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Abstract 20 

Cellulose is utilized as a nutritional source by various organisms. It had been long believed that only 21 

protozoa, bacteria and fungi, in addition to plants and photo-synthetic bacteria, are abｌe to synthesize 22 

cellulases encoded by their own genes. However, the wide spread distribution of cellulases throughout the 23 

animal kingdom has been recently recognized. Conventionally, animals digest cellulose by utilizing 24 

cellulases derived from symbiotic bacteria in the digestive organs. However, recent molecular biological 25 

studies have shown that some cellulase genes are actually encoded on animal chromosomes. In addition, 26 

the homologous primary structure of cellulases obtained from various phyla of invertebrates indicates the 27 

possible vertical transfer of the cellulase gene from ancient organisms that are now extinct. Studies on 28 

cellulase with unique enzymatic properties are expected to be applied to bioethanol production and 29 

aquaculture. In the present review, we describe cellulases, with a primary focus on aquatic invertebrates 30 

in which both endogenous and exogenous cellulases are involved in the breakdown of cellulose in the 31 

digestive organs.  32 
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Introduction 36 

Cellulose synthesized by plants and phototrophic bacteria is the most abundant organic substance on 37 

the earth. Cellulose is chemically stable, and thereby plays an important role as a major component in the 38 

cell wall of plants and bacteria by providing physical strength [1]. This physical strength is attributed to 39 

the primary structure of cellulose, which consists of monomeric chains of D-glucopyranose bound by 40 

β-1,4-glycoside linkages that form cellulose microfibrils interconnected with hydrogen bonds (Fig. 1) [2]. 41 

In addition to cellulose, the cell wall contains lignin and various hemicelluloses, including mannan, xylan, 42 

and laminarin. The contents of the hemicelluloses differ across plant species [3].  43 

Enzymes that degrade cellulose are collectively called cellulases, and are classified according to a 44 

range of characteristics. First, cellulases are classified according to the cleavage site on cellulose; 45 

comprising (1) β-1,4-endoglucanase (EC 3.2.1.4.), which cleaves cellulose at random sites, and (2) 46 

β-1,4-exocellobiohydrolase (EC 3.2.1.91.), which cleaves off glucose dimers from the terminal end of 47 

cellulose. Subsequently, β-glucosidase (EC 3.2.1.21.) cleaves glucose from the breakdown products 48 

formed by β-1,4-endoglucanase and β-1,4-exocellobiohydrolase (Fig. 2).  49 

Second, cellulases are classified by the presence of the carbohydrate-binding module (CBM) within 50 

their molecules. Some carbohydrate degrading enzymes have a CBM that is independent of the catalytic 51 

site, which binds to substrates and stabilizes the enzymatic reaction. For example, cellulases that have a 52 

cellulose-binding domain (CBD) on a CBM constantly bind to cellulose, with the enzyme molecules 53 
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continuously moving to a subsequent cleavage site after each reaction. In comparison, cellulases that do 54 

not have a CBD detach from the cellulose after every cleaving reaction, and search for the cleaving site of 55 

the next hydrolytic reaction [2]. Cellulases that have a CBD are assumed to hydrolyze cellulose more 56 

efficiently than those that do not have (Fig. 3). 57 

Third, cellulases are classified according to their primary structure. For instance, glycoside 58 

hydrolases are classified into the glycoside hydrolase family (GHF) by Henristatt et al., according to the 59 

amino acid sequence [4, CazyWeb: http://www.cazy.org/ “Accessed 6 May 2012”.]. At present, 130 60 

families are registered, with cellulases being classified into families 1, 3, 5, 6, 7, 8, 9, 10, 12, 19, 26, 30, 61 

44, 45, 48, 51, 61, 74, 116, and 124 (Table 1). 62 

Cellulose is utilized as a nutritional source by various organisms. It has long been believed that only 63 

protozoa, bacteria, and fungi, in addition to plants and photo-synthetic bacteria, are able to synthesize 64 

cellulases encoded by their own genes [1, 5-7]. Before 1998, it was assumed that metazoans degraded 65 

cellulose using cellulases derived from symbiotic protozoa and bacteria in their digestive organs [1]. 66 

However, a novel gene encoding cellulase (GHF9; β-1,4-endoglucanses) was identified in Reticulitermes 67 

speratus (Arthropoda, Insecta) in 1998 [7]. Subsequently, the presence of endogenous 68 

β-1,4-endoglucanses, belonging to various GHF families, has been reported in various insects, 69 

crustaceans, mollusks, echinoderms, and nematodes [8-16]. 70 

The origin of cellulase in metazoans may be explained by two alternative hypotheses [15, 16]. The 71 
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first hypothesis is the horizontal transfer of cellulase genes from symbiotic protozoa. The second 72 

hypothesis is the vertical transfer of cellulase genes from ancient organisms that are now extinct. In this 73 

second hypothesis, cellulase genes have been inherited for a long period of time from the ancestor to the 74 

offspring. According to the reports on GHF9 [15, 16], which is the most intensively studied cellulases, 75 

vertical transfer is considered more likely. The amino acid sequence of GHF9 is very similar in several 76 

organisms, indicating the presence of a shared common cellulase ancestor, from which the GHF9 gene 77 

has been inherited for a hundred million years (Fig. 4). Unfortunately, evolutionary evidence of other 78 

GHFs is not available, and information about their primary structures remains fragmentary [15]. 79 

Table 2 classifies cellulases according to origin (endogenous or exogenous) and habitat (terrestrial or 80 

aquatic). Endogenous origin means that the cellulase gene is encoded on the chromosomes of the 81 

organisms, whereas an exogenous origin means that the cellulase gene is encoded on the chromosomes of 82 

symbiotic microorganisms. As shown in Table 2, enzymes from archaea, eubacteria, fungi, and plants are 83 

all classified as endogenous, whereas cellulases of both endogenous and exogenous origin are found in 84 

invertebrates. The exogenous origin of cellulases in invertebrates is assumed to compensate for cellulases 85 

of endogenous origin. In contrast, cellulases of endogenous origin have yet to be reported in vertebrates. 86 

In the present review, we describe cellulases, with a primary focus on aquatic invertebrates in which 87 

both endogenous and exogenous cellulases contribute to the breakdown of cellulose in the digestive 88 

organs.  89 
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 90 

Cellulases derived from symbiotic microorganisms in terrestrial organisms 91 

It had long been doubted as to whether herbivorous terrestrial animals actually digest cellulose and 92 

utilize it as a nutritional source. For instance, there have been substantial efforts to validate whether 93 

herbivorous mammals utilize cellulose during digestion [1]. Studies on symbiotic microorganisms in the 94 

ruminant stomach of herbivorous animals, which are involved in cellulose breakdown, are documented in 95 

Table 3. In 1942, Hungate reported the ability of the genera Diplodinium and Entodinium to breakdown 96 

protozoan cellulose, and the possible implication of these microorganisms in the breakdown of cellulose 97 

in the lumen of herbivorous mammals [17]. Various microorganisms in the digestive organs of sheep have 98 

also been investigated. For example, in 1982, Wood et al. isolated an anaerobic symbiotic microorganism 99 

Ruminococcus albus from the sheep lumen that was able to degrade cellulose, and successfully purified 100 

the cellulase from the extracts [18]. In 1986, Coleman et al. recorded the cellulose-degrading ability of 101 

the protozoa Entodinium caudatum in the sheep lumen [19]. Subsequently, in 1992, Bernaler et al. 102 

reported the cellulose-degrading ability of the anaerobic fungus Neocallinastix frontalis in the sheep 103 

lumen [20]. In addition to sheep, Varel et al. reported the cellulase degrading ability of the gram-positive 104 

bacillus Bacteroides succinogenes and the gram-negative coccus Ruminococcus flavefaciens in the 105 

porcine colon [21].  106 

In addition to herbivorous mammals, there have been extensive studies of symbiotic bacteria 107 
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implicated in the breakdown of cellulose in herbivorous insects. The cellulose-degrading ability of 108 

symbiotic bacteria in the termite Reticulitermes flavipes was first reported in 1924 [22]. Subsequently, in 109 

1932, Trager et al. reported the cellulase activity of flagellates in the digestive organs of the wood roach 110 

[23]. Recently, Delalibera et al. found symbiotic cellulose-degrading bacteria and fungi in the digestive 111 

organs of the wood borer and bark beetle [24]. The presence of symbiotic microorganisms has been 112 

extensively studied in termites. For example, Wenzel et al. successfully isolated symbiotic aerobic and 113 

anaerobic bacteria from damp wood termites (Zootermopsis angusticollis; Arthropoda, Insecta) in 2002 114 

[25]. In 2006, Watanabe et al. isolated archaebacteria exhibiting cellulase activity from the digestive tract 115 

of the giant northern termite (Mastotermes darwiniensis; Arthropoda, Insecta) [26]. Interestingly, Martin 116 

et al. detected cellulase activity in the midgut extract of the fungus-growing termite, Macrotermes 117 

natalensis (Arthropoda, Insecta) in 1978 [27]. This termite species cultures cellulose-degrading bacteria 118 

in its hive, and obtains cellulase from these bacteria. A similar example was reported for another termite, 119 

Macrotermes mulleri (Arthropoda, Insecta) [28]. Hence, there are a large number of terrestrial animals 120 

that are associated with symbiotic microorganisms, allowing them to effectively utilize cellulose.  121 

 122 

Cellulases derived from symbiotic microorganisms in aquatic organisms  123 

The shipworm (Bivalvia, Teredinidae) is a major pest that bores holes in the hulls of wooden ships 124 

and other wooden marine structures, occasionally resulting in the sinking of ships. Symbiotic bacteria 125 
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were first found in granules of “the Gland of Deshayes” from one shipworm species Bankia australis 126 

(Mollusca, Bivalvia) in 1973 [29]. In 1983, Waterbury et al. found some species of bacteria that had both 127 

cellulose-degrading activity and nitrogen-fixing ability in shipworms, indicating that this species of 128 

shipworm utilizes cellulose and fixes nitrogen as carbon and nitrogen sources, respectively [30]. In 1991, 129 

the authors also reported the presence of a symbiotic bacteria belonging to Proteobacteria in various 130 

species of shipworm [31]. This was the first report demonstrating the widespread distribution of 131 

symbiotic bacteria belonging to the same phylum being present in a variety of shipworm species. After 132 

2002, Teredinibacter turnerae classified into Proteobacterium, was found to be distributed in 24 species 133 

belonging to 9 distinct genera out of the total 14 genera of shipworm [32]. This observation indicates the 134 

ubiquitous distribution of specific bacteria among various species of shipworm. 135 

Studies on symbiotic bacteria with cellulase activity have extended to the deep sea ecology of 136 

animals inhabiting wood that has fallen to the ocean floor at the sea bottom. In 1997, bacteria 137 

morphologically resembling those found in shipworms were discovered in the digestive organs of a 138 

bivalve species Xylophaga washingtona (Mollusca, Bivalvia), which belongs to the same class as the 139 

shipworm [33]. New symbiotic bacteria were also found in the gills of a sunken wood-associated mussel 140 

(Mytilidae) in 2008 using the fluorescence in situ hybridization (FISH) technique, which employs 141 

specific molecular probes to identify different species of bacteria [34]. In 2010, another species of 142 

symbiotic bacteria was found in the gills and digestive organs of Pectinodonta sp., belonging to the 143 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

Gastropoda [35]. On the basis of these findings, the mechanism of cellulose breakdown in the wood 144 

ecological system of the deep sea is gradually being revealed. 145 

In comparison, Cary et al. reported the vertical transfer of symbiotic bacteria from “mother to baby” 146 

in related species of Calyptogena (cold-seep clams) and Solemya reidi [36]. In a later study of Bankia 147 

setacea, a type of shipworm, Sipe et al. reported the vertical transfer of symbiotic bacteria from “mother 148 

to baby” via the eggs [37]. Since the cellulose-degrading activity of these bacteria has yet to be 149 

demonstrated, further studies on the occurrence of cellulase activities in these bacterial species are 150 

required.  151 

The ｇribble worm is an isopod that bores holes in wooden ships, similar to shipworm. The presence 152 

of symbiotic bacteria in the gribble worm has long been disputed [38]; however, in 2010, one gribble 153 

worm species, Limnoria quadripunctata (Arthropoda, Malacostracea), was confirmed to have 154 

endogenous cellulases, the genes of which are encoded on the chromosomes of the species [39]. 155 

   156 

Endogenous cellulases in terrestrial and aquatic animals   157 

Table 3 summarizes the reported endogenous β-1,4-endoglucanses belonging to GHF9 from 158 

terrestrial and aquatic invertebrates. Most species containing endogenous cellulases belong to the  159 

Arthropoda and Nematoda. The first species reported to have endogenous cellulase was the termite 160 

Reticulitermes speratus, which is widely distributed across Japan, and has been studied intensively as a 161 
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harmful insect that decomposes wooden houses [7]. In 1998, Watanabe et al. succeeded in cloning the 162 

cDNA of β-1,4-endoglucanse from R. speratus, and the enzyme was classified as GHF9, according to the 163 

deduced amino acid sequence. The authors confirmed its endogenous origin by using PCR and Southern 164 

blot analysis of DNA extracted from termites. These procedures revealed the presence of an intron in the 165 

gene of β-1,4-endoglucanse. Later, the cDNA of another cellulase was cloned from Coptotermes 166 

formosanus (Arthropoda, Insecta), a termite species related to R. speratus, with it being classified as an 167 

endogenous GHF9 cellulase [40]. This cellulase was expressed in the foregut and midgut, with a 168 

symbiotic flagellate expressing a GHF7 cellulase in the hindgut [40]. These findings indicate that C. 169 

formosanus first degrades cellulose in the foregut and midgut via endogenous cellulases, and then the 170 

degraded products of cellulose are further digested by cellulases from the symbiotic flagellate in the 171 

hindgut, facilitating the effective digestion of cellulose. The presence of endogenous cellulases was 172 

subsequently reported for herbivorous arthropods, including the cockroach, which inhabits forests [41], 173 

and the well-known flour beetle Tribolium castaneum (Arthropoda, Insecta), which has a worldwide 174 

distribution [42]. 175 

In addition to arthropods, cellulases from Nematoda have been studied intensively. In 1998, the 176 

cDNA of cellulase was cloned from the plant-pathogenic cyst nematodes Globodera rostochiensis and 177 

Heterodera glycines (Nematoda, Tylenchida), and was classified as an endogenous GHF5 family enzyme 178 

[11]. In addition to cellulase, Heterodera glycines has endogenous genes encoding chitinase [43]. 179 
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Cellulase genes were assumed to be horizontally transferred from bacteria or fungi to the ancestors of 180 

these two nematodes [44]. These nematodes infest the roots of host plants through an aperture that is 181 

formed by using their cellulases to degrade the plant cell walls [45]. In Japan, the gene of endogenous 182 

β-1,4-endoglucanase belonging to GHF45 was found in a major pine wood nematode Bursaphelenchus 183 

xylophilus (Nematoda, Tylenchida) which is parasitic to pine trees, causing pine tree death. These 184 

nematodes are assumed to bore into pine trees by degrading the cell wall in a similar way to the other two 185 

described nematode species. The β-1,4-endoglucanase gene of this nematode was demonstrated to be 186 

horizontally transferred from fungi. Thus, this species may have acquired the ability to degrade cellulose 187 

independently from other plant parasitic nematodes [46].  188 

A small number of aquatic invertebrate species with endogenous cellulases have been reported. 189 

However, the phylum of the species found to have cellulases is diverse: Arthropoda, Mollusca, Annelida, 190 

Echinodermata, and Chordata. In aquatic animals, endogenous cellulase (β-1,4 endoglucanase) was first 191 

identified in Cherax quadricarinatus (common crayfish: Arthropoda, Crustacea). The primary structure 192 

of their cellulases shows homology with those of the termite, a terrestrial arthropod [47]. Although this 193 

finding indicates that cellulases distribute widely in arthropod, further studies on the distribution of 194 

cellulases among the other subphylums as Cheliceriformes, Myriopoda, or Trilobitomorpha is needed to 195 

confirm the widespread distribution of cellulases in arthropods. 196 

The presence of cellulases has been most intensively studied in mollusks. At present, GHF9 197 
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cellulases have, for example, been reported in Halliotis discus hannai (Mollusca, Gastropoda) [48], 198 

Halliotis discus discus (Mollusca, Gastropoda) [49], Corbicula japonica (Mollusca, Bivalvia) [12], 199 

Ampullaria crossean (Mollusca, Gastropoda) [50], and Mizuhopecten yessoensis (Mollusca, Bivalvia) 200 

[CazyWeb: http://www.cazy.org/ “Accessed 6 May 2012”.]. In addition, GHF45 cellulase has been 201 

reported in Mytilus edulis (Mollusca, Bivalvia) [51], Corbicula japonica [52], and Ampullaria crossean 202 

[53]. There are species differences in the feeding habits of these mollusks. For instance, H. discus hannai 203 

and H. discus discus feed on diatoms in the larval stage and macroalgae in the adult stage. M. edulis is an 204 

epifaunal suspension feeder in coastal marine areas. C. japonica preferentially feeds on terrestrial 205 

particulate organic matter over phytoplankton in brackish waters [49, 54–58]. To the best of our 206 

knowledge, the diet of A. crossean has not been reported. Nevertheless, Pomacea canaliculata, which 207 

belongs to the same family as A. crossean, is known to digest fresh leaves. In 2011, Qiu et al. reported 208 

that P. canaliculata (Mollusca, Gastropoda) feeds on both fresh and decayed leaves of a variety of 209 

macrophytes [59]. Qiu et al. also mentioned that several species of Ampullariidae (Pomacea) eat leaves of 210 

macrophytes in wetlands [59].  211 

The widespread distribution of cellulases among various mollusks with different feeding habits may 212 

also indicate the importance of this enzyme in biochemical cellulose breakdown, particularly for C. 213 

japonica, which is thought to feed on detritus, including decaying plants. The detritus that accumulates on 214 

the substrate of brackish areas includes a large amount of plant fragments, mainly composed of cellulose, 215 
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and is considered an important food resource for estuarine benthos [60, 61]. A recent study revealed that 216 

C. japonica contains endogenous β-glucosidase, which degrades the digested products of cellulose 217 

formed by β-1,4-glucanase into free glucose [62]. In addition, immunological analysis using an antibody 218 

to GHF9 endo-β-1,4-glucanase from C. japonica confirmed the production of GHF9 219 

endo-β-1,4-glucanase in the digestive gland [63]. Because of the synergistic action of β-1,4-glucanases 220 

[12, 52] and β-glucosidase, C. japonica is assumed to utilize cellulose efficiently as a nutritional resource. 221 

Furthermore, C. japonica is also able to degrade hemicellulose. Sakamoto et al. revealed that C. japonica 222 

contains xylanase, which degrades xylan, one of the hemicellulases [64]. A comparative study of cellulase 223 

and hemicellulase activities in bivalves confirmed that C. japonica exhibits significantly higher 224 

mannanase activity than other bivalves [65]. Hence, C. japonica appears to be well adapted to brackish 225 

environments rich in plant-derived detritus.    226 

Furthermore, recent studies have confirmed that other mollusks also utilize multiple enzymes. For 227 

example, H. discus hannai contains mannanase, β-1,3-glucanase, and alginate lyase [66-68], and M. 228 

edulis contains mannanase [69]. More recently, Kumagai and Zahura found that Aplysia kurodai 229 

(Mollusca, Gastropoda), which is a sea hare that eats seaweed, contains β-1,3-glucanases and mannanase 230 

[70, 71]. The presence of endogenous cellulose-degrading enzymes, including β-1,4-endoglucanase, in 231 

these studied species indicates that these enzymes are widespread among mollusks.  232 

Cellulase activity has also been well documented in other aquatic invertebrates, such as polychaetes 233 
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and crabs inhabiting a wide range of environments. Niiyama recorded high cellulase and hemicellulase 234 

activities in a variety of temperate region macrobenthos [72]. Toyohara et al. suggested that either 235 

meiobenthos (small annelids or nematodes) or sediments in temperate areas exhibit cellulase activity [73]. 236 

Furthermore, Yamada and Toyohara confirmed the presence of cellulase activity in the meiobenthos and 237 

sediments of the subantarctic region, which was dependent on climatic and sediment features [74]. A 238 

recent study by Liu and Toyohara proposed that sediment complexes harbor enzymes including cellulase 239 

[75], and it is suggested that plant-degrading enzymes are widely distributed in sediments and the 240 

environment. 241 

β-1,4-Endoglucanases of GHF9 have been reported in the echinoderm Storongylocentrotus nudus 242 

(Echinodermata, Echinoidea), which typically feeds on macroalgae [10], and Ciona intertinalis (Chordata, 243 

Ascidiacea) [76], for which the genome structure has been intensively studied. Although C. intertinalis 244 

belongs to the Chordata, which also includes humans, it is known to synthesize cellulose to protect its 245 

body. Genomic analyses have shown that the genome of this species harbors endogenous enzymes that 246 

synthesize cellulose, which were horizontally transferred from bacteria 530 million years ago. This 247 

species has evolved a specific biochemical system to synthesize cellulose that is distinct from that of 248 

plants [77]. While the β-1,4-endoglucanases of this species share a homologous structure with other 249 

GHF9 cellulases that have been reported in various aquatic invertebrates, they have a distinct function 250 

[76]. C. intertinalis contains cellulases to degrade cellulose in the tunic, not to degrade cellulose ingested 251 
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into the digestive organs. Hence, C. intertinalis may serve as a good model to study the horizontal gene 252 

transfer mechanism from prokaryotes to eukaryotes, although supplementary genetic information must be 253 

collected for other sea squirts. 254 

 255 

Utilization of animal cellulases  256 

Cellulose is the most abundant organic material on the earth. A variety of animals that have 257 

flourished on this planet are dependent on this widespread resource. Cellulose is even essential for 258 

humans as an industrial material for generating paper and clothes, as well as nutritional food fiber 259 

materials. The degradation and reconstitution of cellulose has been extensively studied with the aim of 260 

producing desirable industrial materials or food, in addition to synthesizing various cellulose derivatives. 261 

The modification of cellulose has been studied intensively, and cellulase is probably one of the most 262 

industrially utilized enzymes [2, 78, 79].  263 

Recently, cellulases have attracted attention as potential energy sources, such as bioethanol. 264 

Bioethanol is synthesized from glucose derived from plant cellulose and hemicellulose. Bioethanol differs 265 

from conventional fossil fuels, such as petroleum and coal, in that it is a carbon-neutral fuel, which does 266 

not increase the amount of CO2 in the air. This is because the amount of CO2 released into the air when 267 

consuming bioethanol is equal to that fixed by plants used for bioethanol production [80]. An important 268 

aspect of bioethanol production is to reduce energy expenditure when degrading cellulose. At present, 269 
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microbial cellulases with heat-stable and acid-stable properties are available for the breakdown of 270 

cellulose. To date, anaerobic bacteria have been intensively studied for this purpose, as described in a 271 

review by Demain, in which the co-culture of anaerobic bacteria was shown to be effective for producing 272 

bioethanol under moderate conditions, and at low cost by using crude substrates [81]. Animal cellulases 273 

are potential candidates for bioethanol production, because they are expected to be equipped with specific 274 

enzymatic properties that are different to microbial cellulases. In 2011, Xu et al. reported that endogenous 275 

β-1,4 endoglucanase from a gastropod Ampullaria crossean showed acid and heat stability [82]. 276 

Yanagisawa et al. reported that drips containing cellulase and amylase from the mid-gut gland of scallops 277 

sacchalified sea lettuce and suggested that these enzymes could be used to produce ethanol when 278 

combined with yeast [83].  279 

The digestive efficiency of termite enzymes is reported to be as high as 99 % for cellulose and 87 % 280 

for hemicelluloses, driving researchers to investigate potential industrial applications. It has been 281 

suggested that the ability of chewing and biting plants led to the high efficiency of cellulose breakdown 282 

by termites [2, 84]. Aquatic invertebrates, such as gastropods, also scrape plants using radula. Hence, 283 

further studies on both insect and aquatic animal cellulases might contribute toward improving the 284 

efficiency of bioethanol production. 285 

 Information about aquatic animal cellulases might also be beneficial for aquaculture. The 286 

feeding habits of algae eaters that are important to fisheries, such as Haliotis discus hannai, Mytilus 287 
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edulis, and Mizuhopecten yessoensis, have been intensively studied [54–56, 85]. For example, abalone is 288 

known to feed on diatoms in the larval stage, and feeds on macroalgae in the adult stage. It has also been 289 

reported that climatic events, such as tidal streams, may affect ecological circumstances by changing 290 

levels of competition or predation stress [54, 55]. Hence detailed information about the feeding habits of 291 

species important to fisheries may help in the development of efficient aquaculture systems. Other useful 292 

studies in associated fields, including protoplast preparation [86] and improving fruit yields [87], are also 293 

advancing. 294 

 Recent studies on cellulases have revealed that these enzymes are present in many organisms, 295 

reflecting the widespread distribution of cellulose on the earth. Organisms, including bacteria, fungi, and 296 

invertebrates, have developed a system to digest cellulose, which may originally have evolved in the 297 

bacteria or plants for cell wall construction [2]. Compared to studies of cellulases in microorganisms, 298 

such as bacteria and fungi, limited information is available about aquatic invertebrates. In conclusion, 299 

further studies on the cellulases of aquatic invertebrates are anticipated; these will contribute toward 300 

improving the efficient use of plants by human beings.  301 
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Figure legends 559 

Fig.1 Three types of cellulose hydrolysis enzymes collectively named cellulase (Exocellubiohydrolase, 560 

Endo-β-1,4-glucanase, and β-glucosidase) are involved in the cellulose degradation process 561 

Exocellubiohydrolases (exocellulase) cut cellulose from reducing (R) or nonreducing (NR) termini 562 

to release cellubiose (dotted circle). Endo-β-1,4-glucanases cut the cellulose randomly from the internal 563 

β-1,4 linkages (broken circle). β-Glucosidases hydrolyze cellubiose or cellu-oligomers from the reducing 564 

temini to produce glucoses (double circle). Scissors represents the cutting site of each enzyme. 565 

 566 

Fig.2 Schematic view of the crystalline structure of cellulose chains 567 

Glucose units are joined by β-1,4 linkages. Different cellulose chains are linked by hydrogen bonds 568 

(marked by dotted lines) to form cellulose crystals.  569 

 570 

Fig.3 Two different types of cellulase act on the cellulose binding domain (CBD); multi-domain 571 

cellulases and single-domain cellulases 572 

Multi-domain cellulases comprise a catalytic domain that is linked to a CBD by a peptide strand, 573 

termed a linker. In this instance, CBDs are assumed to bind to cellulose, which improves the efficiency of 574 

the hydrolytic process of multi-domain cellulases by continuing catalytic action on the cellulose surface, 575 

while following CBD movement. In contrast, single-domain cellulases leave the cellulose surface after 576 
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catalytic action is complete, and subsequently approach a new linkage to participate in another catalytic 577 

action. 578 

 579 

Fig.4 Phylogenetic tree of GHF9 endo-β-1,4-glucanase based on a nucleotide sequence (CazyWeb: 580 

http://www.cazy.org/ “Accessed 6 May 2012”.) 581 

This tree was prepared according to the method of Davidson et al. (2005) [16]. Please 582 

note that this tree was prepared according to the nucleotide sequence of part of the endogenous 583 

endo-β-1,4-glucanases reported to date.  584 

 585 

 586 
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和文要旨 

動物セルラーゼ ― 水生無脊椎由来酵素に注目して 

谷村 彩，劉 文，山田 京平（京大院農），岸田 拓士（京大霊長研），豊原 治彦（京

大院農） 

本総説では，動物セルラーゼに関する研究について 1900年代半ばから最新のものに至る論

文を渉猟し，陸生と水生，共生と内源性の観点から分類した。特に自身の染色体 DNA上に

コードされる内源性セルラーゼについては詳述した。これらの酵素について，糖加水分解

酵素ファミリーにおける分類や一次構造上の類似性についても述べた。なかでも，近年著

しく研究が進んだ軟体動物，節足動物，棘皮動物などの水生生物については，それらの食

性や生態との関連について概説するとともに，水生生物由来のセルラーゼの今後の応用の

可能性についても論じた。 

 

キーワード 

エンド-β-1,4-グルカナーゼ, 共生, セルラーゼ，セルロース，内源性, 分解，無脊椎動物, 

GHF9 
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1 

GHF Cellulase Type Archaea Eukaryote

Eubacteria Fungus Plant Animal(Invertebrate)

1 β-glucosidase + + + + +

3 β-glucosidase + + + + +

5 Endoglucanase, β-glucosidase + + + + +

6 Endoglucanase, Cellobiohydrolase - + + - -

7 Endoglucanase, Cellobiohydrolase - - + + +

8 Endoglucanase + + - - -

9
Endoglucanase, Cellobiohydrolase,

β-glucosidase
+ + + + +

10 Endoglucanase - + - - -

12 Endoglucanase + + + + -

19 Endoglucanase + + - - -

26 Endoglucanase - + - - -

30 β-glucosidase + + + + +

44 Endoglucanase - + - - -

45 Endoglucanase - + + - +

48 Endoglucanase - + + - -

51 Endoglucanase + + + + -

61 Endoglucanase - - + + -

74 Endoglucanase - + + - -

116 β-glucosidase + + + + +

124 Endoglucanase - + - - -

Table 1 List of members of the Gglycoside Hhydrolase Ffamily (GHF) *  

* The GHF includes comprises all of glycoside hydrolases, including cellulases. Cellulases are further classified into 20 families [CazyWeb: 

http://www.cazy.org/ “Accessed 6 May 2012”.], most of which belongs to endo-β-1, 4-glucanase. Only GHF5, 9, 10, and 45 are found in metazoans, while and 

GHF9 and 45 are exclusively found in aquatic invertebrates. β-Glycosidases have beenare reported infrom most animal phyla phylum of animals, because since  

this enzyme hydrolyzes various dimers of sugars besidein addition to cellubiose. 

Table



2 

Habitat type Organism Exogenous/Endogenous

Terrestrial Archaea Endo

Eubacteria Endo

Fungus Endo

Plant Endo

Invertebrate Animal Exo/Endo

Vertebrate Animal Exo

Aquatic Archaea Endo

Eubacteria Endo

Fungus Endo

Plant Endo

Invertebrate Animal Exo/Endo

Vertebrate Animal Exo

Table 2  Classification of cellulases based on 

habitatliving area and enzyme genetic origin* 

* Animals are classified asinto “aquatic” and” terrestrial.”. Then, cCellulases 

are classified into “endogenous” and “exogenous.”. Note,It should be noted that 

only exogenous cellulases have been so far reported forin vertebrates to date. 



Organism

Phylum Class Order Species Common Name

Platyhelminthe Trematoda Strigeidida Schistosoma mansoni [16]

Annelida Oligochaeta Haplotaxida Eisenia andrei CazyWeb

Eisenia andrei CazyWeb

Eisenia fetida branding worm CazyWeb

Lumbricus rubellus humus earthworm [16]

Pheretima hilgendorfi earthworm [88]

Arthropoda Insecta Blattaria Panesthia angustipennis cockroach [89]

Panesthia cribrata cockroach [41]

Salganea esakii cockroach [89]

Coleoptera Timarcha balearica beetle [16]

Copelata Tribolium castaneum red flour beetle [42]

Hymenoptera Apis mellifera honeybee [16]

Isopoda Glyptotermes sp. Wyong termite [90]

Hodotermopsis sjoestdi termite [91]

Sinocapritermes mushae termite [91]

Isoptera Coptotermes acinaciformis termite CazyWeb

Coptotermes formosanus Formosan subterranean termite [92]

Coptotermes formosanus Formosan subterranean termite [93]

Coptotermes formosanus Shiraki termite [40]

Mastotermes darwiniensis termite [94]

Nasutitermes takasagonesis termite [91]

Nasutitermes takasagonesis termite [90]

Nasutitermes walkeri termite [90]

Neotermes koshunensis termite [91]

Odontotermes formosanus termite CazyWeb

Odontotermes formosanus termite [91]

Reticulitermes flavipes eastern subterrenean termite [95]

Reticulitermes speratus termite [7]

Reticulitermes speratus termite [90]

Reticulitermes speratus termite [96]

Orthoptera Teleogryllus emma emma field cricket [97]

Malacostraca Mysida Neomysis intermedia CazyWeb

Reference
Exogenous/

Endogenous

Terrestrial

Terrestrial/

Aquatic

Endogenous

continued 

Table 3 List of invertebrate cellulases*  
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Organism

Phylum Class Order Species Common Name

Annelida Polychaeta Aciculata Perinereis nuntia brevicirris [98]

Mollusca Bivalvia Ostreoidea Crassostrea virginica eastern oyster [16]

Pectinoida Argopecten irradians bay scallop [16]

Argopecten irradians bay scallop [16]

Mizuhopecten yessoensis ezo giant scallop CazyWeb

Veneroida Corbicula japonica [12]

Gastropoda Architaenioglossa Ampullaria crossean [50]

Pulmonata Biomphalaria glabrata bloodfluke planorb [16]

Lymnaea stagnalis great pond snail [99]

Vetigastropoda Haliotis corrugata pink abalone [100]

Haliotis cracherodii black abalone [100]

Haliotis discus discus disc abalone [49]

Haliotis discus hannai ezo abalone [48]

Haliotis fulgens green abalone [100]

Haliotis kamtschatkana [100]

Haliotis rufescens [100]

Haliotis sorenseni white abalone [100]

Haliotis walallensis flat abalone [100]

Arthropoda Branchiopoda Diplostraca Daphnia magna water flea [16]

Insecta Isoptera Macrotermes barnevi CazyWeb

Malacostraca Amphipoda Gammarus pulex shrimp [16]

Decapoda Austrothelphusa transversa CazyWeb

Callinectes sapidus blue crab [16]

Cherax quadricarinatus crayfish [47]

Cherax quadricarinatus crayfish [101]

Euastacus sp. SL-2005 CazyWeb

Homarus americanus American lobster [16]

Isopoda Limnoria quadripunctata [39]

Porcellio scaber [14]

Echinodermata Echinoidea Echinacea Strongylocentrotus nudus sea urchin [10]

Strongylocentrotus purpuratus purple sea urchin [102]

Endogenous Aquatic

Exogenous/

Endogenous

Terrestrial/

Aquatic
Reference

continued 
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Organism

Phylum Class Order Species Common Name

Chordata Appendiculari Copelata Oikopleura dioica sea squirt [103]

Oikopleura dioica sea squirt [104]

Ascidiacea Enterogona Ciona intestinalis sea squirt [76]

Ciona savignyi sea squirt [16]

Stolidobranchia Botryllus schlosseri sea squirt [16]

Halocynthia roretzi sea squirt [16]

Molgula tectiformis sea squirt [16]

Arthropoda Insecta Blattaria Cryptocercus punctulatus brown-hooted cockroach [23]

Coleoptera Dendroctonus frontalis southern pine beetle [24]

Ips pini North American pine engraver [24]

Saperda vestita Wood Borer [105]

Isoptera Macrotermes mulleri termite [28]

Macrotermes natalensis termite [27]

Mastotermes darwiniensis Giant Northern Termite [26]

Reticulitermes flavipes eastern subterrenean termite [22]

Zootermopsis angusticollis Pacific dampwood termite [25]

Chordata Mammalia Artiodactyla Sus sp. pig [21]

Catartiodactyla Bos primigenius aurochs [17]

Ovis aries sheep [19]

Ovis aries sheep [18]

Ovis aries sheep [20]

Mollusca Bivalvia Teredinidae Bankia gouldi shipworm [30]

Lyrodus pedicellatus shipworm [32]

Psiloteredo healdi shipworm [30]

Teredo bartschi shipworm [30]

Teredo furcifera shipworm [30]

Teredo navalis shipworm [30]

Gastropoda Patellogastropoda Pectinodonta sp. [35]

Endogenous Aquatic

Exogenous/

Endogenous

Terrestrial/

Aquatic
Reference

Exogenous

Terrestrial

Aquatic

* Invertebrate cellulases are classified according to the standard described in Table 2. Please note that endogenous cellulases include only GHF9, while 

exogenous cellulases include some of the cellulases reported to date. Animal classification and common names are presented according to the Species 

Dictionary: http://bm2.genes.nig.ac.jp/Integrated_BodyMap/species.php “Accessed 6 May 2012”. Endogenous GHF9s are summarized according to the 

CazyWeb: http://www.cazy.org/ “Accessed 6 May 2012”. and Davison et al (2005) [16]. 5 


