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Abstract

Given two rooted, labeled, unordered trees, the common subtree problem is to find a
bijective matching between subsets of nodes of the trees of maximum cardinality which
preserves labels and ancestry relationship. The tree edit distance problem is to determine the
least cost sequence of insertions, deletions and substitutions that converts a tree into another
given tree. Both problems are known to be hard to approximate within some constant factor
in general.

We tackle these problems from two perspectives: giving exact algorithms, either for spe-
cial cases or in terms of some parameters; and approximation algorithms and hardness of
approximation. We present a parameterized algorithm in terms of the number of branching
nodes that solves both problems and yields polynomial algorithms for several special classes
of trees. This is complemented with a tighter APX-hardness proof that holds when the trees
are of height one and two, respectively. Furthermore, we present the first approximation
algorithms for both problems. In particular, for the common subtree problem for t trees,
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we present an algorithm achieving a t log
2
(bOPT + 1) ratio, where bOPT is the number of

branching nodes in the optimal solution. We also present constant factor approximation
algorithms for both problems in the case of bounded height trees.
keywords: Tree edit distance; Approximation algorithms; Parameterized algorithms; Dy-
namic programming; Unordered trees

1 Introduction

A large area of computer science involves detecting and efficiently recognizing similarities among
data sets or changes thereof. A natural measure of the difference between data sets is the
minimum cost sequence of atomic changes (or editing operations) that transform one data set
into another. Trees are perhaps the most pervasive structures of data. We consider in this paper
the tree edit distance problem and the largest common (hereditary) subtree problem, which model
the difference and the similarity of two trees, respectively.

Given two rooted, labeled, unordered trees, the largest common subtree problem is to find
a partial bijective matching of maximum cardinality between nodes of the trees that preserves
labels and ancestry relationship. The tree edit distance problem is to determine the least cost
sequence of insertions, deletions and substitutions that converts one tree into the other input
tree. Deletion of a node v not only removes v but makes the parent of v become the new parent
of the children of v. Insertion of a node v similarly makes v become the parent of some subset of
the children of the new parent of v. A substitution operation changes only the label of a node.
Each of these operations carries a cost function that depends on the label of the respective nodes.

These problems have numerous applications. In particular, such similarity recognition prob-
lems occur frequently in bioinformatics, since various biological objects and biological networks,
including glycans [7], vascular networks [25] and cell lineage [16], can be represented as rooted,
labeled, unordered trees. Comparison of and searching for XML data is also naturally modeled
as tree edit computation of unordered trees [19].

The edit distance and common subtree problems of two ordered trees are known to be
polynomially solvable [11, 23]. In particular, Demaine et al. developed an O(n3) time algorithm
for the edit distance problem1 and showed an Ω(n3) lower bound for the family of decomposition
strategy algorithms [11], where n denotes the size of a larger input tree. In order to cope with
this barrier, Akutsu et al. developed an O(n2) time algorithm that approximates the unit cost
edit distance within a factor of O(n3/4) for bounded degree trees [3].

On the other hand, for two unordered trees, the edit distance and common subtree prob-
lems have been shown to be NP-hard [28]. We consider here three ways of dealing with the
intractability of the problems: efficient algorithms for important special classes of trees, param-
eterized algorithms, and approximation algorithms with good performance bounds for general
trees.

Special classes of trees and parameterized algorithms Given the NP-hardness of the
common subtree problem, we study the complexity when the inputs are restricted to natural
special classes of trees. We consider the following classes of trees:

Stars Trees where the root is the only internal node.

1This algorithm can also be applied to the common subtree problem.
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Caterpillars Trees where all nodes are either on, or adjacent to nodes on, a par-
ticular path. These are the graphs of pathwidth 2. A superclass of stars and
paths.

Moths Trees where all branching nodes (nodes with two or more children) lie on a
single path from the root to a leaf.2 A superclass of caterpillars.

Also, we consider the following parameters of trees:

• Number of leaves,

• Number of branching nodes,

• Height of the tree.

Several other parameters have been considered. The number of branching nodes dominates
the number of internal nodes (in that the former is always at most the latter), and thus our
algorithmic results for the former apply to the latter. The number of branching nodes also
dominates the number of leaves. Both the number of leaves and internal nodes dominate the
number of nodes. The situation for the parameter maximum degree is fully understood: the
problem is in P if one tree has degree 2 (i.e., is a path) [27], but NP-hard if at least one has
degree 3 or more [28].

We present an O(2b1+b2 |T1||T2|∆)-time algorithm based on dynamic programming that solves
both the tree edit and common subtree problems, where T1 and T2 are two input trees, |Ti| and
bi respectively denote the number of nodes and number of branching nodes in Ti, and ∆ is
the maximum number of children of a node in either tree. This means that both tree edit
and common subtree problems are fixed-parameter tractable in terms of the branching number
parameter. We also present a polynomial time algorithm for the classes of caterpillars and
moths. For the other direction, we show that the common subtree problem and the tree edit
problem are NP-hard, as well as hard to approximate, if one tree is of height one (viz. a star)
and the other is of height two.

Approximation Approximation algorithms are heuristics that compute solutions that are
not necessarily optimal but are guaranteed to be within some ratio from the optimal bound.
The performance ratio of an approximation algorithm for the common subtree problem is the
maximum, over all pairs of input trees, of the ratio of the size of the optimal common subtree to
the size of the common subtree found by the algorithm. In contrast, the performance ratio for
the tree edit problem is the maximum of the ratio of the edit distance found by the algorithm
to the optimal one.

For both tree edit and common subtree problems for unordered trees, we present the first
approximation algorithms. For the common subtree problem for t trees, we present an approxi-
mation algorithm which achieves performance ratio of t lg(bOPT +1), where bOPT is the number
of branching nodes in the optimal solution and lg(x) = log2(x). We also give an incomparable
bound, that is t times the branching height of the optimal solution. For the tree edit distance
problem, we present approximation algorithms with performance ratios of O(n/ log n) and 2h+2,
respectively, where h is the height of the taller tree.

2Although moths are usually defined for undirected graphs, we only consider moths as rooted trees in this
paper.
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Although most approximability results are proved for the unweighted model (for common
subtree) and the unit cost model (for tree edit), all the algorithms here achieve the same order
of performance ratios if editing costs (resp. weights) are positive integers (resp. non-negative
integers) bounded by a constant. The omitted proofs are straight-forward extensions of those
for the unit cost model.

Previous results The following results are known about computing the largest common sub-
tree or tree edit distance between unordered labeled trees. Both problems are MAX SNP-hard
even for bounded degree trees [27], and thus cannot be approximated within some constant
slightly larger than one. Recently, Hirata et al. showed that the tree edit problem remains MAX
SNP-hard even for trees of height 2 [15]. However, one of the preliminary versions of this paper
[14] appeared much earlier than [15] and our hardness result holds for a more restricted case
(one input tree can be a star).

As for parameterized algorithms, Akutsu et al. developed an O(2.62k · poly(|T1|, |T2|)) time
exact algorithm under the unit cost model when the edit distance is bounded by k [4]. Shasha
et al. developed an O(4ℓ14ℓ2 min(ℓ1, ℓ2) · |T1| · |T2|) time algorithm [21], where ℓ1 and ℓ2 are the
number of leaves in trees T1 and T2, respectively. Although our parameterized algorithm has
some similarity with theirs, it is considerably more efficient. Recently, Akutsu et al. developed
an O(1.26|T1|+|T2|) time algorithm for the general case and an O((1 + ǫ)|T1|+|T2|) time algorithm
for bounded degree trees over a fixed alphabet, where ǫ is any positive constant [6]. Although the
former algorithm works in O(2b1+b2poly(|T1|, |T2|)) time if measured by the number of branching
nodes, it is more complicated than our parameterized algorithm.

It is known that restricted problems, tree inclusion and tree alignment, can be solved in
polynomial time if the maximum degree is bounded by a constant, where the former is to decide
whether T2 is obtained from T1 by deletion operations only [18], and the latter is to find the
shortest sequence of insertions followed by substitutions followed by deletions that transforms
T1 into T2 [17]. However, both problems are NP-hard for unbounded degree trees [17, 18]. For
more about restricted cases of the common subtree problem and the tree edit problem, see [9].

In some studies, the largest common subtree is defined as a largest common connected
subgraph of given trees. This problem can be solved in polynomial time for two trees, but is
NP-hard for three trees and is hard to approximate in general [5]. Extensive studies have been
done on common subtrees (e.g., agreement subtree) of phylogenetic trees [22]. However, our
problems are very different because leaf labels have special and important roles in such studies.

Outline of paper In Section 3 we present polynomial time algorithms for special classes of
trees, that apply both for the common subtree problem and for the tree edit problem. We then
give a tightened hardness result in Section 4. Sections 5 and 6 respectively contain approximation
algorithms for common subtrees and tree edit of general trees.

2 Definitions

We start with definitions of tree editing operations and their measures, and the equivalent
concept of a mapping between subsets of nodes of the trees.
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Editing operations and edit distance We consider three kinds of operations: a) deleting a
node v, where v is removed from the tree while the children of v become children of the parent
of v; b) inserting a node v – the complement of deleting – where v becomes the parent of a
subset of the children of the new parent of v, and c) substituting the label of a node. It is to
be noted that deletion or insertion of the root is not allowed because deletion of the root may
decompose a tree into a forest.

These editing operations carry a cost function, that may depend on both the type of operation
as well as the value of the label deleted/inserted/substituted. We denote them by del(u), ins(v),
and sub(u, v), and assume they form a distance metric, satisfying non-negativity and transitivity.
The edit distance between T1 and T2 is defined as the total cost of a minimum cost sequence of
edit operations that transform T1 into T2.

Mappings As shown by Zhang et al. [28], the tree edit problem is equivalent to finding the
minimum-cost bijective mapping between subsets of the nodes of T1 and T2 that preserves the
ancestor-descendant relationship:

If u is mapped to v and u′ to v′, then u is an ancestor of u′ in T1 iff v is an ancestor
of v′ in T2.

For a mapping M , let I denote the non-participating nodes in T1, and J the non-participating
nodes in T2. The cost of the mapping M , denoting the corresponding editing cost, is defined as:

Cost(M) =
∑

(u,v)∈M

sub(u, v) +
∑

u∈I

del(u) +
∑

v∈J

ins(v).

The largest common subtree problem is the natural complement of the tree edit problem,
where the objective is to maximize the weight of the nodes that are not substituted, or equiv-
alently, maximize the savings over deleting all nodes from T1 and inserting all from T2. We
generalize the concept by allowing the common subtree to involve label substitutions; this func-
tions as a subtractive cost. Let w(u, v) denote the weight for a matched node pair (u, v). Then,
the largest common subtree problem is to find a mapping M maximizing

Weight(M) =
∑

(u,v)∈M

w(u, v).

If we define w(u, v) by
w(u, v) = del(u) + ins(v) − sub(u, v),

to capture the cost of not matching u with v, we have the relationship [4]

Cost(M) =
∑

u∈V (T1)

del(u) +
∑

v∈V (T2)

ins(v) − Weight(M).

Since the first and second terms of the right hand side of this equation are determined only
by input trees, it means that the minimum editing cost is determined by the maximum weight
and vice versa. The tree edit and common subtree problems are thus equivalent in terms of
optimization, but their approximative behavior is different given the different measures. In the
common subtree problem, the roots are allowed to correspond to other nodes or not appear in
M at all.
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Figure 1: Example of tree edit and common subtree. Dashed curves denote a mapping.

The most common cost/weight models are the unit cost model for tree edit and the un-
weighted model for common subtree. In the former model, each of insertion, deletion, and
substitution costs one unit. In the latter model, each of insertion and deletion costs one unit
and substitution costs two units, which means that the weight is measured by the number of
node pairs with identical labels appearing in M .3 It is to be noted that w(u, v) ≥ 0 holds for
all u, v if it is defined via the distance metric although we need not assume this property in the
parameterized algorithms for the common subtree problem.

Fig. 1 gives an example of tree edit and common subtree. In this example, T2 is obtained
from T1 by a sequence of deletion of a node labeled e, substitution of a node labeled f , and
insertion of a node labeled h. The corresponding cost is 3 under the unit cost model. Since this
cost is the minimum over all possible editing sequences, the tree edit distance between T1 and T2

is 3. The corresponding common subtree is shown in the right-hand side. Its weight is 9 under
the unweighted model, which is equal to the number of nodes, excluding (f, g) whose weight is
0. This tree is the largest common subtree under the unweighted model because its weight is
the maximum among all possible common subtrees. It is also the largest common subtree under
the weighting scheme corresponding to the unit cost model.

In this paper, we describe algorithms only for computing the weight of a largest or ap-
proximate common subtree or an optimal or approximate tree edit distance. However, the
corresponding common tree or edit sequence can be obtained by using the standard traceback
technique for dynamic programming without increasing the order of the time complexity.

The notion of the maximum common subtree can be extended to the one for t input trees.
In this case, a mapping is extended to the set of t-tuples that preserves the ancestor-descendant
relationship and the weight function is extended to

w(x1, . . . , xt)

where xi is a node in the ith input tree Ti.

Notation For a forest F , i.e. a collection of trees including the cases that F is a tree, let V (F )
and |F | denote the set of nodes in F and the number of nodes in F , respectively. For a node

3We can generalize the problem to node weights, i.e. each node has an associated weight, and the objective
(of the common subtree problem) is to maximize the sum of the matched nodes (nodes of different weights can
be matched). This generalizes label weights, but our approximation algorithms at least still apply.
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(a) (b) (c) (d)

Figure 2: (a-c) Three types of ordinary deletions for Wcon(T1, T2). (d) Super-deletion.

v in F , child(v), anc(v), des(v), F (v), and F − F (v) denote the set of children of v, the set of
ancestors of v including v, the set of descendants of v excluding v, the subtree induced by v and
its descendants, and the forest obtained from F by removing F (v), respectively.4 For a tree T ,
root(T ) and ht(T ) respectively denote the root of T and the height of T , where the height of a
tree is the length of the longest simple path from the root to a leaf.

3 Exact Algorithms

3.1 Parameterized algorithm

In this subsection, we present a parameterized algorithm for the common subtree problem,
which also solves the algorithm for the tree edit problem. In order to obtain the largest common
subtree, we implicitly consider all possible ways of deleting nodes from both input trees via a
combination of dynamic programming and exhaustive search for branching nodes.

First we present the dynamic programming part, which has some similarity with the algo-
rithm for constrained edit distance [26]. For two trees T1 and T2, let Wcon(T1, T2) denote the
weight of the largest common subtree between T1 and T2 which is obtained by deleting nodes
from T1 and T2 under the condition that deletion operations can be repeatedly applied only to
the following types of nodes:

(a) leaf,

(b) node having only one child, or

(c) node whose parent has only one child,

where root(T1) need not correspond to root(T2). These three types of deletions are illustrated in
Fig. 2 (a-c) and are called ordinary deletions. A node that satisfies none of these three criteria
can eventually be deleted once it satisfies one of them. A whole subtree can be deleted by
repeated deletion of leaves. The same holds in a similar fashion for all nodes not in a given
subtree.

In order to describe the deletions that are not possible, let the branching path Pv for a
branching node v consist of v and its ancestors up to but not including its nearest branching
node ancestor. The deletion of all nodes of a branching path will be referred to as a super-
deletion. It is illustrated in Fig. 2 (d).

Lemma 3.1 Wcon(T1, T2) can be computed in O(|T1||T2|∆) time.

4Although anc(v) contains v, we do not call v an ancestor of v.
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Proof. For a node u, let û denote the unique highest branching node among nodes in des(u)∪{u}
if any. For convenience, let Wcon(u, v) denote Wcon(T1(u), T2(v)), for a pair of nodes u in T1,
v in T2. For each pair of branching nodes (u, v), we construct a weighted bipartite graph Gu,v

with vertex partitions child(u) and child(v), and let the weight of an edge between u′ ∈ child(u)
and v′ ∈ child(v) be Wcon(u′, v′). Let WM (u, v) be the weight of the maximum weight matching
in Gu,v.

Then, Wcon(u, v) can be computed using the following dynamic programming formula:

Wcon(u, v) = max























max(0, w(u, v)),
max(0, w(u, v)) + maxu′∈des(u),v′∈des(v) Wcon(u′, v′),

max(0, w(u, v)) + WM (û, v̂),
maxv′∈des(v) Wcon(u, v′),

maxu′∈des(u) Wcon(u′, v),

where taking the maximum over an empty set results in a zero value.5 As for implementation
details, this procedure can be executed in an arbitrary order from leaves to the roots; for example,
we can use a double for loop where the inner loop processes V (T2) and the outer loop processes
V (T1), both in postorder.

The meanings of the first, second and fourth lines are illustrated in Fig. 3, and that of
the third line is illustrated in Fig. 4, where the fifth line is symmetric to the fourth line. It
is to be noted that these lines are not exclusive; for example, the second line is achieved by
repeated application of the fourth and fifth lines if w(u, v) = 0. It should also be noted that the
weight of the resulting common subtree is given by Wcon(root(T1), root(T2)) and a node pair
(u, v) is contained in the resulting common subtree if w(u, v) contributes to the total weight
Wcon(root(T1), root(T2)).

6

Now we prove the correctness of the algorithm. Suppose that M is the mapping giving the
largest common subtree Tc under deletion operations of type (a)-(c) in Fig. 2. Since insertion
operations are defined as complement of deletion operations, we can assume that the largest
common subtree is obtained from each of the input trees by deletion operations followed by
substitution operations and each node in Tc can be represented by a pair of nodes in V (T1) ×
V (T2). We consider the following three cases.

(i) (u, v) ∈ V (T1) × V (T2) appears in Tc as a leaf.
Since all the descendants of u and v are deleted, this case is covered by the first line of the
recurrence.

(ii) (u, v) ∈ V (T1) × V (T2) has only one child (u′, v′) in Tc.
This case is covered by the second line of the recurrence.

(iii) (u, v) ∈ V (T1) × V (T2) has multiple children in Tc.
This case is basically covered by the third line. However, some child ui of u may correspond
to a descendant v′j of a child vi of v. In this case, mapping between ui and v′j is covered
by the fourth line. The symmetric case is covered by the fifth line. There also exists a

5This procedure may produce a common forest if w(u, v) < 0 for some u, v. However, we can cope with such
a case by computing W ′

con
(u, v) (in addition to Wcon(u, v)) in which max(0, w(u, v)) is replaced by w(u, v) while

keeping Wcon(−,−) in the right-hand side as is.
6There may exist multiple common subtrees giving the same weight. In such a case, (u, v) is contained in one

of such common subtrees.
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case where a pair of descendants (u′
i, v

′
j) appears in Tc in place of (ui, vj). In this case,

mapping between u′
i and v′j is covered by the second line.

Although the same case may be covered by multiple combinations of the recurrence, it does not
affect the correctness because the best solution is selected by means of ‘max’ operations. We can
also see that super-deletions are not possible by the above recurrence because super-deletions
introduce merge of children of different nodes. As mentioned in Section 2, the largest common
subtree and the sequence of edit operations can be extracted from Wcon(u, v)s using the standard
traceback technique for dynamic programming. Therefore, the correctness of the algorithm is
proved.

We can achieve the same result more efficiently by replacing des(u) and des(v) respectively
by child(u) and child(v) in the above dynamic programming formulation, since such nodes can
be covered by combination of the second, fourth and fifth lines.

In assessing the complexity, let us first set aside the costs of the weighted matching compu-
tation, WM . The cost of computing Wcon(u, v), for a particular pair (u, v), is proportional to
|child(u)| · |child(v)| + O(1). The total cost is then at most

∑

u∈V (T1),v∈V (T2)

{|child(u)| · |child(v)| + O(1)}

≤





∑

u∈V (T1)

|child(u)|



 ·





∑

v∈V (T2)

|child(v)|



 + O(|T1||T2|)

= O(|T1||T2|) .

Since maximum weight bipartite matching can be computed in O(n1n2 max(n1, n2)) time for
a bipartite graph with partitions of sizes n1 and n2 [1], the total time required for computing
all WM (û, v̂)’s is asymptotically

∑

u∈V (T1),v∈V (T2)

|child(u)| · |child(v)| · max(|child(u)|, |child(v)|)

≤ ∆
∑

u∈V (T1),v∈V (T2)

|child(u)| · |child(v)|

≤ ∆|T1||T2| .

✷

Next we combine the above dynamic programming algorithm with exhaustive search for
branching nodes.

Theorem 3.2 The common subtree and tree edit problems can be solved in O(2b1+b2 |T1||T2|∆)
time.

Proof. Let B(T ) denote the set of branching nodes in a rooted unordered tree T . For each
B ⊆ B(T ), T ⊖ B denotes the tree obtained from T by performing super-deletion operations
for all nodes in B. Since each super-deletion does not propagate beyond the lowest branching
ancestor, T ⊖ B is uniquely determined regardless of the order of super-deletion operations.
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Figure 3: Explanation of the recurrence for computing Wcon(u, v). (a), (b), and (c) correspond
to the first, second, and fourth lines of RHS of the recurrence, respectively. While circles and
triangles with dashed lines mean deleted nodes and subtrees, respectively. Dotted curves mean
that two nodes may correspond to each other.
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Figure 4: Explanation of the third RHS of the recurrence for computing Wcon(u, v). Mapping
between the children of û and the children of v̂ is computed by maximum bipartite matching.
While circles and triangles with dashed lines mean deleted nodes and subtrees, respectively.
Dotted curves mean that two nodes may correspond to each other.

We then compute the weight of the largest common subtree between T1 and T2 by

max
B1⊆B(T1),B2⊆B(T2)

Wcon(T1 ⊖ B1, T2 ⊖ B2) .

The correctness of the algorithm is proved as follows. Recall that deletions of type (a)-(d)
cover all types of deletions. Therefore, it is enough to prove that any subtree Tc of T1 can
be obtained by a sequence of super-deletions followed by ordinary deletions, where the same
argument holds for T2. To this end, we first mark all nodes in T1 not appearing in Tc. For each
branching node v, let A(v) denote the set of non-branching nodes between v and the lowest
branching ancestor of v. We determine B1 by

B1 = {v| v is a marked branching node with no unmarked node in A(v)}.

Then, we can obtain Tc by super-deletion operations for nodes in B1 followed by deletion oper-
ations for the remaining marked nodes (see Fig. 5). The time complexity directly follows from
the above expression and Lemma 3.1. ✷
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Figure 5: Determination of nodes for super-deletions. Nodes shown by dotted rectangles and
dotted circles are marked nodes, where B1 consists of nodes shown by dotted rectangles. Node i
is not eliminated by super-deletion because it has an unmarked non-branching parent (i.e., node
h).

3.2 The case of two moths

We here consider the case when both trees are moths, which we recall are trees whose branching
nodes are on a single path, called the backbone, from the root to a leaf.

Theorem 3.3 Common subtree and tree edit problems are polynomially solvable on two moths.

Proof. Let u and v respectively be nodes in T1 and T2 outside the backbones. For each such
pair (u, v), let Wpath(u, v) denote the weight of the largest common subtree between T1(u) and
T2(v), where u and v need not correspond to each other. It is straight-forward to see that since
T1(u) and T2(v) are paths, Wpath(u, v) can be computed using the standard sequence alignment
algorithm in time O(|T1| · |T2|).

Let (u1, u2, . . . , uh) and (v1, v2, . . . , vk) be the backbones in T1 and T2 respectively, where u1

and v1 are the roots.
For each pair (ui, vj), we compute the weight of the largest common subtree between T1(ui)

and T2(vj), denoted Wbb(ui, vj), where ui and vj need not correspond to each other.
For i < j, let CHD(ui, uj) be the set of children of ui, ui+1, . . . , uj−1 excluding nodes in the

backbone (see Fig. 6); formally,

CHD(ui, uj) = {w|∃k, i ≤ k < j, w is a child of uk but w 6= uk+1} .

CHD(vi, vj) is defined analogously. For i′ > i and j′ > j, we construct a weighted bipartite
graph with vertex-partition CHD(ui, ui′) and CHD(vj , vj′) by letting Wpath(u, v) be the weight
of an edge between u ∈ CHD(ui, ui′) and v ∈ CHD(vj , vj′). Let WM (ui, ui′ , vj , vj′) be the
weight of a maximum weight matching in this bipartite graph.

Then, Wbb(ui, vj) can be computed by

Wbb(ui, vj) = max(0, w(ui, vj)) + max
i′>i,j′>j

{Wbb(ui′ , vj′) + WM (ui, ui′ , vj , vj′)},

where taking the maximum over an empty set results in a zero value.
The correctness of the algorithm is seen by observing that all possible ways of deletions

are taken into account by this dynamic programming algorithm. Since the maximum weight
matching can be computed in polynomial time [1], the algorithm also works in polynomial time.
✷
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Figure 6: Illustration of the dynamic programming algorithm for moths.

4 Hardness

Zhang and Jiang [27] showed that the common subtree problem was NP-hard to approximate
within some constant factor, even when one tree had a single branching node. However, the num-
ber of internal nodes and the height of the trees was not bounded. We present an approximation-
preserving reduction that holds for a more restricted class of trees.

Theorem 4.1 Let T1 be restricted to stars, and T2 restricted to trees of height 2. There is a
fixed ǫ > 0, such that it is NP -hard to distinguish between the following two cases: a) T1 is a
subtree of T2, and b) the maximum common subtree of T1 and T2 contains at most (1 − ǫ)|T1|
nodes.

Reduction We reduce from the problem 3-Set Packing-3:

Given: Finite set S and a collection C = {C1, C2, . . . , Cm} of subsets of S of size
three, such that each element in S appears at most three times in a set in C.
Find: A collection of maximum cardinality of disjoint sets from C.

This problem is known to be hard to approximate within some constant factor greater than one;
more precisely, there exists a γ > 0, such that it is NP-hard to decide whether there is an exact
cover of (S, C), or if no set packing contains more than n/3 − γn sets [20].

Denote the elements of Ci by li,1, li,2, li,3. Denote the elements of S by l1, l2, . . . , ln, with n
being divisible by 3. Let x be a new element not in S.

We construct two labeled trees as follows: T1 is a star with N1 = n+(m−n/3) rays (nodes of
degree one): one for each label li, i = 1, . . . n, and m−n/3 with the label x. T2 is of three levels:
the root which is unlabeled; m internal nodes at level 2, all labeled with x and representing the
sets Ci; and, 3m leaves, one for each element li,j of the sets Ci, i = 1, 2, . . . , m, j = 1, 2, 3. A
subtree rooted by a node at level 2 is called a clause.

An exact cover of (S, C) yields a matching of all the leaves of T1, with all the subtrees of T2

and the m − n/3 remaining internal nodes labeled x.
On the other hand, suppose that we can match Q = N1 − (γ/2)n non-root nodes from

T1 and T2. Without loss of generality, these include all the l1, l2, . . . , ln, along with Q − n =
m − n/3 − (γ/2)n of the x-labeled nodes. That leaves n/3 + (γ/2)n internal nodes in T2 that
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are not matched and thus their leaves can be matched. Since we match all n nodes, all three
leaves are matched in at least n/3 − γn clauses. These induce a set packing in (S, C), and we
would be deciding an NP-hard problem.

Since m ≤ n, it holds that N1 ≤ n + n − n/3 = 5n/3. Thus, Q ≤ (1 − γ
2 · 3

5)N1. Hence, the

claim of the theorem holds for ǫ = 3γ
10 . ✷

Corollary 4.2 The common subtree problem is APX-hard, even for trees of height 1 and 2,
respectively.

Observe that our construction has a gap location at 1, in the terminology of [20]. Namely,
it is hard to determine if all the nodes can be matched, or if only a certain constant fraction of
them. That has implication for related problems.

Corollary 4.3 The tree edit distance problem is APX-hard, even when using unit cost for two
trees of height 1 and 2, respectively.

Proof. Let N1 = n + (m− n/3) and N2 = 4m be the number of non-root nodes of trees T1 and
T2 respectively. Let OPTED denote the edit distance between T1 and T2 and OPTCS be the car-
dinality of the maximum common subtree. Note that OPTED = N1 +N2−2 ·OPTCS . Theorem
4.1 shows that it is NP-hard to distinguish between two cases: when OPTCS = N1 +1 and when
OPTCS ≤ N1 − γ

2n. This implies that it is NP-hard to distinguish when OPTED = N2 − N1

and when OPTED ≥ N2 − N1 + γn. Since N2 − N1 = 3m − 2n/3 and n ≥ m, it holds
that n = 9

7n − 2
7n ≥ 9m−2n

7 = 3
7(N2 − N1). Hence, it is hard to distinguish between when

OPTED = N2 −N1 and when OPTED ≥ (1 + 3
7γ)(N2 −N1). Thus, obtaining an approximation

factor of 1 + 3
7γ is NP-hard. ✷

5 Approximation Algorithms for Common Subtrees

We give an approximation algorithm for the problem of finding a maximum common subtree of
t trees, where t is a constant. This is obtained by an approximation-preserving polynomial-time
reduction to a special case of the maximum independent set problem in graphs.

We first address a special class of trees, so-called spiders, and give an approximation algo-
rithm for finding a maximum common subtree that is restricted to be a spider. We then show
that any tree is bound to contain a large spider, thus our algorithm actually attains a good
performance for the general common subtree problem.

Common subforests vs. common subtrees We shall formulate our problem as one regard-
ing forests, where both the inputs and the common substructure can be disconnected. These
are actually polynomially equivalent problems. One can always restructure an input forest by
adding a dummy node as root. Similarly, when searching for a common subtree, we can try all
possible matchings of roots (at most nt choices, on t input trees), and then restrict the instances,
and the pattern, to the forests induced by proper descendants of the matched roots.
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Figure 7: Example of a maximum common subspider for T1 and T2. The corresponding maxi-
mum common linear subforest is shown by dotted curves.

5.1 Common linear subforests and subspiders

A linear forest is one where each component is a path. A spider is tree where all non-root nodes
are of degree at most 2. Alternatively, a spider consists of a root on top of a linear forest.

We shall focus on the problem of approximating the maximum common linear subforest of t
input forests, referred to as the t-CLS problem (see Fig. 7 for 2-CLS). By the above discussion,
this is equivalent to finding a maximum common subspider. We show that t-CLS can be reduced
to a special case of the maximum independent set problem in so-called t-union graphs. We then
show that any tree – including the optimal common subtree – must contain a large spider.

A graph G = (V, E) is a t-union graph if there is a collection Gi = (V, Ei), i = 1, 2, . . . , t,
where each Gi is an interval graph, such that E = E1 ∪ E2 ∪ · · · ∪ Et. Each node in V then
corresponds to an ordered t-tuple of intervals, referred to as a t-interval.

The t-WMIS problem is as follows: Given a union graph G and the corresponding collection
of t-intervals, with positive weights on the t-intervals, find the maximum weight independent
set of vertices in G, i.e., a subcollection of the t-intervals all of whose constituting intervals are
disjoint. We are particularly interested in the special case, t-LamWMIS, where the graph Gi

are containment interval graphs, i.e., when the set of intervals forms a laminar family. This
problem is also known as Tree Constrained t-partite Matching [10].

Proposition 5.1 There is an approximation preserving reduction from t-CLS to t-LamWMIS.

Proof. We shall prove this for the case t = 2 (see Fig. 8); the extension to larger t is straight-
forward.

Let F1, F2 be the input forests. We first form an arbitrary ordering of the input forests,
i.e., form a total order among the children of each internal node. This induces a numbering of
the leaves respecting the total order; we shall assume the leaves of different forests are labeled
differently.

Label each node v of an input tree with the interval Iv = [lv, rv], where lv (rv) is the smallest
(largest) leaf label in the subtree rooted by v, respectively. For each leaf x1 in F1, each ancestor
a1 of x1 (possibly a1 = x1), each leaf x2 in F2 and each ancestor a2 of x2, we construct a
2-interval Jx1,a1,x2,a2

= {Ia1
, Ia2

}. Let P1 be the path from x1 to a1, and P2 the path from x2

to a2. The weight w(Jx1,a1,x2,a2
) = LCS(P1, P2), the maximum weight common subsequence of
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Figure 8: Reduction from 2-CLS to 2-LamWMIS. In this example, a part of G is shown,
and each 2-interval and the corresponding vertex in G are identified, where Jx1,a1,x2,a2

=
{[1, 5], [20, 24]}, Jx1,b1,x2,b2 = {[1, 1], [20, 21]}, Jx1,b1,y2,c2 = {[1, 1], [23, 24]}, Jy1,c1,y2,c2 =
{[4, 5], [23, 24]}, Jy1,c1,x2,b2 = {[4, 5], [20, 21]}.

P1 and P2. Let IF1,F2
be the collection of all such 2-intervals. Observe that the collection of

intervals that form the basis of IF1,F2
is a laminar family.

We now argue that any solution to t-LamWMIS on IF1,F2
yields a solution to t-CLS on

F1 and F2 with same objective value. This implies the proposition. Let I ′ be a solution to t-
LamWMIS on IF1,F2

; i.e., it consists of a subcollection of 2-intervals whose underlying intervals
are disjoint. Any 2-interval J is a pairing of a path in F1 with a path in F2. Furthermore, for any
two 2-intervals J, J ′ in IF1,F2

, the corresponding paths in F1 and F2 must be disjoint, since the
constituting intervals are disjoint. Hence, I ′ induces a valid solution to t-CLS, and it is easily
seen that the value of each 2-interval corresponds to the contribution that the corresponding
matched paths make to the objective function of t-CLS. ✷

The t-WMIS problem is approximable within a 2t-factor [8], while the special case of t-
LamWMIS was recently shown to be approximable within a t-factor [10].

Theorem 5.2 t-CLS (and equivalently the maximum common subspider problem on t input
trees) is approximable within a factor t.

5.2 Relating subspiders to tree size

To relate the linear forest approximation to the original common subtree problem, we show that
any forest, in particular the optimal common subforest, must contain a relatively large linear
forest.

We define a parameterized class of trees called s-moths. They are defined recursively as
follows.

Definition 5.3 The 0-moths are the paths. The s-moths are the trees in which the minimal
subgraph containing all branching nodes forms an s′-moth, for some s′ ≤ s − 1.

In particular, moths are 1-moths.

Lemma 5.4 Let T be an s-moth with b branching nodes. Then T can be partition into trees T1

and T2, where T1 is a linear forest and T2 is an (s− 1)-moth with at most ⌊(b− 1)/2⌋ branching
nodes.
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Figure 9: Decomposition of a tree into linear forests. In this example, T is decomposed into T1,
T ′

1, and T ′′
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1 , T ′
1 ∪ T ′′

1 , and T are 0-, 1-, and 2-moths.

Proof. Following the definition of an s-moth, let T2 be the minimal subgraph containing all
branching nodes in T and T1 be the linear forest induced by the remaining vertices (see Fig. 9).
It is clear that T2 is an (s − 1)-moth.

For branching nodes v and v′ in T , we say that v is a branching child of v′ if v is a proper
descendant of v′ and there is no other branching node on the path from v to v′. Let d(v) denote
the number of branching children of a branching node v in T . Let B2(T ) denote the set of
branching nodes in T with at least two branching children. A key observation is that the set of
branching nodes in T2 is exactly B2(T ).

Each branching node in T , except for the root, is a branching child of a single branching
node. The total number of branching children of nodes in B2(T ) is then at most b − 1. Thus,

2|B2(T )| ≤
∑

v∈B2(T )

d(v) ≤ b − 1 .

It follows that the number |B2(T )| of branching nodes in T2 is at most (b − 1)/2. ✷

Lemma 5.4 has several straightforward implications.

Corollary 5.5 Let T be a rooted tree with moth number m(T ), and let T̂ be T without its root.
Then T̂ can be partitioned into m(T ) linear forests.

Corollary 5.6 Let T be a vertex-weighted tree of weight w(T ) and with moth number m(T ). T
contains a sub-spider of weight at least w(T )/m(T ).

Define the branching height of a tree to be the maximum number of branching nodes on a
root-leaf path. The following observation follows also from Lemma 5.4.

Observation 5.7 The moth number m(T ) of a tree T with b branching nodes and branching
height h is at most min(⌊lg b + 1⌋, h).

Let bOPT (hOPT ) denote to the branching number (branching height) of an optimal common
subtree. By combining Thm. 5.2, Cor. 5.6, and Obs. 5.7, we obtain the following performance
guarantee for the general common subtree problem.
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Theorem 5.8 There is a t · lg(bOPT + 1)-approximation algorithm for the maximum weight
common subtree problem of t trees. A t · hOPT -ratio also holds.

It can be shown that bOPT ≤ (|TOPT |−1)/2. Also, clearly, |TOPT | ≤ mini |Ti|, the cardinality
of the smallest input tree.

The only previously known approximation ratio was O(logt n) [14], where n is the size of the
largest input tree. Also, a factor of twice the height of the smaller input tree (for the case of
two trees) was also given in [14], improved to 1.5 times the height in [2].

6 Approximation Algorithms for Edit Distance

As mentioned in the Introduction, Akutsu et al. developed an O(2.62k ·poly(n))-time algorithm
that computes the exact tree edit distance OPTED when it is no more than k [4], which can
also decide whether or not OPTED ≤ k holds. By using it, we obtain the following theorem.

Theorem 6.1 The unordered tree edit distance can be approximated within an O(n/ log n)-
factor under the unit cost model, where n is the size of the larger input tree.

Proof. Let K = c log n, where c is an arbitrary constant. By applying the algorithm in [4], we
can compute the exact distance if OPTED ≤ K. Otherwise, we compute the approximate edit
distance by deleting all non-root nodes in T1, changing the label of the root (if necessary), and
inserting all non-root nodes in T2.

Let APXED be the cost obtained by the above procedure. In the former case, APXED =
OPTED holds. In the latter case, APXED ≤ 2n holds, where OPTED > K. By combining these
two, APXED ≤ 2n

c log n · OPTED. ✷

The above theorem can be extended for the cases in which the cost of each editing operation
is a positive integer no larger than some constant d because the algorithm in [4] can work for
such a case and OPTED is bounded by dn for some constant d.

We next consider bounded height trees. For a pair of trees t and T , let φt(T ) denote the
number of T (v)’s isomorphic to t; in other words, φt(T ) = |{v ∈ V (T )|T (v) ≈ t}|, where T1 ≈ T2

denotes that T1 is isomorphic to T2. Let Sn be the set of all possible trees of size at most n.
Then, we consider the feature vector φ(T ) which is a vector of positive integers defined by
φ(T ) = (φt(T ))t∈Sn

(see Fig. 10). Although the number of dimensions of φ(T ) is exponential in
n, we only consider the non-zero elements. Since the number of non-zero elements is at most n
for each T , φ(T ) can be represented in polynomial size.

For a feature vector φ(T ) on Sn, let ‖φ(T )‖1 denote the L1 norm of φ(T ). Hereafter, we
will show that OPTED ≤ ‖φ(T1)− φ(T2)‖1 ≤ (2h + 2) ·OPTED holds, where h is the maximum
height of T1 and T2. It is to be noted that the distance ‖φ(T1) − φ(T2)‖1 is equivalent to the
bottom-up distance in [24]. As shown in that paper, the corresponding bottom-up mapping is a
special case of the edit distance mapping and the time complexity of computing the bottom-up
distance is linear in the number of nodes. However, no bound on the approximation ratio of
bottom-up distance against the original tree edit distance is given in [24], which is the main
result of this section.

Lemma 6.2 ‖φ(T1) − φ(T2)‖1 ≤ (2h + 2) · OPTED.
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Figure 10: Feature vectors for two trees. Only coordinates whose values are positive for at least
one of T1 and T2 are shown.

Proof. Let o1, . . . , om be an optimal sequence of edit operations which converts T1 into T2,
and let T 0(= T1), T

1, . . . , Tm(= T1) be the corresponding sequence of intermediate trees, where
m = OPTED holds. That is, for j = 1, 2, . . . , m, the tree T j is obtained by applying an edit
operation oj to T j−1. We assume without loss of generality that ht(T j) ≤ h holds for all
j = 1, . . . , m since it is known that any optimal sequence of edit operations can be arranged so
that all deletions precede all insertions [23].

We consider how the feature vector changes according to each operation.

Substitution: Let v be the substituted node in T j−1 and T j . Then, φt decreases by at most
one for each t = T j−1(x) with x ∈ anc(v), and φt′ increases by at most one for each
t′ = T j(x) with x ∈ anc(v). Therefore, ‖φ(T j−1) − φ(T j‖1 ≤ 2|anc(v)| ≤ 2h + 2 holds.

Deletion: Let v be the deleted node in T j−1 and let w be its parent. Then, φt decreases by
at most one for each t = T j−1(x) with x ∈ anc(v), and φt′ increases by at most one for
each t′ = T j(x) with x ∈ anc(w). Therefore, ‖φ(T j−1) − φ(T j)‖1 ≤ |anc(v)| + |anc(w)| ≤
2|anc(v)| ≤ 2h + 2 holds.

Insertion: Since insertion is the complement of deletion, ‖φ(T j−1) − φ(T j)‖1 ≤ 2h + 2 holds.

Since each oj is one of the above, we have ‖φ(T1) − φ(T2)‖1 ≤
∑m

i=1 ‖φ(T j−1) − φ(T j)‖1 ≤
(2h + 2) · OPTED. ✷

Lemma 6.3 OPTED ≤ ‖φ(T1) − φ(T2)‖1.

Proof. We show that there exists a sequence of editing operations of length at most ‖φ(T1) −
φ(T2)‖1 which transforms T1 into T2.
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Since the roots are not deleted or inserted and φ(T ) changes by 2 according to a substitution
of the root whose editing cost is 1 (< 2), we assume without loss of generality that the labels of
the roots of T1 and T2 are the same.

We first note that if ‖φ(T1)−φ(T2)‖1 = 0, T1 ≈ T2 clearly holds and thus we need no editing
operation.

Otherwise, we repeatedly delete nodes from T1 and T2 as follows until the resulting trees
become isomorphic.

If there exists any pair (u, v) such that T1(u) ≈ T2(v), u ∈ child(root(T1)), and v ∈
child(root(T2)) hold, we remove T1(u) and T2(v) respectively from T1 and T2, where these
nodes are not counted as ‘deleted’ but rather as non-candidates for deletions. Since φ(T1(u)) =
φ(T2(v)) holds, we have

φ(T1 − T1(u)) − φ(T2 − T2(v)) = (φ(T1) − φ(T1(u))) − (φ(T2) − φ(T2(v))) = φ(T1) − φ(T2).

We greedily repeat this procedure until there does not exist such a pair (u, v). Let T ′
1 and T ′

2 be
the resulting trees.

Let v be a node such that |T ′
i (v)| (i = 1, 2) is the largest among children of root(T ′

1) and
root(T ′

2). We assume without loss of generality that v is a child of root(T ′
1). Then we delete v

from T ′
1 and let T ′′

1 be the resulting tree. Since v is a child with the largest |T ′
i (v)|, φt(T

′′
1 ) =

φt(T
′
1)−1 and φt(T

′
2) = 0 hold for t = T ′

1(v). Therefore, ‖φ(T ′′
1 )−φ(T ′

2)‖1 = ‖φ(T ′
1)−φ(T ′

2)‖1−1
holds.

Suppose that u1, u2, . . . , uk1
and v1, v2, . . . , vk2

are deleted in these orders respectively from
T1 and T2. It is to be noted that k1 + k2 = ‖φ(T1) − φ(T2)‖1 holds. We construct an editing
sequence such that u1, u2, . . . , uk1

are deleted from T1 in this order and then vk2
, vk2−1, · · · , v1

are inserted to the resulting tree in this order. It is straight-forward to see that this sequence is
a valid editing sequence of length ‖φ(T1) − φ(T2)‖1 and transforms T1 into T2. ✷

Combining Lemma 6.2 and Lemma 6.3, we can see that OPTED ≤ ‖φ(T1) − φ(T2)‖1 ≤
(2h + 2) · OPTED holds.

Theorem 6.4 The unordered tree edit distance can be approximated within a factor of 2h + 2
under the unit cost model, where h is the maximum height of two input trees.
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[13] M. M. Halldórsson, Approximations of weighted independent set and hereditary subset
problems, Journal of Graph Algorithms and Applications 4 (2000) 1.
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