantum Physics, Proceedings of 
the "Japan-Italy Joint workshop on Quantum open systems and quantum measurement", Waseda 
University, 27-29 September (2001) eds. L. Accardi, S. Tasaki, vVorld Scientific, (2003) 

[5] Luigi Accardi, Shuichi Tasaki ( eds.), 
Fundamental Aspects of Quantum Physics, 
http:/ jv,rww. wspc.com.sgjbooks /physics /5213.html 
QP-PQ XVII World Scientific (2003) 306-321, Proceedings of the" Japan-Italy Joint workshop on 
Quantum open systems and quantum measurement", \Vaseda University, 27-29 September (2001) 

[6] L. Accardi, S. Kozyrev, Lectures on Quantum Interacting Particle Systems, in Quantum Interacting 
Particle Systems, QP-PQ Volume XIV, L. Accardi and F. Fagnola (eds.), (World Scientific, 2002) 
1-195. 

[7] L. Accardi and A. Mohari, Time reflected Markov processes, Infin. Dimens. Anal. Quantum Probab. 
Relat. Top. 2 (3) (1999), 397-425. 

[8] R. Alicki, On detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys. 10 (1976), 
249-258. 

[9] Aschbacher W., Jaksic V., Pautrat Y., Pillet C.A., Topics in non-equilibrium quantum statistical 
mechanics. Open quantum systems III, 1-66, Lecture Notes in Math., 1882, Springer, Berlin, 2006. 

[10] R. Carbone, F. Fagnola and S. Hachicha, Generic Quantum Markov Semigroups: the Gaussian Gauge 
Invariant Case, Open Sys. and Information Dynamics 14 (2007), 425-444. 

[11] De Roeck vV. and Kupiainen A., Return to equilibrium for weakly coupled quantum systems: a 
simple polymer expansion, arXi v: 1005. 1080v3. 

[12] R. Diestel, Graph Theory, Graduate Texts in Mathematics 173 (3rd edition), Springer-Verlag, 2005. 

[13] F. Fagnola, Quantum Markov semigroups and quantum flows, Proyecciones 18 (1999), 1-144. 

[14] F. Fagnola and R. Rebolledo, From classical to quantum entropy production. In H. Ouerdiane, A. 
Barhoumi (eds.) Quantum Probability and Infinite Dimensional Analysis, Proceedings of the 29-
th Conference on Quantum Probability and Infinite Dimensional Analysis, Hammamet (Tunisia), 
October 13-18, 2008, QP-PQ: Quantum Probability and vVhite Noise Analysis- Vol. 25 p. 245-261. 
\:Vorld Scientific 2010. 

[15] F. Fagnola and V. Umanita, Generators of detailed balance quantum Markov semigroups. Infin. 
Dimens. Anal. Quantum Probab. Relat. Top., 10 no.3, 335- 363, (2007). 

[16} F. Fagnola and V. Umanita, On two quantum versions of the detailed balance condition, in Non­
commutative harmonic analysis with applications to probability II, Banach Center Publications 89, 
105-119, Polish Acad. Sci. Inst. Math., Warszawa, 2010. 

[17] F. Fagnola and V. Umanita, Generators of KMS Symmetric Markov Semigroups on B(h) Sym­
metry and Quantum Detailed Balance. Commun. 1'/lath. Phys. 298 (2), (2010) 523-547. DOl: 
10.1007 /s00220-010-1011-1 

[18) A. Frigerio, A. Kossakowski, V. Gorini, M. Verri: "Quantum detailed balance and KMS condition." 
Commun. Math. Phys. 57 (1977), 97-110. Erratum: Commun. Jlvfath. Phys. 60 (1978), 96-98. 

[19) A. Frigerio, Gorini, Markov dilations and quantum detailed balance, Commun. Math. Phys. 93 
(1984), 517-532. 

-355-



[20] S.L. Kalpazidou, Cycle Representations of Markov Processes, Springer, 2006. 

[21] J. Lebowitz and H. Spohn, Irreversible thermodynamics for quantum systems weakly coupled to 
thermal reservoirs, Adv. Chem. Phys. 39 (1978), 109. 

[22] W.A. Majewski and R. Streater, Detailed balance and quantum dynamical maps, J. Phys. A: lvfath. 
Gen. 31 (1998), 7981-7995. 

[23] Pantale6n-Martinez L. and Quezada R., The asymmetric exclusion quantum Markov semigroup, 
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (2009), 367-385. 

[24] Parthasarathy K.R., An Introduction to Quantum Stochastic Calculus, Birkhauser-Verlag 1992. 

[25] Qian M-P., Qian M., Jiang D-J., Mathematical Theory of Nonequilibrium Steady States, Springer, 
2003. 

[26] E. Shamarova, A mathematical approach to Jarzynski's identity in non-equilibrium statistical me­
chanics, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 2009, 213-229. 

[27] Tasaki S.: Current fluctuations in nonequilibrium steady states for a one-dimensional lattice con­
ductor, in Quantum Information III, T. Hlda, K. Saito ( eds.) World Scientific (2000) 157-176 

Luigi Accardi, Centro V. Volterra, Universita di Roma Tor Vergata, Via della Columbia, 00133 Roma 
(Italy). accardi@vol terra. uniroma2. it 

Franco Fagnola, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 
Milano (Italy). franco.fagnola@polimi.it 

Roberto Quezada, Dep. de Matematicas, UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col Vicentina., 
09340 Mexico D.F., (Mexico). roqb@xanum. uam.mx 

-356-


