<table>
<thead>
<tr>
<th>Title</th>
<th>Forkhead box A1 (FOXA1) and A2 (FOXA2) oppositely regulate human type 1 iodothyronine deiodinase gene in liver.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kanamoto, Naotetsu; Tagami, Tetsuya; Ueda-Sakane, Yoriko; Sone, Masakatsu; Miura, Masako; Yasoda, Akihiro; Tamura, Naohisa; Arai, Hiroshi; Nakao, Kazuwa</td>
</tr>
<tr>
<td>Citation</td>
<td>Endocrinology (2012), 153(1): 492-500</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/169681</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 by The Endocrine Society</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Forkhead Box A1 (FOXA1) and A2 (FOXA2) Oppositely Regulate Human Type 1 Iodothyronine Deiodinase Gene in Liver

Naotetsu Kanamoto, Tetsuya Tagami, Yoriko Ueda-Sakane, Masakatsu Sone, Masako Miura, Akihiro Yasoda, Naohisa Tamura, Hiroshi Arai, and Kazuwa Nakao

Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine (N.K., Y.U.-S., M.S., M.M., A.Y., N.T., H.A., K.N.), Kyoto 606-8507, Japan; and Division of Endocrinology and Metabolism, Clinical Research Institute, National Hospital Organization Kyoto Medical Center (T.T.), Kyoto 612-8555, Japan

Type 1 iodothyronine deiodinase (D1), a selenoenzyme that catalyzes the bioactivation of thyroid hormone, is expressed mainly in the liver. Its expression and activity are modulated by several factors, but the precise mechanism of its transcriptional regulation remains unclear. In the present study, we have analyzed the promoter of human D1 gene (hDIO1) to identify factors that preva-
lently increase D1 activity in the human liver. Deletion and mutation analyses demonstrated that a forkhead box (FOX)A binding site and an E-box site within the region between nucleotides −187 and −132 are important for hDIO1 promoter activity in the liver. EMSA demonstrated that FOXA1 and FOXA2 specifically bind to the FOXA binding site and that upstream stimulatory factor (USF) specifically binds to the E-box element. Overexpression of FOXA2 decreased hDIO1 promoter activity, and short interfering RNA-mediated knockdown of FOXA2 increased the expression of hDIO1 mRNA. In contrast, overexpression of USF1/2 increased hDIO1 promoter activity. Short in-
terfering RNA-mediated knockdown of FOXA1 decreased the expression of hDIO1 mRNA, but knockdown of both FOXA1 and FOXA2 restored it. The response of the hDIO1 promoter to USF was greatly attenuated in the absence of FOXA1. Taken together, these results indicate that a balance of FOXA1 and FOXA2 expression modulates hDIO1 expression in the liver. (Endocrinology 153: 492–500, 2012)
sic/helix-loop-helix-leucine zipper transcription factor upstream stimulatory factor (USF), and we show that FOXA1, FOXA2, and USF all participate in the regulation of hDIO1. We also show that FOXA1 is required for the activation of the hDIO1 promoter by USF and that FOXA2 represses the transcription of hDIO1 and disrupts the interaction of USF with FOXA1 by occupying the FOXA binding site. Collectively, these results demonstrate that FOXA1 and FOXA2 display opposing activity in the regulation of hDIO1 expression in the liver.

Materials and Methods

Cell culture
The human liver carcinoma cell line HepG2 was obtained from American Type Culture Collection (Manassas, VA) and cultured in MEM (Life Technologies, Carlsbad, CA) with 0.1 mm nonessential amino acid solution (Life Technologies), 1 mm sodium pyruvate (Life Technologies), 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B supplemented with 10% fetal bovine serum at 37 °C in a humidified atmosphere containing 5% CO2. TSA 201 cells, a clone of human embryonic kidney 293 cells (5), were cultured in DMEM (Life Technologies) with 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B supplemented with 10% fetal bovine serum at 37 °C in a humidified atmosphere containing 5% CO2.

Plasmid construction
Deletion mutations of the 5′-flanking regions of hDIO1 (−4949, −2023, −343, −187, −150, −131, and −103/−4, the translational start site was set at +1) were prepared by PCR using human genomic DNA from leukocytes as a template. The resulting PCR products were subcloned into EcoRV or KpnI/HindIII-digested pGL4.10 (Promega, Madison, WI) to create a fusion with the luciferase (−4949, −2023, −343, −187, −150, −131, and −103/−4 hDIO1-Luc). The PCR primers, containing EcoRV, KpnI, or HindIII linker, are listed in Table 1. The correct orientation of these deletion mutant constructs was confirmed by sequencing.

Mutations were created using the QuikChange Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA), according to the manufacturer’s instruction; −187/−4 and −150/−4 hDIO1-Luc were used as templates. For mutagenesis, the sequences of the FOXA binding element and E-box were specified in figure 3 below. Mutated constructs were isolated from each reaction and verified by sequencing.

Plasmids expressing cDNA for FOXA2 and USF1, pF1KB7038 and pF1KB8339, respectively, were generated by Kazusa DNA Research Institute (Chiba, Japan) and purchased from Promega. These plasmids were digested with SgfI and Pmel, and cDNA for FOXA2 and USF1 were ligated into the SgfI/Pmel-digested p4A CMV Flexi vector (Promega), which uses the human cytomegalovirus intermediate-early enhancer/promoter to allow constitutive protein expression at native levels in mammalian cells. The open reading frame of human USF2 was generated by PCR using HeLa cell cDNA as a template. The PCR primers containing SgfI or Pmel linker are listed in Table 1. The PCR product was digested with SgfI and Pmel, cloned into the SgfI/Pmel-digested p4A CMV Flexi vector, and verified by sequencing.

Transient transfection and luciferase assay
HepG2 and TSA 201 cells were plated at 1.5–2 × 105 and 0.5–1 × 105 cells/well in 24-well tissue culture plates, respectively. Cells were maintained in 0.5 ml of antibiotic-free medium for 1 d before transfection. Transient transfections were performed using the Lipofectamine LTX reagent (Life Technologies) for HepG2 cells and the Lipofectamine 2000 reagent (Life Technologies) for TSA 201 cells according to the manufacturer’s instruction. In HepG2 cells, transfections included 500 ng of experimental reporter constructs and 25 ng of pGL4.74, which contained the cDNA encoding Renilla luciferase (Promega) as an internal control for transfection efficiency. In TSA 201 cells, transfections included 100 ng of experimental reporter constructs and 5 ng of pGL4.74. In the experiments with plasmids expressing FOXA2 and/or USF, total amount of plasmid DNA was kept constant by adding the corresponding amount of pF4A without a cDNA insert. After transfection, cells were grown in antibiotic-free medium and harvested after 48 h. Luciferase activity was determined using the Dual-Luciferase Reporter Assay System (Promega), and luminescence was measured by a 2030 ARVO multilabel reader (PerkinElmer, Waltham, MA). Firefly luciferase activity was normalized to Renilla luciferase activity in each well to control for transfection efficiency.

Computational analysis of the putative transcription factor binding sites
The putative transcription factor binding sites on the 5′-flanking region of hDIO1 were identified by computational

| TABLE 1. Oligonucleotides used in plasmid construction and RT-PCR |
|----------------|----------------|----------------|
| **Forward primer (5′-3′)** | **Reverse primer (5′-3′)** | **Accession no.** |
| Plasmid construction | | |
| −4949/−4 hdio1-Luc | GGGGATTATCAGCGATGGCAGCCTAGGACGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| −2023/−4 hdio1-Luc | GGGGATTACCCAGGAGCCTTGTAACCGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| −343/−4 hdio1-Luc | GGGGATTACCCAGGAGCCTTGTAACCGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| −187/−4 hdio1-Luc | GGGGATTACCCAGGAGCCTTGTAACCGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| −150/−4 hdio1-Luc | GGGGATTACCCAGGAGCCTTGTAACCGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| −131/−4 hdio1-Luc | GGGGATTACCCAGGAGCCTTGTAACCGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| −103/−4 hdio1-Luc | GGGGATTACCCAGGAGCCTTGTAACCGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| pf4A-USF2 | GGGGATTACCCAGGAGCCTTGTAACCGATGTAACGC | CCCAACAGTTTGGGCAGAGGGCAGAAGACTCTCT | AL031427 |
| RT-PCR | | |
| hDIO1 | CAGAGTTCCAGCCGAGGACATCC | CGGTTGCCAGCTCGGATGATTG | NM_000792 |
| Cyclophilin A | GACCTGAGGAGAAAGGATTTGG | CAGGAATGGTGACTCTGTC | NM_021130 |
RNA isolation, RT-PCR, and quantitative PCR

Total RNA was extracted from HepG2 cells using the RNeasy Plus Mini kit (QIAGEN, Valencia, CA) according to the manufacturer’s instruction. One microgram of total RNA was reverse transcribed with random hexamers using a First-strand cDNA Synthesis kit (GE Healthcare UK Ltd., Buckinghamshire, UK) according to the manufacturer’s instruction. The resulting cDNA were diluted 1:10 and subjected to PCR amplification with 0.5 mM each of the sense and antisense primers and 0.5 U of AmpliTaq Gold DNA polymerase (Life Technologies). The PCR primers used for hDIO1 and human cyclophilin A gene are indicated in Table 1. The PCR conditions were 40 cycles of denaturation for 1 min at 95°C, annealing for 1 min at 52°C, and extension for 1 min at 72°C. The PCR products were electrophoresed in 2% agarose gels.

Quantitative PCR reactions were performed, recorded, and analyzed using TaqMan Gene Expression Assays with StepOnePlus real-time PCR system (Life Technologies). The probe and primers were Hs0270129_m1 (human FOXA1), Hs00232764_m1 (human FOXA2), and Hs00174944_m1 (hDIO1) and purchased from Life Technologies. Diluted cDNA were amplified using the following conditions: 50°C for 2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 sec and 60°C for 1 min, followed by continuous incubation at 25°C. Expression levels of FOXA1, FOXA2, and hDIO1 were normalized to cyclophilin A to compensate for variations in input RNA.

Preparation of cell extracts and EMSA

Nuclear extracts were prepared from HepG2 cells using the Nuclear Extract kit (Active Motif, Carlsbad, CA), according to the manufacturer’s instruction. EMSA were conducted using a LightShift chemiluminescent EMSA kit (Thermo Fisher Scientific, Rockford, IL) with slight modifications of the original manufacturer’s instruction. Oligonucleotides 3’-end labeled with biotin were synthesized (Life Technologies) and annealed to generate double-stranded oligonucleotide probes. Two hundred femtomoles of oligonucleotide probe were incubated with 10–15 μg of nuclear protein and 0.5 μg of poly (dI-dC) in the presence or absence of competing oligonucleotide in 10× binding buffer containing 100 mM Tris, 500 mM KCl, and 10 mM dithiothreitol (pH 7.5) and 75 mM KCl, and 5% glycerol was added to solutions containing probes with an E-box element. After a 30-min incubation at room temperature, DNA-protein complexes were separated by electrophoresis on a 6% DNA retardation gel (Life Technologies) at 4°C in 0.5× Tris-borate, EDTA buffer containing 89 mM Tris-borate and 2 mM EDTA (pH 8.0). For supershift assays, binding reactions were incubated for 45 min at room temperature with antibodies before the addition of labeled probes. The antibodies used in the supershift assays were as follows: 1 μl (200 μg/0.1 ml) of USF1 (sc-8983X), USF2 (sc-861X), E47 (sc-763X), FOXA1 (sc-6553X), FOXA2 (sc-6554X), and FOXA3 (sc-5361X) and 5 μl (200 μg/0.5 ml) of normal goat and normal rabbit IgG, and all were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). After electrophoresis, samples were transferred onto nylon membranes and fixed by UV irradiation. Biotinylated DNA was detected using a Fujix Lumino-image analyzer (LAS-1000; Fuji Photo Film Co., Ltd., Tokyo, Japan).

Transfection of short interfering RNA (siRNA)

An aliquot of 6 pmol siRNA specific for FOXA1 and/or FOXA2 (Stealth Select RNAi, Life Technologies) or a negative control siRNA (Stealth RNAi Negative Control, Life Technologies) was transfected into HepG2 cells using the Lipofectamine RNAiMax reagent (Life Technologies) by reverse transfection according to the manufacturer’s instruction. After transfection, HepG2 cells were plated at 1.5–2 × 10⁵ cells/well in 24-well tissue culture plates and maintained in 0.5 ml of antibiotic-free medium for 24–48 h. mRNA extraction and analysis were performed as described above.

Statistics

The data represent the mean ± SEM and were obtained from at least three separate experiments, each performed in triplicate. Statistical analyses were performed to examine the significance of differences among the results using unpaired t test or ANOVA followed by Student-Newman-Keuls test or Dunnett’s test.

Results

Functional analysis of the 5′-flanking region of the hDIO1 gene

To identify regions within the promoter region of hDIO1 important for regulating its expression, a series of 5′-deletion constructs was subcloned into the pGL4.10 vector and transiently transfected into HepG2 and TSA 201 cells (Fig. 1A). In both HepG2 and TSA 201 cells, luciferase activity increased by deletion of nucleotides −150 to −131 and decreased after deletion of −131 to −103. Among the tested constructs, the luciferase activity produced by transfection of −150/−4 hDIO1-Luc was specifically and markedly decreased in HepG2 cells. Additionally, more pronounced differences were seen between the activity of −150/−4 hDIO1-Luc and −131/−4 hDIO1-Luc in HepG2 cells compared with TSA 201 cells. In addition, luciferase activity was markedly increased by deleting the region from −343 to −187 and decreased after deletion of −187 to −150 only in HepG2 cells. Taken together, these results indicate that the region between nucleotides −187 and −132 is important for hDIO1 promoter function in HepG2 cells. To confirm the expression of hDIO1, we performed RT-PCR using total RNA isolated from HepG2 and TSA 201 cells, a liver and kidney cell line, respectively. As shown in Fig. 1B, although there was a difference in the degree of gene expression, hDIO1 was expressed in both cell lines; this was consistent with a previous report examining hDIO1 tissue distribution (2). Additionally, multiple PCR products were detected, because there are several alternative splice variants of hDIO1 (7). These results indicate that there may exist a sequence
essential for liver-specific expression of hDIO1 within the −187 to −132 region of its promoter. A computational analysis of this region revealed the presence of a consensus E-box site between nucleotides −187 and −151 and a FOXA binding site between nucleotides −150 and −132 (Fig. 1C).

Promoter activity associated with the FOXA binding site and the E-box

To better understand the contribution of the FOXA binding site and the E-box on the expression of hDIO1 in liver-derived HepG2 cells, we examined luciferase activity in cells transfected with wild-type (WT) or mutated hDIO1 promoter constructs. In HepG2 cells, luciferase activity was increased 2-fold by mutating the FOXA binding site when cells were transfected with a −150/−4 hDIO1-Luc construct (Fig. 2A). In addition, when cells were transfected with a −187/−4 hDIO1-Luc construct, luciferase activity was nearly completely lost by destruction of the E-box, and mutation of the FOXA binding site caused a decrease in luciferase activity by 50% (Fig. 2B). In TSA 201 cells transfected with −187/−4 hDIO1-Luc, luciferase activity was almost completely abolished by mutation of the E-box, but mutation of the FOXA binding site in both −187/−4 hDIO1-Luc and −150/−4 hDIO1-Luc did not significantly affect luciferase activity (Fig. 2). Thus, the E-box present within the hDIO1 promoter is required for the enhancer activity in both liver- and kidney-derived cells, but the FOXA binding site exhibits liver-specific enhancer and repressor activity.

Binding of FOXA1/FOXA2 to the FOXA binding site and USF to the E-box

To determine the transcription factors that bind to these elements in the promoter of hDIO1 in HepG2 cells, we performed EMSA using oligonucleotides with the FOXA binding site and the E-box. Incubation of HepG2 cell extracts with oligonucleotides containing the FOXA binding site (Fig. 3A, WT-F) led to the formation of several DNA/protein complexes (Fig. 3B, lane 2). Formation of one of these complexes was inhibited by incubation with excess WT-F, but not mutated oligonucleotide (MUT)-F, demonstrating the specificity of this complex (Fig. 3B, lanes 3–6). Additionally, the complex was supershifted by addition of antibody specific for FOXA1 and anti-FOXA2 antibodies (Fig. 3B, lanes 7 and 8). However, an antibody specific for FOXA3, which binds an identical sequence, or normal goat IgG did not disrupt complex formation (Fig. 3B, lanes 9 and 10). These results suggest that the putative FOXA binding site is specifically bound by FOXA1 or FOXA2. We next examined binding to the E-box sequence, and several complexes were formed by
incubation of HepG2 cell extracts with an appropriate oligonucleotide (Fig. 3A, WT-E, and C, lane 2). Formation of one of these complexes was inhibited by incubating cells with an excess of WT-E and the E-box from human ghrelin gene 8 but not by a mutant oligonucleotide MUT-E (Fig. 3A, lanes 3 and 4, respectively) or MUT-E (lanes 5 and 6, respectively). The specific complex formed from HepG2 cell nuclear extract and WT-E is indicated by an arrowhead. Supershift assay experiments were performed using antibody against FOXA1 (F1; lane 7), FOXA2 (F2; lane 8), or FOXA3 (F3; lane 9) and normal goat IgG (C; lane 10). Panel C, Oligonucleotide WT-E was used as the probe for EMSA either without competitor (lane 2) or in the presence of 50- and 100-fold molar excesses of unlabeled WT-E (lanes 3 and 4, respectively) or MUT-E (lanes 5 and 6, respectively). The specific complex formed from HepG2 cell nuclear extract and WT-E is indicated by an arrowhead. D, Supershift assay experiments were performed using antibody against USF1 (U1; lane 7), USF2 (U2; lane 8), or E47 (E47; lane 9) and normal rabbit IgG (C; lane 10). C, Negative control (normal goat and normal rabbit IgG).

FIG. 3. Specific binding of the transcription factors within the −187 and −132 region in the hDIO1 promoter using nuclear proteins from HepG2 cells. Panel A, Sequences of the double-stranded oligonucleotides used in EMSA. WT-F, WT hDIO1 sequence identical to the −153 to −125 region, containing the FOXA binding site at −143 to −132. MUT-F contains a mutated FOXA binding site. WT-E, WT hDIO1 sequence identical to the −187 to −159 region, containing the E-box at −177 to −172. MUT-E contains a mutated E-box. Each putative binding site is underlined; the mutated base pairs are indicated by italic letters. Panel B, Oligonucleotide WT-F was used as the probe for EMSA either without competitor (lane 2) or in the presence of 50- and 100-fold molar excesses of unlabeled WT-F (lanes 3 and 4, respectively) or MUT-F (lanes 5 and 6, respectively). The specific complex formed from HepG2 cell nuclear extract and WT-F is indicated by an arrowhead. Panel C, Oligonucleotide WT-E was used as the probe for EMSA either without competitor (lane 2) or in the presence of 50- and 100-fold molar excesses of unlabeled WT-E (lanes 3 and 4, respectively), MUT-E (lanes 5 and 6, respectively), or 100-fold molar excesses of unlabeled E-box from the human ghrelin gene [E2 and E3 (in Ref. 8); lanes 7 and 8, respectively]. The specific complex formed from HepG2 cell nuclear extract and WT-E is indicated by an arrowhead. D, Supershift assay experiments were performed using antibody against USF1 (U1; lane 7), USF2 (U2; lane 8), or E47 (E47; lane 9) and normal rabbit IgG (C; lane 10). C, Negative control (normal goat and normal rabbit IgG).

Effect of overexpression of FOXA2 or USF on hDIO1 promoter activity

To determine whether FOXA and USF have the potential to affect the activity of the hDIO1 promoter in liver cells, a −187/−4 hDIO1-Luc construct was transiently transfected into HepG2 cells along with increasing amounts of either a FOXA2 or USF expression plasmid. The luciferase activity decreased in a dose-dependent manner by cotransfection of the FOXA2 expression plasmid with −187/−4 hDIO1-Luc (Fig. 4A). In contrast, luciferase activity increased dose dependently by the cotransfection of the USF1 or USF2 expression plasmid, and overexpression of USF2 consistently led to greater hDIO1 promoter activity than expression of USF1 alone (Fig. 4B). Thus, transcription of hDIO1 is negatively regulated by FOXA2 and positively regulated by USF. Although we transiently transfected a −187/−4 hDIO1-Luc construct into HepG2 cells along with increasing amounts of a FOXA1 expression plasmid, we could not obtain appropriate data, indicating that the FOXA1 expression plasmid we used did not function in our experimental system for unknown reason.

RNA interference

Next, we determined the effects of FOXA on the native hDIO1 promoter using siRNA-mediated knockdown of FOXA in HepG2 cells. As shown in Fig. 5, A and B, knock-
down of FOXA1 decreased the expression of hDIO1 mRNA, and knockdown of FOXA2 increased the expression level of hDIO1 mRNA. FOXA1 and FOXA2 did not affect each other’s expression by knockdown of them (Fig. 5, A and B). In addition, when both FOXA1 and FOXA2 were knocked down simultaneously, no change in the expression of hDIO1 mRNA was seen (Fig. 5C). Thus, hDIO1 expression is positively regulated by FOXA1 and negatively regulated by FOXA2, and FOXA1 and FOXA2 interact with each other to regulate hDIO1 expression.

Interaction between FOXA and USF in the activation of the hDIO1 promoter

Transcription factors frequently interact to coordinate regulation of gene expression, and we first wished to determine whether the FOXA binding site and the E-box present in the hDIO1 promoter interact. We cotransfected a WT or mutated −187/−4 hDIO1-Luc construct and USF expression plasmids into HepG2 cells. When the FOXA binding site was mutated, the transcription activity of the hDIO1 promoter in the presence of transfected USF was attenuated (Fig. 6A). Thus, activation of the hDIO1 promoter by USF depends on the presence of a functional FOXA binding site. Next, we investigated the effects of FOXA on the response of the hDIO1 promoter to USF.

We knocked down the expression of FOXA and cotransfected a −187/−4 hDIO1-Luc construct along with USF expression plasmids into HepG2 cells. As shown in Fig. 6B, the transcription activity of the hDIO1 promoter was attenuated by knockdown of FOXA1 and enhanced by knockdown of FOXA2. The transcription activity of the hDIO1 promoter was also attenuated by simultaneous knockdown of FOXA1 and FOXA2 to an extent similar to that seen for the knockdown of FOXA1. The suppressed activity by knockdown of FOXA1 was not restored by overexpression of USF, and the enhanced activity by knockdown of FOXA2 was further enhanced by overexpression of USF. Thus, the response of the hDIO1 pro-
moter to USF was greatly attenuated by knockdown of FOXA1 and enhanced by knockdown of FOXA2. Furthermore, we cotransfected a −187/−4 hDIO1-Luc construct and USF expression plasmids with or without a FOXA2 expression plasmid into HepG2 cells. The transcription activity of the hDIO1 promoter was enhanced in the presence of transfected USF (Fig. 6C, white bar), but the activity was greatly attenuated by cotransfection of the FOXA2 expression plasmid (Fig. 6C, black bar). Thus, the response of the hDIO1 promoter to USF was attenuated by the coexpression of FOXA2. Collectively, these results indicate that FOXA1 is required for the activation of the hDIO1 promoter by USF and that FOXA2 represses the transcription of hDIO1 and disrupts the interaction of USF with FOXA1 by occupying the FOXA binding site.

Discussion

In this study, we analyzed the 5′-upstream region of hDIO1 to identify protein-DNA interactions within the hDIO1 promoter. Our experiments demonstrated that the region between nucleotides −187 and −132 is important for hDIO1 promoter activity in HepG2 cells. We identified functional elements for FOXA and USF within this region, and we showed that these sites are important for the transcriptional regulation of hDIO1. Recently, Ohguchi *et al.* (9) identified a proximal hepatocyte nuclear factor (HNF4α) binding site in mice, and they demonstrated that the HNF4α binding site is essential for the activation of the mouse D1 gene by HNF4α. Deletion analyses of the 5′-flanking region of hDIO1 were performed by Jakobs *et al.* (10) by transfecting 1.5- and 0.1-kb constructs into HepG2 cells, and they found that both constructs substantially increased luciferase activity compared with a promoterless vector. However, they did not perform a higher resolution promoter analysis, and we are the first to identify functional elements other than thyroid hormone responsive element in the hDIO1 promoter.

The FOXA proteins were first identified as liver-enriched factors because of their ability to bind the transthyretin gene promoter, and they were originally termed HNF3 (11). There are three FOXA proteins, FOXA1 (HNF3α), FOXA2 (HNF3β), and FOXA3 (HNF3γ), which are encoded by different genes on different chromosomes (12). FOXA proteins play important roles in early embryonic development and organogenesis, and they are recognized as “pioneer factors” (13). In addition, the FOXA proteins control glucose metabolism through the regulation of multiple target genes in the liver, pancreas, and adipose tissue after birth (13). Our EMSA experiments demonstrated that FOXA1 and FOXA2 specifically bound the identical FOXA binding site of the hDIO1 promoter. Although all three FOXA proteins exist relatively abundant in HepG2 cells (14) and recognize the same DNA sequences, slight differences in the binding affi-
ity and DNA binding capacity may account for their speci-
ficity (15). Indeed, there are very few reports that FOXA1 and
FOXA2 share an identical binding site and coparticipate
in the transcriptional regulation of a single gene (16). Our
transfection assays and siRNA experiments demonstrated
that hDIO1 is positively regulated by FOXA1 and negatively
regulated by FOXA2 and that FOXA1 and FOXA2 interact
to coordinate the regulation of hDIO1 expression. These results
suggest that FOXA proteins are involved in thyroid hormone
homeostasis.

USF proteins were first identified as regulators of aden-
ovirus major late promoter transcription (17, 18). There are
two USF proteins, 43 kDa (USF1) and 44 kDa (USF2), en-
coded by different genes on different chromosomes (19, 20).
USF proteins primarily bind as dimers to consensus se-
quencies containing the CACGTG motif termed an E-box
(18, 19, 21). USF proteins are ubiquitously expressed, al-
though different ratios of USF homo- and heterodimers are
found in different cell types (22). The molecular details of
USF binding and activity have been well characterized, but its
biological role remains poorly understood. USF proteins reg-
ulate the expression of several genes related to glucose and
lipid metabolism and peptide hormone synthesis, including
liver-type pyruvate kinase (23) and glucokinase (24), fatty
acid synthase (25), apolipoprotein A-II (26), calcitonin/cal-
lcitonin gene-related peptide (27), and ghrelin (8). In our
study, we demonstrated that the putative E-box site in the
hDIO1 promoter specifically bound the USF1/USF2 het-
erodimer and that promoter activity increased in a dose-de-
pendent manner with the cotransfection of the USF1/2 ex-
pression plasmid. These results suggest that USF positively
regulate hDIO1 expression. Additionally, promoter activity
was almost completely abolished by mutation of the E-box
motif, indicating that USF proteins are critical for the tran-
scriptional regulation of hDIO1 and thyroid hormone
homeostasis in the liver and possibly kidney.

The response of the hDIO1 promoter to USF was greatly
attenuated by mutation of the FOXA binding site or knock-
down of FOXA1, indicating that FOXA1 is necessary for the expression of hDIO1 by USF. FOXA1 plays an essen-
tial role in the “pioneering” of gene reg-
ulatory elements, allowing for the re-
cruitment of additional factors required
for gene regulation (28), and our data
suggest that USF cooperates with
FOXA1 to regulate hDIO1 promoter ac-
tivity. Although we could not confirm
the interaction between FOXA1 with USF by
immunoprecipitation experiments in
our experimental condition (data not
shown), a direct physical interaction be-
tween FOXA1 and USF has been reported through the use of
immunoprecipitation and glutathione S-transferase pull-
down assays (29). Furthermore, the cooperation between
FOXA1 and USF likely contributes to the liver-specific ac-
tivation of hDIO1; although FOXA1 was expressed in both
HepG2 and TSA201 cells in our preliminary experiments
data not shown), only HepG2 cells demonstrated substan-
tial differences in promoter activity by transfection of
–187/-4 hDIO1-Luc and mutation of the FOXA binding
site. Interactions between cell-specific factors and other reg-
ulators are thought to contribute to the tissue-specific control
of gene expression by the ubiquitous USF proteins (26, 30–
34), and Fig. 7 shows our working model for the regulation
of liver-specific expression of hDIO1 by transcription factor
binding to the –187 to –132 region of the hDIO1 promoter.
In this model, hDIO1 promoter activity is modulated by
FOXA1, FOXA2, and USF proteins, and these transcription
factors interact with each other to fine-tune the hDIO1 pro-
moter activity.

In conclusion, we have shown that FOXA1, FOXA2,
and USF regulate hDIO1 expression in the liver. FOXA1
and FOXA2 both participate in the liver-specific regu-
lation of hDIO1 expression, and FOXA1 and USF act to-
gether to promote the liver-specific activation of hDIO1.
FOXA1 and FOXA2 are likely involved in thyroid hor-
mone homeostasis in the liver.

Acknowledgments

We thank Mami Yoshida and Yudai Takeuchi for technical as-
sistance and Miyuki Ban for secretarial assistance.

Address all correspondence and requests for reprints to: Naotetsu Kanamoto, M.D., Ph.D., Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. E-mail: kyotetsu@kuhp.kyoto-u.ac.jp.
This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Health, the Labor and Welfare of Japan, Ministry of Education, Culture, Sports, Sciences, and Technology of Japan Grants 18790635, 19591075, and 21119013, and the Takeda Science Foundation.

Disclosure Summary: The authors have nothing to disclose.

References

17. Miyamoto NG, Moncollin V, Egly JM, Chambon P 1985 Specific interaction between a transcription factor and the upstream element of the adenovirus-2 major late promoter. EMBO J 4:3563–3570
19. Gregor PD, Sawadogo M, Roeder RG 1990 The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev 4:1730–1740
31. Heckert LL 2001 Activation of the rat follicle-stimulating hormone receptor promoter by steroidogenic factor 1 is blocked by protein kinase a and requires upstream stimulatory factor binding to a proximal E box element. Mol Endocrinol 15:704–715