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Abstract. The present paper is concerned with Schrödinger equations on non-compact Rie-

mannian manifolds with asymptotically conic ends. It is shown that, for any admissible pair

(including the endpoint), local in time Strichartz estimates outside a large compact set centered

at origin hold. Moreover, we prove global in space Strichartz estimates under the nontrapping

condition on the metric.

1. Introduction

Let us recall that the Strichartz estimates for the free Schrödinger equation on the Euclidean
space Rd ([21, 10, 23, 14]) state that

||ei t
2
∆u0||Lp([−T,T ];Lq(Rd)) ≤ CT ||u0||L2(Rd), u0 ∈ L2(Rd),

where the pair (p, q) satisfies the following admissible condition:

2
p

+
d

q
=

d

2
, p, q ≥ 2, (d, p, q) 6= (2, 2,∞).(1.1)

It is well known that these estimates are fundamental in studying low regularity well-posedness
of the Cauchy problem for nonlinear Schrödinger equations. It is a natural question if the same
estimates hold for Schrödinger equations on manifolds. Though the global in time estimates (i.e.,
supT CT < ∞) do not hold in general, the local in time estimates have been proved by many
authors under several geometric conditions. The purpose of the present paper is to prove sharp
Strichartz estimates on scattering manifolds for any admissible pair (including the endpoint
(2, 2d

d−2)), where the scattering manifolds are non-compact manifolds which have asymptotically
conic ends. The paper is also concerned with studying a relationship between Strichartz esti-
mates and microlocal properties of the solution. More precisely, we show that (local in time)
Strichartz estimates follow from the dispersive estimates for spatially and frequency localized
solutions which we call microlocal dispersive estimates.

We consider the following model. We mean by the scattering manifold a non-compact manifold
with an asymptotically conic structure. Let M be a non-compact Riemannian manifold of
dimension d ≥ 2 such that M can be decomposed as

M = Mc ∪ M∞,

where Mc b M is relatively compact, and there exists a (d− 1)-dimensional closed Riemannian
manifold ∂M such that M∞ is diffeomorphic to (0,∞) × ∂M . Let

ι : M∞ 3 z 7→ (r(z), θ(z)) ∈ (0,∞) × ∂M

be an identification mapping which is called a boundary decomposition. Suppose that Mc ∩
M∞ ⊂ (0, 1) × ∂M under this identification. Throughout the paper we fix a boundary de-
composition ι and do not write it explicitly, and denote local coordinates on (0,∞) × ∂M by
(r, θ).
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We next recall the definition of the scattering metric on M . Let g be a Riemannian metric
on M such that, for sufficiently large RM > 0, g takes the form

g = dr2 + r2(hjk + ajk)dθjdθk for (r, θ) ∈ (RM ,∞) × ∂M,(1.2)

where (hjk) is the Riemannian metric on ∂M and (ajk) is a smooth and real-valued tensor.
Here we used the Einstein summation convention. We may assume that RM = 1 without loss of
generality, and define the scattering region by M̃∞ := (1,∞)×∂M . We also assume throughout
the paper that there exists µ > 0 such that for any (l, α) ∈ Zd

+,

|∂l
r∂

α
θ ajk(r, θ)| ≤ Clαr−µ−l, (r, θ) ∈ M̃∞.(1.3)

Such a g is said to be a long-range scattering metric (in normal form).
Let ∆g be the Laplace-Beltrami operator associated to g on L2(M):

∆g =
1

G(z)
∂zl

G(z)glm(z)∂zl
, (glm(z)) = (glm(z))−1, G(z) =

√
det glm(z),

and set P = −1
2∆g, where Lp(M) := Lp(M,G(z)dz), 1 ≤ p ≤ ∞. In the setting we consider the

Schrödinger equation:

(1.4)

{
i∂tu(t) = Pu(t), t ∈ R,

u(0) = u0 ∈ L2(M).

Since P is essentially self-adjoint on C∞
0 (M) under the above condition, (1.4) has a unique

solution u(t) = e−itP u0 by the Stone theorem. The main result is the following.

Theorem 1.1 (Strichartz estimates near infinity). There exist a large compact subset Mc ⊂
K ⊂ M and χK ∈ C∞

0 (M) with χK ≡ 1 on K such that

||(1 − χK)e−itP u0||Lp([0,1];Lq(M)) ≤ C||u0||L2(M), u0 ∈ C∞
0 (M),(1.5)

provided that (p, q) satisfies the admissible condition (1.1).

Let p(z, ξ) be the principal symbol of P . We say that M is nontrapping if for any (z0, ξ
0) ∈

T ∗M with ξ0 6= 0, the geodesic flow (z(t, z0, ξ
0), ξ(t, z0, ξ

0)) generated by Hp satisfies

|z(t, z0, ξ
0)| → +∞ as t → ±∞,

where Hp =
∑d

j=1

(
∂p
∂ξj

∂
∂zj − ∂p

∂zj
∂

∂ξj

)
is the Hamilton vector field associated to p(z, ξ). If M is

nontrapping, then using local smoothing effects which follow from resolvent estimates proved
by [7] (see also [8]), we obtain local in time Strichartz estimates (without loss of derivatives)
for χKe−itP u0 (see Appendix A for more details). Combining with Theorem 1.1, we have the
following:

Theorem 1.2 (Global in space estimates). Suppose that M is a nontrapping scattering manifold.
Then, for any (p, q) satisfying (1.1), we have

||e−itP u0||Lp([0,1];Lq(M)) ≤ C||u0||L2(M), u0 ∈ C∞
0 (M).(1.6)

Remark 1.3. (i) Let T > 0. Since e−itP is unitary on L2(M), the time interval [0, 1] in (1.5)
and (1.6) can be replaced by [−T, T ] provided that we replace the constant C > 0 by some
CT > 0 depending on T .

(ii) (Metrics in not normal form) Let g be a more general Riemannian metric than in normal
form such that g takes the form

g = (1 + a1)dr2 + ra2
j (drdθj + dθjdr) + r2(hjk + a3

jk)dθjdθk

on (1,∞) × ∂M , where aN (r, θ) are smooth and real-valued tensors satisfying (1.3) with some
0 < µN < 1. Then, there exists a change of coordinates (r′, θ′) = (R(r, θ), Θ(r, θ)) such that, for
some 0 < µ < µN ,

R(r, θ) = r + O(r1−µ), Θ(r, θ) = θ + O(r−µ) as r → +∞,
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and g can be brought to a long-range metric in normal form as above. Hence the statements of
Theorem 1.1 and Theorem 1.2 also hold for such a metric in not normal form. We refer to [11,
Section 10.6] for more details.

(iii) (Potential perturbations) Let V be a smooth and real-valued potential on M of short-
range type i.e.,

|∂l
r∂

α
θ V (r, θ)| ≤ Ckαr−1−ν−l for (r, θ) ∈ (1,∞) × ∂M,

with some ν > 0. Our proof still works well if we replace P with P + V . Hence the statements
of Theorem 1.1 and Theorem 1.2 are still hold for P + V .

The local in time Strichartz estimates on manifolds recently have been studied by many
authors. Staffilani-Tataru [20], Robbiano-Zuily [17] and Bouclet-Tzvetkov [4] studied the case
of Schrödinger equations on the Euclidean space with the asymptotically flat metric under several
settings. In [6], Burq-Gérard-Tzvetkov proved Strichartz estimates with a loss of derivative 1/p

on any compact manifolds without boundaries. They also proved that the loss 1/p is optimal
in the case of M = Sd. Hassell-Tao-Wunsch [11] considered the case of nontrapping scattering
manifolds except the endpoint estimate. Our result thus is regarded as a generalization of their
result to the critical exponent case, however the method of the proof is considerably different.
More recently, Bouclet [1, 2, 3] studied the case of an asymptotically hyperbolic manifold which
is a non-compact Riemannian manifold with the metric of the form dr2 + e2r(hjk + ajk)dθjdθk

in the scattering region, and he proved Strichartz estimates localized near infinity without the
nontrapping condition. The present paper is motivated by his works. Global in time Strichartz
estimates has been studied by [5, 22, 16] in the case of Euclidean space with an asymptotically
flat metric.

On the other hand, dispersive estimates for Schrödinger equations with potentials on the
flat Euclidean space (Rd, δjk) also have been studied by many authors. In particular, it was
shown by Fujiwara [9] that if V (x) is smooth, real-valued and increases at most quadratically
at infinity, namely |∂α

x V (x)| ≤ Cα if |α| ≥ 2, then the fundamental solution E(t, x, y) of the
propagator e−itP for P = −1

2∆+V (x) satisfies the dispersive estimate |E(t, x, y)| ≤ C|t|−d/2 on
Rd provided that t 6= 0 is small enough. Local in time Strichartz estimates are immediate conse-
quences of this estimate and the TT ∗-argument due to [14]. Long time dispersive estimates for
e−itP Pac(P ), which implies global in time Strichartz estimates, also have been proved by many
authors (e.g., Journé-Soffer-Sogge [13], Yajima [24, 25]) under suitable conditions of potentials
and assumptions for the zero energy, where Pac(P ) is the projection onto the absolutely contin-
uous spectrum of P . For more references on dispersive estimates for Schrödinger equations with
potentials, we refer to Schlag’s survey [19].

The rest of the paper is devoted to the proof of Theorems 1.1 and 1.2. Though the proof
is based on Bouclet’s argument in [3], the behavior of classical trajectories at infinity r →
+∞ is different from the case of an asymptotically hyperbolic manifold and the class of the
phase function of the parametrix becomes even worse. We thus cannot apply straightforwardly
his method to the case of a scattering manifold. To overcome this difficulty, we introduce a
localization in the r-variable by using the dyadic decomposition. The proof of Theorem 1.1 is
then reduced to that of microlocal dispersive estimates.

The paper is organized as follows. In Section 2 we fix notations and the pseudodifferential
setup, and collect results on the functional calculus recently proved by Bouclet [1, 2]. Section
3 discusses a localization of both space and energy, and we show that Theorem 1.1 follows
from microlocal dispersive estimates. We study some properties of the geodesic flow in Section
4. In Section 5 we construct the semiclassical Isozaki-Kitada parametrix and prove microlocal
dispersive estimates on the strongly outgoing and incoming regions (cf. Definition 2.5). By using
an Egorov type theorem, we prove microlocal smoothing properties of the propagator in Section
6 which imply microlocal dispersive estimates on intermediate regions. In Section 7, we construct
the semiclassical WKB parametrix and prove short time microlocal dispersive estimates on the
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outgoing and incoming regions. We complete the proof of Theorem 1.1 in Section 8. We give
the sketch of the proof of Theorem 1.2 in Appendix A.

Throughout the paper we use the following notations: We denote the set of multi-indices by
Zd

+. For Banach spaces X and Y , L(X,Y ) denotes the Banach space of bounded operators from
X to Y , and we write L(X) := L(X,X). For a ∈ R, we use the notation a+ = max(a, 0). 〈r〉
stands for

√
1 + |r|2. For A, B ≥ 0, A . B means that there exists some universal constant

C > 0 such that A ≤ CB.
Acknowledgments: The author would like to thank Jean-Marc Bouclet for helpful dis-

cussions and comments regarding the construction of the parametrix, in particular the spatial
localization. He also would like to thank his advisor Shu Nakamura for much of comments and
suggestions. He also thanks the anonymous referee for careful reading the manuscript and for
giving useful comments.

2. Preliminaries

In this section we set up some standard notations on scattering manifolds. Notice that a
boundary decomposition is always fixed. The first step is to choose a suitable atlas and a
partition of unity on the scattering region M̃∞. Let

{κ : M̃∞ ⊃ (1,∞) × Vκ → (1,∞) × Uκ ⊂ Rd}κ

be a finite atlas on M̃∞ such that κ = Id⊗κb, where {κb : ∂M c Vκ → Uκ b Rd−1}κ is
a finite atlas on ∂M . We denote the associated pull-back and push-forward by κ∗ and κ∗ =
(κ−1)∗, respectively. We also denote the induced chart diffeomorphism T ∗((1,∞) × Vκ) →
T ∗((1,∞) × Uκ) ∼= (1,∞) × Uκ × Rd by the same symbol κ∗ if there is no confusion. Let
{ψκb

}κ ⊂ C∞
0 (Vκ) be a partition of unity subordinate to {Vκ} and ψ ∈ C∞(R) a cut-off function

such that suppψ ⊂ (2,∞) and ψ ≡ 1 for r ≥ 3. We set ψκ := ψ×ψκb
. Then, {ψκ}κ is a partition

of unity subordinate to {(1,∞) × Vκ}κ. Let ψ̃κ ∈ C∞(Vκ) be a cut-off function such that ψ̃κ

takes the form ψ̃κ = ψ̃ × ψ̃κb
, where ψ̃ ∈ C∞(R), ψ̃κb

∈ C∞
0 (Vκ), supp ψ̃ ⊂ (3/2,∞), ψ̃ ≡ 1 on

(2,∞) and ψ̃κb
≡ 1 close to supp ψκb

. Define smooth functions Ψκ and Ψ̃κ on (1,∞) × Uκ by
Ψκ = κ∗ψκ and Ψ̃κ = κ∗ψ̃κ, respectively. Then, {Ψκ}κ is a partition of unity subordinate to
{(1,∞) × Uκ}κ and Ψ̃κ satisfies Ψ̃κ = 1 on suppΨκ.

2.1. Manifolds with asymptotically cylindrical ends. Noting that r(z) can be extended
to a positive smooth function on M and is bounded on Mc from above and below, we define a
new density

Ĝ(z)dz := r(z)1−dG(z)dz, z ∈ M,

and set Lp(M̂) := Lp(M, Ĝ(z)dz) for 1 ≤ p < ∞, L∞(M̂) := L∞(M). (1.3) implies that

|∂l
r∂

α
θ (Ĝ(r, θ) − (det hjk(θ))1/2)| ≤ Clαr−µ−l for r > 1,

and that Ĝ(r, θ)drdθ is comparable with drdθ for r > 1. This fact implies that, for every function
u supported in (1,∞)×V with V b Vκ, ||u||

Lp(cM)
is equivalent to ||κ∗u||Lp(Rd) for all 1 ≤ p ≤ ∞.

We next define an operator P̂ on L2(M̂) by P̂ = r(z)
d−1
2 Pr(z)−

d−1
2 . It is easy to see that P̂

is unitarily equivalent to P under the unitary map

L2(M̂) 3 u 7→ r(z)−
d−1
2 u ∈ L2(M),

and P̂ is essentially self-adjoint on C∞
0 (M). We denote the unique self-adjoint extension by the

same symbol P̂ . By definition, (M, Ĝ) can be regarded as a manifold with an asymptotically
cylindrical end. For the most part of the paper we shall work with P̂ instead of P . By the
formula (1.2) of the scattering metric g, P̂κ := κ∗P̂ κ∗ takes the form

P̂κ = −1
2
Ĝ−1(∂r, ∂θ/r)Ĝ

(
1 0
0 h + a

) (
∂r

∂θ/r

)
+ W, (r, θ) ∈ (1,∞) × Uκ,
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where h = (hjk) := (hjk)−1 and a = (ajk) are smooth and real-valued tensors, and W is a
smooth and real-valued potential such that

(2.1) |∂l
r∂

α
θ ajk(r, θ)| ≤ Ckαr−µ−l, |∂l

r∂
α
θ W (r, θ)| ≤ Ckαr−1−µ−l for r > 1.

Denoting by (ρ, ω) the dual coordinate to the vector field (∂r, ∂θ), the principal symbol of P̂κ is
written in the form

pκ(r, θ, ρ, ω) =
1
2
ρ2 +

1
2r2

(hjk(θ) + ajk(r, θ))ωjωk on T ∗((1,∞) × Uκ).(2.2)

Moreover, the full symbol of P̂κ takes the form pκ + pκ1 + pκ2, where pκj can be written in the
form

pκj(r, θ, ρ, ω) =
∑

k+|β|=2−j

bkβ
κj (r, θ)ρk(ω/r)β ,

with some smooth functions bkβ
κj (r, θ) on (1,∞) × Uκ satisfying

|∂l
r∂

α
θ bkβ

κj (r, θ)| ≤ Clαkβr−1−µ−l.(2.3)

2.2. Pseudodifferential calculus on scattering manifolds. In this subsection we define
pseudodifferential operators and study their properties. Moreover we collect known results on
the functional calculus on scattering manifolds which were proved in [1] in a more general setting.
We begin with the definition of our symbol class.

Definition 2.1. Let X be an open subset of T ∗((1,∞) × Rd−1) = (1,∞)r × Rd−1
θ × Rρ × Rd−1

ω

such that πθ(X) is relatively compact, and that

|ω| . r in X,(2.4)

where πθ is the projection onto the θ-space. We define the symbol class Ssc(X) as the set of all
a ∈ C∞(R2d) such that supp a ⊂ X, and that

|∂j
r∂

α
θ ∂k

ρ∂β
ωa(r, θ, ρ, ω)| ≤ Cjαkβr−j−|β| on X.(2.5)

Example 2.2. Let Ũκ b Uκ be an open subset with Ψ̃κ = 1 on (2,∞) × Ũκ, pκ the principal
symbol of Pκ and ϕ ∈ C∞

0 ((0,∞)). For R ≥ 2 and an open interval J b (0,∞) with supp ϕ b J ,
we set Xκ = (R,∞) × Ũκ × Rd ∩ p−1

κ (J). Since |ρ|2 + |ω/r|2 ≤ Cpκ(r, θ, ρ, ω) ≤ C supJ , Xκ

satisfies (2.4). Moreover, by (2.1) and (2.2), we have

|∂j
r∂

α
θ ∂k

ρ∂β
ωpκ(r, θ, ρ, ω)| ≤ Cjαkβr−j−|β|(1 + |ρ|2 + |ω/r|2).

Therefore, ϕ◦pκ ∈ Ssc(Xκ). ϕ◦pκ is the principal symbol of the semiclassical pseudodifferential
approximation of ϕ(h2P̂ ) in the coordinated neighborhood (1,∞) × Uκ (cf. Lemma 2.4).

Suppose that Xκ ⊂ (1,∞) × Uκ × Rd satisfies (2.4) and Ψ̃κ = 1 near π(Xκ), where π :
T ∗Rd → Rd is the projection onto the base space. For all h ∈ (0, 1] and a ∈ Ssc(Xκ), we define
the semiclassical pseudodifferential operator (h-PDO for short) by

Opκ(a)u := κ∗
(
a(r, θ, hDr, hDθ)κ∗(Ψ̃κu)

)
: C∞

0 (M) → C∞(M),

where a(r, θ, hDr, hDθ) is the standard h-PDO which has the kernel

(2πh)−d

∫
Rd

e
i
h
[(r−r′)ρ+(θ−θ′)ω]a(r, θ, ρ, ω)dρdω.

Note that since π(supp a) ⊂ (2,∞) × Ũκ, for any fκ ∈ C∞(M) with κ∗fκ ≡ 1 on π(supp a),
we see that Opκ(a)u = fκ Opκ(a)u. Opκ(a) is thus well-defined on M . Morever, the Calderón-
Vaillancourt theorem shows that Opκ(a) extends to a bounded operator on L2(M̂) and satisfies

||Opκ(a)||
L(L2(cM))

≤ Cd

∑
|γ|≤Md

||∂γ
(r,θ,ρ,ω)a||L∞(R2d)

< ∞,(2.6)

uniformly with respect to h ∈ (0, 1], where Cd,Md ≥ 0 depend only on d.
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We next describe basic symbolic calculus for Ssc(Xκ). We first note that (2.4) and (2.5)
are invariant under coordinate transformations since any chart diffeomorphism κ takes the form
κ = Id⊗κb. Let a ∈ Ssc(Xκ) and b ∈ Ssc(Xκ′). The above fact allow us to define the composition
Opκ(a) ◦ Opκ′(b), though Opκ′(b) is not a properly supported h-PDO (see Definition 2.3) in
general. A standard symbolic calculus implies that the symbol of composition has the following
semiclassical expansion:

N∑
l+|α|=0

hl+|α|

l!α!
∂l

ρ∂
α
ωa(r, θ, ρ, ω)Dl

rD
α
θ νb∗(Ψ̃κ′b)(r, θ, ρ, ω) + hN+1rN (r, θ, ρ, ω),

where rN ∈ Ssc(Xκ) and νb∗ is the induced chart diffeomorphism with respect to νb = κ′
b ◦ κ−1

b .
Note that if Vκ ∩ Vκ′ = ∅, then Opκ(aκ) ◦ Opκ′(bκ′) = 0.

Following [1], we also define the properly supported h-PDO.

Definition 2.3. Let Ψ ∈ C∞
0 (Rd) be a cut-off function such that suppΨ ⊂ {|z| < δ} and Ψ ≡ 1

on {|z| < δ/2} with some small δ > 0. For a ∈ Ssc(Xκ), we then define the properly supported
h-PDO

Oppr
κ (a) : C∞

0 (M) → C∞
0 (M)

as the operator so that κ∗ Oppr
κ (a)κ∗ has the kernel

(2πh)−d

∫
e

i
h
[(r−r′)ρ+(θ−θ′)ω]a(r, θ, ρ, ω)Ψ(r − r′, θ − θ′)dρdω.

When δ is small, Ψ ≡ 1 sufficiently near π(Xκ) since supp a ⊂ Xκ. We hence removed the
factor Ψ̃κ of the amplitude. We also note that Oppr

h (a) is uniquely determined on L2(M̂) up to
O(h∞). More precisely, we have for any N ≥ 0,

||Opκ(a) − Oppr
κ (a)||

L(L2(cM))
≤ CNhN ,(2.7)

uniformly with respect to h ∈ (0, 1] since supp(1−Ψ) away from the diagonal. We here describe
a simple property of the properly supported h-PDO. Choose arbitrarily χ0, χ1 ∈ C∞

0 ((2,∞)) so
that χ1 ≡ 1 on {r|dist(suppχ0, r) < 2δ}. We then have

χ0(r)Ψ(r − r′, θ − θ′) = χ0(r)Ψ(r − r′, θ − θ′)χ1(r′).

In particular,

χ0(r)Oppr
κ (a) = χ0(r)Oppr

κ (a)χ1(r′), Oppr
κ (a)χ0(r′) = χ1(r)Oppr

κ (a)χ0(r′).

This property plays an important role in the spatial localization.
Fix ϕ ∈ C∞

0 ((0,∞)) and a relatively compact open interval J b (0,∞) so that supp ϕ b J .
Let χ ∈ C∞

0 (M) be a smooth cut-off function such that χ(z) = 1 for z ∈ Mc∪ι−1((0, R0)×∂M),
χ(z) = 0 for z ∈ ι−1((R0 + 1,∞) × ∂M) with some R0 > 1. By using above h-PDO’s, we have
two kinds of the semiclassical approximations of (1 − χ)ϕ(h2P̂ ).

Lemma 2.4 ([1]). Let δ > 0 be small enough. Then, for each κ and all N ≥ 0, there exist
semiclassical symbols

aκ,h =
N∑

j=0

hjaκ,j with aκ,j ∈ Ssc((R0,∞) × Ũκ × Rd ∩ p−1
κ (J)),

such that

(1 − χ)ϕ(h2P̂ ) =
∑

κ

Opκ(aκ,h) + hN+1RN (h) =
∑

κ

Oppr
κ (aκ,h) + hN+1Rpr

N (h)

on L2(M̂). Moreover, there exists CN > 0 such that the followings hold true uniformly with
respect to h ∈ (0, 1]:
(i) (L2(M̂)-boundedness)

||Opκ(aκ,h)||
L(L2(cM))

+ ||RN (h)||
L(L2(cM))

≤ CN ;(2.8)
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(ii) (semiclassical Sobolev embedding) for 2 ≤ q ≤ ∞,

||r−
d−1
2 Oppr

κ (aκ,h)||
L(L2(cM),Lq(M))

≤ CNh−d(1/2−1/q),(2.9)

||r−
d−1
2 Rpr

N (h)||
L(L2(cM),Lq(M))

≤ CNh−d(1/2−1/q);(2.10)

(iii) (weighted Lq(M̂)-boundedness) for 1 ≤ q ≤ ∞ and all s ∈ R,

||r−s Oppr
κ (aκ,h)rs||

L(Lq(cM))
≤ CN .(2.11)

Proof. The proof was essentially given by [1]. We hence only check that aκ,j ∈ Ssc((R0,∞) ×
Ũκ × Rd ∩ p−1

κ (J)). aκ,0 is explicitly given by aκ,0 := κ∗(1 − χ) · ϕ ◦ pκ. Moreover, for each j,
aκ,j is of the form ∑

k≤Nj

djk · (∂kϕ) ◦ pκ for some 0 < Nj < ∞.

For each k, djk is a polynomial of degree 2k− j ≥ 0 with respect to (ρ, ω/r), and its coefficients
are linear combinations of products of derivatives of Ψ̃κ, κ∗(1 − χ) and the full symbol of Pκ.
Therefore, aκ,j takes the form

aκ,j(r, θ, ρ, ω) = bκ,j(r, θ, ρ, ω/r),

where bκ,j is compactly supported with respect to ρ and ω, and satisfies

|∂l
r∂

α
θ ∂m

ρ ∂β
ωbκ,j(r, θ, ρ, ω)| ≤ ClαkβR0r

−l.

We hence obtain aκ,j ∈ Ssc((R0,∞) × Ũκ × Rd ∩ p−1
κ (J)). ¤

2.3. Outgoing and incoming regions. In this subsection we recall the definition of the out-
going and incoming regions and study some basic properties of these regions needed later. Let
R ≥ 1, Ũκ b Uκ an open subset , J b (0,∞) an open interval and σ ∈ (−1, 1).

Definition 2.5. (i) We set

Γ±(R, Ũκ, J, σ) = {(r, θ, ρ, ω) ∈ R2d | r > R, θ ∈ Ũκ, pκ ∈ J, ±ρ > −σ
√

2pκ},

where pκ = pκ(r, θ, ρ, ω). Γ+(R, Ũκ, J, σ) (resp. Γ−(R, Ũκ, J, σ)) is said to be the outgoing (resp.
incoming) region.
(ii) Let Ũκ,

√
ε and Jε2 be an

√
ε-neighborhood of Ũκ and an ε2-neighborhood of J , respectively:

Ũκ,
√

ε := {θ ∈ Rd−1|dist(Ũκ, θ) <
√

ε}, Jε2 := {ρ ± ε2 ∈ (0,∞)|ρ ∈ J}.

For sufficiently small ε > 0 such that Ũκ,
√

ε b Uκ, we define the strongly outgoing and incoming
regions as follows:

Γ±
s (R, Ũκ, J, ε) := Γ±(R, Ũκ,

√
ε, Jε2 ,−

√
1 − ε2).

(iii) For sufficiently small ε, δ > 0, and for any L > 0 and σl ∈ (−1, 1/2], l = 0, 2, ..., L, satisfying

(2.12)


(−

√
1 − ε2/4, 1/2) =

L−1⋃
l=1

(σl−1, σl+1),

−
√

1 − ε2/4 = σ0 < σ1 < ... < σL = 1/2, |σl+1 − σl−1| ≤ δ,

the intermediate outgoing region and incoming region are defined by

Γ±
i (R, Ũκ, J, ε, δ, l)

:= Γ±(R, Ũκ,
√

ε, Jε2 , 1/2) ∩ {−σl+1

√
2pκ < ±ρ < −σl−1

√
2pκ}.
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We describe basic properties of these regions. Γ±(R, Ũκ, J, σ) are monotonously decreasing
with respect to R, and increasing with respect to Ũκ, J and σ. By definition, we have

(R,∞) × Ũκ × Rd ∩ p−1
κ (J) ⊂

⋃
±

Γ±(R, Ũκ, J, 1/2).

We also obtain

Γ±(R, Ũκ, J, 1/2) ⊂ Γ±
s (R, Ũκ, J, ε) ∪

L−1⋃
l=1

Γ±
i (R, Ũκ, J, ε, δ, l),

respectively. Moreover for sufficiently large R0, C > 0, all 0 < ε < 1/2 and R ≥ R0,

|ω/r| ≤ Cε on Γ±
s (R, Ũκ, J, ε).

Indeed, since ρ2 ≥ (1 − ε2)
(
ρ2 + 1

r2 (hjk + ajk)ωjωk

)
on Γ±

s (R, Ũκ, J, ε), taking R0 > 0 large
enough so that (hjk+ajk)j,k ≥ C−1

0 Id for some fixed C0 > 0, we obtain |ω/r|2 ≤ C0ρ
2ε2/(1−ε2).

We also define spatial localized regions as follows.

Definition 2.6. Let ε, δ, L, σl be as above. For R2 > R1 > 1, we define the spatial localized
outgoing and incoming regions Ω±(R1, R2, Ũκ, J, σ) by

Ω±(R1, R2, Ũκ, J, σ) := Γ±(R1, Ũκ, J, σ) ∩ {R1 < r < 4R2}.

We shall use the notation Ω±(R, Ũκ, J, σ) = Ω±(R,R, Ũκ, J, σ). We also define the corresponding
spatial localized strongly outgoing (incoming) and intermediate regions

Ω±
s (R1, R2, Ũκ, J, ε), Ω±

s (R, Ũκ, J, ε), Ω±
i (R1, R2, Ũκ, J, ε, δ, l),

and Ω±
i (R, Ũκ, J, ε, δ, l) in the same manner, respectively.

Remark 2.7. Since the principal symbol of P is invariant under coordinate transformations,
these regions define invariant subsets in T ∗M̃∞ except the choice of the boundary decomposition.
Moreover we will prove in Section 4 that these regions are also invariant under the geodesic flow
generated by p. This property will be used to prove microlocal smoothing properties of the
propagator (see Section 6).

3. Reduction to microlocal dispersive estimates

In this section we shall show that (1.5) follows from microlocal dispersive estimates. We
first recall the frequency localization using the Littlewood-Paley decomposition. The following
theorem was proved by Bouclet [2] for a large class of non-compact manifolds with ends (including
scattering manifolds).

Proposition 3.1 ([2]). Let ψ ∈ C∞
0 ((0,∞)) be a smooth cut-off function such that

suppψ ⊂ [1/4, 4], 0 ≤ ψ ≤ 1,

∞∑
j=0

ψ(2−2jλ) = 1 for λ ∈ [1,∞).

Then, for all χ ∈ C∞
0 (M) with supp(1 − χ) ⊂ M∞ and 2 ≤ q < ∞ with 0 ≤ d (1/2 − 1/q) ≤ 1,

there exists C > 0 such that

||(1 − χ)u||Lq(M) ≤ C||u||L2(M) + C

 ∞∑
j=0

||(1 − χ)ψ(2−2jP )u||2Lq(M)

 1
2

.

Using this proposition, we see that (1.5) follows from semiclassical Strichartz estimates. More
precisely, it suffices to prove that for χ ∈ C∞

0 (M) as above and every ϕ ∈ C∞
0 ((0,∞)),

||(1 − χ)ϕ(h2P )e−itP u0||Lp([0,1];Lq(M)) ≤ C||u0||L2(M)(3.1)
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uniformly with respect to h ∈ (0, 1], where (p, q) satisfies the admissible condition (1.1). This
reduction is a standard and can be proved by using the L2-functional calculus and the almost
orthogonality of ψ(2−2jP ). By the definition of P̂ , (3.1) is equivalent to

||r−
d−1
2 (1 − χ)ϕ(h2P̂ )e−it bP u0||Lp([0,1];Lq(M)) ≤ C||u0||L2(cM)

, h ∈ (0, 1].(3.2)

For R > 2, we take a cut-off χ ∈ C∞
0 (M) so that χ(z) = 1 for r(z) ≤ R, χ(z) = 0 for

r(z) ≥ R + 1. Let J b (0,∞) be an open interval so that supp ϕ b J and N ≥ d/2 an integer.
By Lemma 2.4, we then can find a semiclassical symbol aκ,h ∈ Ssc((R,∞) × Ũκ × Rd ∩ p−1

κ (J))
such that (1−χ)ϕ(h2P̂ ) is well approximated by Ah :=

∑
κ Oppr

κ (aκ,h). Moreover, the following
holds.

Proposition 3.2. To prove (3.2), it suffices to show that for sufficiently large R > 1 and all
a ∈ Ssc((R,∞) × Ũκ × Rd ∩ p−1

κ (J)),

||r−
d−1
2 Ah Opκ(a)e−it bP u0||Lp([0,1];Lq(M)) ≤ C||u0||L2(cM)

, u0 ∈ C∞
0 (M),(3.3)

uniformly with respect to h ∈ (0, 1], where (p, q) satisfies (1.1).

This proposition is a direct consequence of Lemma 2.4, and the proof is completely same as
[3, Proposition 2.18].

We next describe the spatial localization and give the main step of the proof of Theorem 1.1.
The following theorem is the main result of this section. We here fix Ũκ and J , and hence do
not write explicitly. We also use a notation such as Γ±(R, Ũκ, J, σ) = Γ±(R, σ) for short.

Theorem 3.3 (Microlocal dispersive estimates). There exist R0 ≥ 0 and ε0 > 0 such that the
following hold for all R2 ≥ R1 ≥ R0, 0 < ε < ε0 and h ∈ (0, 1].
(i) There exists t0 > 0, independent of R2, such that for all symbols

a± ∈ Ssc(Γ±(R1, 1/2)), b± ∈ Ssc(Ω±(R2, 1/2)),

and 0 < ±t ≤ min(R2t0, h
−1), we have

||r−
d−1
2 Ah Opκ(a±)e−ith bP Opκ(b±)∗A∗

hr−
d−1
2 ||

L(L1(cM),L∞(cM))
≤ C0|th|−

d
2 .(3.4)

(ii) For all symbols
a±s ∈ Ssc(Γ±

s (R1, ε)), b±s ∈ Ssc(Ω±
s (R2, ε)),

and 0 < ±t ≤ h−1, we have

||r−
d−1
2 Ah Opκ(a±s )e−ith bP Opκ(b±s )∗A∗

hr−
d−1
2 ||

L(L1(cM),L∞(cM))
≤ C1|th|−

d
2 .(3.5)

(iii) For all t1 > 0, we can find δε,t1 > 0 and Lε,t1 > 0 such that for all σl ∈ (−1, 1/2] satisfying
(2.12), all symbols

a±l ∈ Ssc(Γ±
i (R1, ε, δε,t0 , l)), b±l ∈ Ssc(Ω±

i (R2, ε, δε,t0 , l)),

and R2t1 ≤ ±t ≤ h−1, we have

||r−
d−1
2 Ah Opκ(a±l )e−ith bP Opκ(b±l )∗A∗

hr−
d−1
2 ||

L(L1(cM),L∞(cM))
≤ C2|th|−

d
2 .(3.6)

Moreover C0, C1, C2 > 0 may be taken uniformly with respect to h, t and R2.

We give the proof of Theorem 3.3 in Section 8. Before proving Theorem 1.1, we prepare the
following lemma.

Lemma 3.4. Let R, δ, L > 0, 0 < ε < 1 and (σl)1≤l≤L ⊂ (−1, 1/2] so that (2.12) is satisfied.
Then for any a ∈ Ssc((R,∞) × Ũκ × Rd ∩ p−1

κ (J)), there exist symbols a± ∈ Ssc(Γ±(R, 1/2)),
a±s ∈ Ssc(Γ±

s (R, ε)) and a±l ∈ Ssc(Γ±
i (R, ε, δ, l)), l = 1, 2, ..., L − 1, such that

a = a+ + a− = a+
s + a−s +

L−1∑
l=1

(a+
l + a−l ).
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Proof. Define v(r, θ, ρ, ω) := ρ/
√

2pκ(r, θ, ρ, ω). v is then smooth on Γ±(R, 1/2), and satisfies

|∂j
r∂

α
θ ∂k

ρ∂β
ωv(r, θ, ρ, ω)| ≤ Cjαkβr−j−|β| on Γ±(R, 1/2),

since pκ is of the form (2.2). Take a cut-off function χ ∈ C∞(R) such that

χ(t) + χ(−t) = 1, suppχ ⊂ (−1/2,∞),

and define a± = χ(±v) · a. Then a± ∈ Ssc(Γ±(R, 1/2)) and a = a+ + a−. Next, choose
χs ∈ C∞(R) and χl ∈ C∞

0 (R), l = 1, 2, ..., L − 1, so that

suppχs ⊂ (
√

1 − ε2,∞), suppχl ⊂ (−σl+1,−σl−1), suppχL ⊂ (−1,−σL−1),

and that χs +
∑L

l=1 χl = 1. We define a±s := χs(±v) · a± and a±l := χl(±v) · a±, respectively. It
is easy to see that they satisfy the assertion. ¤

Proof of Theorem 1.1. Choose R0, ε0, t0 > 0 so that (i) and (ii) in Theorem 3.3 hold for all
R2 ≥ R1 ≥ R0 and 0 < ε ≤ ε0. Next, fix ε, δε,t0 , Lε,t0 > 0 so that (iii) holds with t1 = t0. By
virtue of Proposition 3.2, it suffices to show (3.3) for any a ∈ Ssc((R1,∞) × Ũκ × Rd ∩ p−1

κ (J)).
Using Lemma 3.4 with δ = δε,t0 and L = Lε,t0 , we split Opκ(a) as follows:

Opκ(a) = Opκ(a+
s ) + Opκ(a−s ) +

Lε,t0−1∑
l=1

(
Opκ(a+

l ) + Opκ(a−l )
)
,

where a±s ∈ Ssc(Γ±
s (R1, ε)) and a±l ∈ Ssc(Γ±

i (R1, ε, δε,t0 , l)). By virtue of the TT ∗-argument
[14], it suffices to show the L(L2(M̂), L2(M))-boundedness and L1(M) − L∞(M) estimates for
corresponding operators uniformly with respect to h ∈ (0, 1].

By (2.6), (2.9) and the fact that e−it bP is unitary on L2(M̂), we obtain

||r−
d−1
2 Ah Opκ(a±s )e−it bP u0||L2(M) ≤ C||u0||L2(cM)

,

||r−
d−1
2 Ah Opκ(a±l )e−it bP u0||L2(M)

≤ C||u0||L2(cM)
,

uniformly with respect to h ∈ (0, 1], t ∈ R and l = 1, 2, ..., Lε,t0 − 1. After the time rescaling
t → th, we set

U±
s (t) := r−

d−1
2 Ah Opκ(a±s )e−ith bP , U±

l (t) := r−
d−1
2 Ah Opκ(a±l )e−ith bP .

It remains to show that U±
s (t)U±

s (s)∗ and U±
l (t)U±

l (s)∗ satisfy dispersive estimates for 0 <

|t − s| ≤ h−1. We here use a trick by [4, Lemma 4.3]. We denote by K±(t − s, r, θ, r′, θ′) the
kernel of U±

s (t)U±
s (s)∗, respectively. Since U±

s (t)U±
s (s)∗ = (U±

s (s)U±
s (t)∗)∗, we see that

K±(t − s, r, θ, r′, θ′) = K±(s − t, r′, θ′, r, θ).

A same property holds for the kernel of U±
l (t)U±

l (s)∗. We hence can restrict the sign of t− s so
that 0 ≤ ±(t − s) ≤ h−1, and it is enough to prove the following:

(3.7)
||U±

s (t)U±
s (s)∗u0||L∞(M) + ||U±

l (t)U±
l (s)∗u0||L∞(M)

≤ C|(t − s)h|−
d
2 ||u0||L1(M),

uniformly with respect to h ∈ (0, 1] and 0 < ±(t − s) ≤ h−1, l = 1, 2, ..., Lε,t0 − 1, respectively.
Combining with the facts L1(M) = r−(d−1)L1(M̂), L∞(M) = L∞(M̂) and

(r−
d−1
2 )∗ = r

d−1
2 : L2(M) → L2(M̂),

(3.7) follows from

(3.8)
||U±

s (t)V ±
s (s)u0||L∞(cM)

+ ||U±
l (t)V ±

l (s)u0||L∞(cM)

≤ C|(t − s)h|−
d
2 ||u0||L1(cM)

,
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where V ±
s (s) and V ±

l (s) are given by

V ±
s (s) := eish bP Opκ(a±s )∗A∗

hr−
d−1
2 , V ±

l (s) := eish bP Opκ(a±l )∗A∗
hr−

d−1
2 .

We now introduce a spatial localization. Let χ ∈ C∞
0 ((0,∞)) be a smooth cut-off function such

that

suppχ ⊂ [1, 4], 0 ≤ χ ≤ 1,
∞∑

j=0

χ(2−jr) = 1 for r ∈ [2,∞).

Choose χ′ ∈ C∞
0 ((0,∞)) so that supp χ′ ⊂ [1/2, 8], χ′ ≡ 1 on supp χ, and set χj(r) := χ(2−jr),

χ′
j(r) := χ′(2−jr). Since Ψ is supported in a small ball centered at origin (see Definition 2.3),

we obtain that

χj(r)Ψ(r − r′, θ − θ′) = χj(r)Ψ(r − r′, θ − θ′)χ′
j(r

′), j ≥ j0,

with some large j0 ≥ 0. In particular, we have

Opκ(χja)∗A∗
h = Opκ(χja)∗A∗

hχ′
j for j ≥ j0.

If we choose j0 as 2j0 > R0 and set R1 = 2j0 , then

a±s =
∑
j≥j0

χja
±
s , a±l =

∑
j≥j0

χja
±
l .

Since χja
±
s ∈ Ssc(Ω±

s (2j , ε)) and χja
±
l ∈ Ssc(Ω±

i (2j , ε, δε,t0 , l)), applying Theorem 3.3 with
R2 = 2j to U±

s (t)V ±
s (s) and U±

l (t)V ±
l (s), we have

||U±
s (t)V ±

s (s)u0||L∞(cM)
+ ||U±

l (t)V ±
l (s)u0||L∞(cM)

≤ C|(t − s)h|−
d
2

∑
j≥j0

||χ′
ju0||L1(cM)

≤ 4C|(t − s)h|−
d
2 ||u0||L1(cM)

,

uniformly with respect to h ∈ (0, 1] and 0 < ±(t−s) ≤ h−1. We hence obtain (3.8) and conclude
the proof of Theorem 1.1. ¤

Remark 3.5. Since b±, b±s and b±l are compactly supported with respect to both the space and
the frequency, the above argument tells us that Strichartz estimates follows from microlocal
dispersive estimates.

4. Classical Trajectories

In this section we study the behavior of the geodesic flow which we denote by

exp tHp : T ∗M → T ∗M.

Recall that the principal symbol pκ of P̂κ is of the form

pκ(r, θ, ρ, ω) =
1
2
ρ2 +

1
2r2

(hjk(θ) + ajk(r, θ))ωjωk, (r, θ, ρ, ω) ∈ (1,∞) × Uκ × Rd,

where ajk(r, θ) satisfies (2.1). We put

(r(t), θ(t), ρ(t), ω(t)) = exp tHpκ(r, θ, ρ, ω),



12 HARUYA MIZUTANI

which solves the following Hamilton equation:

(4.1)



ṙ(t) = ρ(t),

θ̇j(t) =
1

r(t)2
hjk(θ(t))ωk(t) +

1
r(t)2

ajk(r(t), θ(t))ωk,

ρ̇(t) =
1

r(t)3
hjk(θ(t))ωj(t)ωk(t) +

1
r(t)3

ajk(r(t), θ(t))ωj(t)ωk(t)

− 1
2r2

∂ajk

∂r
(r(t), θ(t))ωj(t)ωk(t),

ω̇j(t) = − 1
2r(t)2

∂hkl

∂θj
(θ(t))ωk(t)ωl(t) −

1
2r(t)2

∂akl

∂θj
(r(t), θ(t))ωk(t)ωl(t).

We first prepare an a priori estimate for exp tHpκ .

Lemma 4.1. Let J b (0,∞) and −1 < σ < 1. Then, there exist R0 > 0 such that for all
R ≥ R0,

C−1(r + |t|) ≤ r(t) ≤ C(r + |t|), |ρ(t)| + |ω(t)/r| ≤ C,(4.2)

uniformly with respect to (r, θ, ρ, ω) ∈ Γ±(R, Ũκ, J, σ) and ±t ≥ 0, where the constant C may be
taken uniformly with respect to R and t.

Using Lemma 4.1, we obtain the behavior of the geodesic flow near infinity.

Proposition 4.2. Let R0 > 0 be as in Lemma 4.1 and R ≥ R0. Then the following estimates
hold for all (r, θ, ρ, ω) ∈ Γ±(R, Ũκ, J, σ), ±t ≥ 0 and (j, α, k, β) ∈ Z2d

+ as long as the trajectory
belongs to the same coordinate neighborhood (1,∞) × Uκ:

(4.3)



|∂j
r∂

α
θ ∂k

ρ∂β
ω(r(t) − r ∓ tρ)| ≤ Cr−j−|β||ω/r|(2−|β|)+〈r/t〉−1|t|,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(θ(t) − θ)| ≤ Cr−j−|β||ω/r|(1−|β|)+〈r/t〉−1,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(ρ(t) − ρ)| ≤ Cr−j−|β||ω/r|(2−|β|)+〈r/t〉−1,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(ω(t) − ω)| ≤ Cr1−j−|β||ω/r|(2−|β|)+〈r/t〉−1,

(4.4)

{
|∂j

r∂
α
θ ∂k

ρ∂β
ω(r(t) − r)| + |∂j

r∂
α
θ ∂k

ρ∂β
ω(ω(t) − ω)| ≤ Cr−j−|β||t|,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(θ(t) − θ)| + |∂j

r∂
α
θ ∂k

ρ∂β
ω(ρ(t) − ρ)| ≤ Cr−1−j−|β||t|,

Moreover, for all (r, θ, ρ, ω) ∈ Γ±(R, Ũκ, J, σ) and ±t ≥ 0, we have

|
√

2E0 ∓ ρ(t)| ≤ C|ω/r|2〈t/r〉−1,(4.5)

where E0 := pκ(r, θ, ρ, ω) is the initial energy.

Proof of Lemma 4.1. We prove the lemma for t ≥ 0, and the proof for t ≤ 0 is analogous. We
first note that the energy conservation low, namely

E0 = pκ(r(t), θ(t), ρ(t), ω(t)), t ∈ R,

implies |ρ(t)| + |ω(t)/r(t)| ≤ C0 as long as r(t) large enough, where C0 > 0 depends only on√
E0. In particular, we can find R1, C1 > 0 so large that

ṙ(0) = O(1), ρ̇(0) =
1
r3

hjk(θ)ωjωk + O(r−1−µ),

for r > R1, and hence

d2

dt2
r(t)2

∣∣∣∣
t=0

= 2(ṙ(t)ρ(t) + r(t)ρ̇(t))|t=0 ≥ 4E0 − C1r
−µ.

Since σ ∈ (−1, 1), we can choose 0 < δ < 1 and C2 > 0 so that

r2 − 2σr
√

2E0t + 2(1 − δ)2E0t
2 ≥ 1

C2
2

(r + t
√

2E0)2, r ≥ 0, t ≥ 0.
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We now suppose that there exist R > 0 and t0 > 0 such that

4E0 − C1r(t)−µ ≥ 4(1 − δ)2E0(4.6)

holds true for r > R and 0 ≤ t ≤ t0. We then have

r(t)2 ≥ r2 + 2rρt + 2(1 − δ)2E0t
2

≥ r2 − 2σr
√

2E0t + 2(1 − δ)2E0t
2

≥ 1
C2

2

(r + t
√

2E0)2,

for 0 ≤ t ≤ t0 and (r, θ, ρ, ω) ∈ Γ+(R, Ũκ, J, σ). Moreover, if we put q0(t) = hjk(θ(t))ωj(t)ωk(t),
then a direct computation yields

q̇0(t) = θ̇l ∂hjk

∂θl
ωjωk + 2hjkω̇jωk

=
1
r2

(hlm + alm)ωm
∂hjk

∂θl
ωjωk − hjkωk

1
r2

(
∂hlm

∂θj
+

∂alm

∂θj
ωlωm

)
= O(r(t)−1−µq0(t)).

Integrating with respect to s ∈ [0, t], we have

q0(t) ≤ q0(0) + C

∫ t

0
(r + |s|

√
2E0)−1−µq0(s)ds, 0 ≤ t ≤ t0.

By Gronwall’s inequality and the ellipticity of q0, we obtain

|ω(t)| ≤ C3
√

q0 ≤ C3r
√

2E0 for 0 ≤ t ≤ t0.(4.7)

Applying (4.7) to (4.1), we have

(4.8) ṙ(t) = ρ(t), θ̇(t) = O(r(t)−2r), ρ̇(t) = O(r(t)−3r2), ω̇(t) = O(r(t)−2r2).

In particular, we see that |ρ(t)| ≤ C4

√
2E0 for 0 ≤ t ≤ t0 with some large C4 > 0. Therefore, it

is enough to check that (4.6) holds with t0 = ∞. Define

S := {t ≥ 0 | (4.6) holds for all s ∈ [0, t]}.

For sufficiently large r > R1, the above argument shows that 0 ∈ S and S 6= ∅. Set t0 = sup S.
The above argument then implies

r(t) ≥ C−1
2 (r + t

√
2E0) for r > R2, 0 ≤ t ≤ t0,

with some R2 > R1 large enough. Taking R3 > R2 so that

4δE0 − δ2E0 ≥ C1C
µ
2 r−µ for r > R3,

we have

4E0 − C1r(t)−µ ≥ 4(1 − δ

2
)2E0 + 4δE0 − δ2E0 − C1C

µ
2 (r + t

√
2E0)−µ

≥ 4(1 − δ

2
)2E0

for r > R3 and 0 ≤ t ≤ t0. Therefore, t0 + ε ∈ S for some ε > 0 which implies t0 = ∞ by the
definition of t0. The estimate of r(t) from above is obvious. ¤

Proof of Proposition 4.2. Let t ≥ 0. The proof for t < 0 is similar. Take R0 > 0 as in Lemma
4.1. (4.3) with j + |α| + k + |β| = 0 is a direct consequence of Lemma 4.1 and (4.8) since∫ t

0
(r + |s|)−1−ads ≤ Cr−a〈r/t〉−1 for any a > 0.

We next consider the derivatives. Put z(t) := r(t) − tρ(t). It is easy to see that

W (t) := (z(t), θ(t), ρ(t), ω(t)) = exp(−tH 1
2
ρ2) ◦ exp tHpκ(r, θ, ρ, ω)
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solves the following Hamilton equations:

ż =
∂K

∂ρ
, θ̇ =

∂K

∂ω
, ρ̇ = −∂K

∂z
, ω̇ = −∂K

∂θ
,

with a time dependent Hamiltonian:

K(t, z, θ, ρ, ω) :=
1
2
ρ2 − pκ(z + tρ, θ, ρ, ω) = −hjk(θ) + ajk

3 (z + tρ, θ)
2(z + tρ)2

ωjωk.

Lemma 4.1 shows that K(t,W (t)) satisfies

(4.9) |(∂j
z∂

α
θ ∂k

ρ∂β
ωK)(t,W (t))| ≤ Cr(t)−2−j |ω|(2−|β|)+ if |β| ≤ 2,

and (∂j
z∂α

θ ∂k
ρ∂β

ωK)(t,W (t)) = 0 if |β| ≥ 3. Let γ = (j, α, k, β), |γ| = 1, and denote ∂γ =
∂j

r∂α
θ ∂k

ρ∂β
ω for short. By differentiating the Hamilton equation with respect to ∂γ , we have

∂t∂
γ(W (t) − W (0)) = A(t)∂γ(W (t) − W (0)) + A(t)∂γW (0),(4.10)

where A(t) = (Aj(t))1≤j≤4 := dHK(W (t)) satisfies

(4.11)
|A1(t)| ≤ Cr(t)−2|ω|2, |A2(t)| ≤ Cr(t)−2|ω|,

|A3(t)| ≤ Cr(t)−3|ω|2, |A4(t)| ≤ Cr(t)−2|ω|2.

If we put

f(t) = (f1(t), f2(t), f3(t), f4(t))

:=
(

∂γ(z(t) − r)
r

, ∂γ(θ(t) − θ), ∂γ(ρ(t) − ρ),
∂γ(ω(t) − ω)

r

)
,

then, by using (4.2), (4.9), (4.10) and (4.11), we have

|f1(t)| ≤ C

∫ t

0

(
r−1r(s)−2−j |ω|(2−|β|)+ + r(s)−2r|f(s)|

)
ds.(4.12)

We similarly obtain

|f2(t)| ≤ C

∫ t

0

(
r(s)−2−j |ω|(1−|β|)+ + r(s)−2r|f(s)|

)
ds,(4.13)

|f3(t)| ≤ C

∫ t

0

(
r−1r(s)−2−j |ω|(2−|β|)+ + r(s)−2r|f(s)|

)
ds,(4.14)

|f4(t)| ≤ C

∫ t

0

(
r−1r(s)−2−j |ω|(2−|β|)+ + r(s)−2r|f(s)|

)
ds.(4.15)

Gronwall’s inequality then implies

|f(t)| ≤ C

∫ t

0
r(s)−2−j |ω|(1−|β|)+ds . r−1−j |ω|(1−|β|)+〈r/t〉−1,(4.16)

and we obtain the estimate for ∂γ(θ(t) − θ). For the proof on other variables, we set

g(t) := (r−1∂γ(z(t) − r), ∂γ(ρ(t) − ρ), r−1∂γ(ω(t) − ω).

Combining the second estimate of (4.3) with (4.9), (4.12), (4.14) and (4.15), we have

|g(t)| .
∫ t

0

(
r−1−jr(s)−2|ω|(2−|β|)+ + r(s)−2r|g(s)|

)
ds.

Again Gronwall’s inequality implies

|g(t)| ≤ Cr−2−j |ω|(2−|β|)+〈r/t〉−1,

and we obtain the estimates for ∂γρ(t), ∂γω(t). Moreover the first estimate of (4.3) follows from

∂γ(ṙ(t) − ρ) = ∂γ(ρ(t) − ρ) = O(r−2−j |ω|(2−|β|)+〈r/t〉−1),
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since 〈r/t〉−1 is monotone increasing with respect to t. Next, let l be a non-negative integer
and suppose that (4.13) holds for any γ with |γ| ≤ l. Let γ = (j, α, k, β), |γ| = l + 1. A direct
computation yields

∂t∂
γ(W (t) − W (0)) = A(t)∂γ(W (t) − W (0)) + A(t)∂γW (0) + B(t),

where B(t) is a linear combination of products of

(∂α1
z ∂α′

θ ∂
αd+1
ρ ∂α′′

ω dHK)(W (t)),

∂γ1
1z(t) · · · ∂γ1

α1z(t) × · · · × ∂γ2d
1 ωd−1(t) · · · ∂γ2d

α2d ωd−1(t),

with α, γ1
1 , γ1

2 , ..., γ2d
α2d

∈ Z2d
+ such that

α = (α1, ..., α2d) = (α1, α
′, αd+1, α

′′) ∈ Z1+(d−1)+1+(d−1)
+ , 1 ≤ |α| ≤ |γ|,

γ1
1 + γ1

2 + · · · + γ2d
α2d

= γ, 1 ≤ γk
l
≤ |γ| − 1.

The induction hypothesis implies that each entry of B(t) = (Bj(t)) satisfies

|B1(t)| + |B4(t)|

≤ C
∑

1≤|α|≤|γ|,
|α′′|≤2

r(t)−2−α1r2−|α′′||ν|2−|α′′|rα1+|α′′|r−j−|β||ν|(2|α|−|α′|−|α′′|−|β|)+

≤ Cr(t)−2r−j−|β||ν|(2−|β|)+ ,

and we similarly obtain

|B2(t)| ≤ Cr(t)−2r−j−|β||ν|(1−|β|)+ , |B3(t)| ≤ Cr(t)−3r−j−|β||ν|(2−|β|)+ ,

where ν = ω/r. By a similar argument as that in the case for |γ| = 1, we obtain the assertion.
The proof of (4.4) is more simpler than (4.3), and we hence omit it.

Finally, we prove (4.5). Note that if R > 0 is large enough, then

ρ̇(t) = r(t)−3
(
hjk(θ(t)) + O(r(t)−µ)

)
ωj(t)ωk(t) ≥ 0, t ∈ R.

Therefore, integrating ρ̇(t) with respect to t, we have (4.5). ¤

Proposition 4.2 implies that the trajectory belongs to a fixed coordinate neighborhood as
long as either (r, θ, ρ, ω) ∈ Γ±(R, Ũκ, J, σ) and 0 ≤ ±t ≤ rt0 or (r, θ, ρ, ω) ∈ Γ±

s (R, Ũκ, J, ε0) and
±t ≥ 0, respectively, provided t0, ε0 > 0 are small enough. It also follows from Proposition 4.2
that the outgoing and incoming regions are invariant under the geodesic flow (except the choice
of the boundary decomposition). More precisely we have the following.

Corollary 4.3. Let R0 > 0 be as in Lemma 4.1. Fix Uκ, Ũκ, Uκ′ , Ũκ′ and κ′ : Vκ′ → Uκ′ so
that Ũκ b Uκ and Ũκ′ b Uκ′. Then there exists C > 0 such that, for all R ≥ R0, T0 > 0 and
(r, θ, ρ, ω) ∈ Γ+(R, Ũκ, J, σ), we have

κ′
∗ exp T0Hpκ

−1
∗ (r, θ, ρ, ω) ∈ Γ+((R + T0)/C, Ũκ′ , J, σ).(4.17)

In particular we can find t0 > 0 such that, for all (r, θ, ρ, ω) ∈ Γ+(R, Ũκ, J, σ) and 0 ≤ t ≤ rt0,

exp tHpκ(r, θ, ρ, ω) ∈ Γ+((R + t)/C, Ũκ,
√

t0
, J, σ),(4.18)

where Ũκ,
√

t0
is the

√
t0-neighborhood of Ũκ. Moreover there exists a small constant ε0 > 0 such

that if 0 < ε ≤ ε0, (r, θ, ρ, ω) ∈ Γ+
s (R, Ũκ, J, ε) and t ≥ 0, then

exp tHpκ(r, θ, ρ, ω) ∈ Γ+
s (R/C, Ũκ, J, ε).(4.19)

When t < 0, analogous results hold in the incoming region.
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Proof. We first prove (4.18) and (4.19). By Lemma 4.1, we can find R > 0 large enough such
that

ρ̇(t) =
1

r(t)3
(
hjk(θ(t)) − O(r(t)−µ

)
ωj(t)ωk(t) ≥ 0, r > R, t ≥ 0,

and hence ρ(t) ≥ ρ for t ≥ 0. Therefore, (4.18) follows from (4.2), (4.4) and the energy
conservation pκ(r(t), θ(t), ρ(t), ω(t)) = pκ(r, θ, ρ, ω). Next, let (r, θ, ρ, ω) ∈ Γ+

s (R, Ũκ, J, ε). Since
〈r/t〉−1 ≤ 1 and

|ω/r| ≤ Cε on Γ±
s (R, Ũκ, J, ε),

(4.19) follows from (4.3). To prove (4.17), divide the time interval [0, T0] as

[0, T0] ⊂ [0, Rt0] ∪ [Rt0, 2Rt0] ∪ · · · ∪ [T0 − Rt0, T0].

In each interval [jRt0, (j + 1)Rt0], the flow is contained some fixed coordinate neighborhood.
Since the outgoing region is invariant under coordinate transformations, applying (4.18) on each
chart, we have the assertion. ¤

5. The Isozaki-Kitada parametrix

In this section we construct the Isozaki-Kitada parametrix of e−ithP Opκ(a±s ), where the sym-
bols a+

s and a−s are supported in the strongly outgoing incoming regions, respectively. Though
the method of construction is similar to the case of an asymptotically hyperbolic manifold, the
class of the phase function of the parametrix becomes even worse (see Remark 5.2). We thus
give the full details of the proof.

By Corollary 4.3, we can always work on one fixed coordinate chart (Uκ, κ), and hence drop
the subscript κ if there is no confusion. Fix an open set Ũκ b Uκ with Ψ̃κ = 1 on (2,∞) × Ũκ

and an open interval J b (0,∞) arbitrarily. We denote Γ±(R, ε) = Γ±
s (R, Ũκ, J, ε) for short.

For a large parameter λ ≥ 1, we also denote Γ±
s (λ) = Γ±

s (R/λ, Ũκ, J, λε). Notice that Γ±
s (λ) and

Ω±
s (λ) is increasing with respect to λ: Γ±

s (R, ε) ⊂ Γ±
s (λ1) ⊂ Γ±

s (λ2), 1 ≤ λ1 < λ2.

5.1. Fourier integral operators for the Isozaki-Kitada parametrix. We here study Fourier
integral operators (FIO’s for short) on Rd which will be used to construct the Isozaki-Kitada
parametrix. The first step is to construct the corresponding phase function.

Theorem 5.1. There exist R0, λ0 > 0 large enough and ε0 > 0 small enough such that for all
R, ε, λ > 0 satisfying λ ≥ λ0, R ≥ λR0 and 0 < ε ≤ ε0/λ, we can find smooth and real-valued
functions S± ∈ C∞(R2d, R) satisfying the Eikonal equation:

p(r, θ, ∂rS
±(r, θ, ρ, ω), ∂θS

±(r, θ, ρ, ω)) =
1
2
ρ2, (r, θ, ρ, ω) ∈ Γ±

s (R, ε).

If we put ϕ±(r, θ, ρ, ω) := S±(r, θ, ρ, ω) − rρ − θ · ω, then ϕ± satisfy suppϕ± ⊂ Γ±
s (λ), and

|∂j
r∂

α
θ ∂k

ρ∂β
ωϕ±(r, θ, ρ, ω)| ≤ Cr1−j−|β||ω/r|(2−|β|)+ on Γ±

s (λ).(5.1)

Furthermore, we can write

ϕ±(r, θ, ρ, ω) =
1

2rρ
q0(θ, ω) + R±(r, θ, ρ, ω) on Γ±

s (R, ε),(5.2)

where q0(θ, ω) := hjk(θ)ωjωk and R±(r, θ, ρ, ω) satisfy

|∂j
r∂

α
θ ∂k

ρ∂β
ωR±(r, θ, ρ, ω)| ≤ Cr1−j−|β|(|ω/r|(3−|β|)+ + r−µ|ω/r|(2−|β|)+).

Here the constant C > 0 can be taken uniformly with respect to R, ε and λ.

Remark 5.2. We remark that ϕ± and its derivatives with respect to (θ, ρ) are not bounded
with respect to r even for the perfectly conic (ajk ≡ 0) case. This condition is even worse
than that of the asymptotically flat case or asymptotically hyperbolic case. Indeed, we see that
∂α

x ∂β
ξ (S±(x, ξ) − x · ξ) = O(〈x〉1−ε−|α|) with some ε > 0 in the asymptotically flat case [4], and

∂j
r∂α

θ ∂k
ρ∂β

ω(S±(r, θ, ρ, ω) − rρ − θ · ω) = O(e−r|β|) in the asymptotically hyperbolic case [3]. We
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refer to [4, 3] for more details. We also refer to the original paper by Isozaki-Kitada [12] which
was concerned with a long-range potential scattering theory on Rd.

We also note that (5.1) implies

|∂j
r∂

α
θ ∂k

ρ∂β
ωϕ±(r, θ, ρ, ω)| ≤ C〈r〉1−j−|β|ε

(2−|β|)+
0 on R2d,(5.3)

since |ω/r| ≤ Cλε ≤ Cε0 on suppϕ± (⊂ Γ±
s (λ)). For sufficiently large R0 > 0 and sufficiently

small ε0 > 0, we hence have

1/2 < |det t∂ρ,ω∂r,θS
±(r, θ, ρ, ω)| < 3/2 on R2d,(5.4)

though |t∂ρ,ω∂r,θS
± − Id | is not bounded with respect to r in general. This estimate is crucial

to obtain L2-boundedness of FIO’s.

To prove Theorem 5.1, we prepare several lemmas.

Lemma 5.3. There exist R0 > 0 large enough and ε0 > 0 small enough such that, for all
R, ε > 0, λ0 ≥ 1 satisfying R ≥ λ0R0, ε ≤ ε0/λ0 and all ±t ≥ 0, the maps

f±(t) : (r, θ, ρ, ω) 7→ (r, θ, ρ(t, r, θ, ρ, ω), ω(t, r, θ, ρ, ω))

are diffeomorphisms from Γ±
s (λ0) onto its range, respectively. Moreover, for sufficiently large

λ0 > 0, we have

Γ±
s (R, ε) ⊂ f±(t)

(
Γ±

s (λ0)
)
, ±t ≥ 0.(5.5)

Proof. We prove the lemma for t ≥ 0 only, and the proof for t ≤ 0 is similar. Let F :
(r, θ, ρ, ω) 7→ (r, θ, ρ, ω/r) be a global diffeomorphism from (0,∞) × Rd−1 onto itself, and we
define for (r, θ, ρ, ν) ∈ FΓ+

s (λ0),

f̃+(t)(r, θ, ρ, ν) = (r, θ, ρ̃(t), ω̃(t)) := (F ◦ f+(t) ◦ F−1)(r, θ, ρ, ν),

where ν = ω/r. By (4.3), we can choose R0, ε0 > 0 and C0 > 0 such that

(5.6)
|∂j

r∂
α
θ ∂k

ρ∂β
ν (ρ̃(t) − ρ)| ≤ C0r

−j |ν|(2−|β|)+ ≤ C0R
−j
0 ε

(2−|β|)+
0 ,

|∂j
r∂

α
θ ∂k

ρ∂β
ν (ω̃(t) − ν)| ≤ C0r

−j |ν|(2−|β|)+ ≤ C0R
−j
0 ε

(2−|β|)+
0 ,

and hence

|∂j
r∂

α
θ ∂k

ρ∂β
ν (∂f̃+(t) − Id)| ≤ Cε0 < 1/2,(5.7)

uniformly with respect to (r, θ, ρ, ν) ∈ FΓ+
s (λ0), where ∂f̃+(t) is the differential at (r, θ, ρ, ν).

Choose χ+ ∈ C∞(R2d) so that 0 ≤ χ+ ≤ 1, χ+ ≡ 1 on FΓ+
s (λ0), suppχ+ ⊂ FΓ+

s (2λ0), and
that

|∂j
r∂

α
θ ∂k

ρ∂β
ν χ+(r, θ, ρ, ν)| ≤ C1〈r〉−j on R2d,(5.8)

and define f̃+
χ (t)(r, θ, ρ, ν) = (r, θ, ρ̃χ(t), ω̃χ(t)) by

f̃+
χ (t)(r, θ, ρ, ν) := (r, θ, (1 − χ+)ρ + χ+ρ̃(t), (1 − χ+)ν + χ+ω̃(t)).

Since f̃+
χ (t) = f̃+(t) on FΓ+

s (λ0), f̃+
χ (t) = Id outside FΓ+

s (2λ0), we have

|∂j
r∂

α
θ ∂k

ρ∂β
ν f̃+

χ (t)| ≤ C, (r, θ, ρ, ω) ∈ R2d, j + |α| + k + |β| ≥ 1.

Moreover, (5.6) and (5.8) imply

(5.9)
|∂j

r∂
α
θ ∂k

ρ∂β
ν (ρ̃χ(t) − ρ)| ≤ C0C1〈r〉−j |ν|(2−|β|)+ ≤ C2R

−j
0 ε

(2−|β|)+
0 ,

|∂j
r∂

α
θ ∂k

ρ∂β
ν (ω̃χ(t) − ν)| ≤ C0C1〈r〉−j |ν|(2−|β|)+ ≤ C2R

−j
0 ε

(2−|β|)+
0

on R2d with some C2 > 4j+2C0C1. f̃+
χ (t) hence satisfies the same estimate as (5.7) on R2d

provided R0 > 0 large enough and ε0 > 0 small enough. By the Hadamard global inverse
mapping theorem, we see that f̃+

χ (t) is a diffeomorphism from R2d onto its range. Since f+(t) =
F−1 ◦ f̃+(t) ◦ F , f+(t) is a diffeomorphism from Γ+

s (λ0) onto its range.
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Next, we define f+
χ (t) := F−1 ◦ f̃+

χ ◦ F , and shall prove

Γ+
s (R, ε) ⊂ f+

χ (t)
(
Γ+

s (λ0)
)
, t ≥ 0,(5.10)

for sufficiently large λ0 > 0. Since f+
χ (t) is bijective, it suffices to show that

R2d \ Γ+
s (R, ε) ⊃ f+

χ (t)
(
R2d \ Γ+

s (λ0)
)

, t ≥ 0.

Suppose that Z := (r, θ, ρ, ω) ∈ R2d \ Γ+
s (λ0). If Z ∈ R2d \ Γ+

s (2λ0), then

f+
χ (t)(Z) = Z ∈ R2d \ Γ+

s (2λ0) ⊂ R2d \ Γ+
s (R, ε).

If Z ∈ Γ+
s (2λ0) \ Γ+

s (λ0), then we have

p(Z) ∈ J4λ2
0ε2 \ Jλ2

0ε2 ,
√

1 − 4λ2
1ε

2 ≤ ρ√
2p(Z)

≤
√

1 − λ2
0ε

2.

Since |p(f+
χ (t)(Z)) − p(Z)| ≤ C|ω/r|2 ≤ Cε2

0, Proposition 4.2 and the above argument imply
that if ε0 is small enough and λ0 is large enough, then we obtain

p(f+
χ (t)(Z)) /∈ Jε2 ,

ρχ(t, Z)√
2p(f+

χ (t)(Z))
<

√
1 − ε2 for t ≥ 0,

which implies (5.10). Here ρχ(t, Z) = (1 − χ+)ρ + χ+ρ(t, Z). Since f+
χ (t) = f+(t) on Γ+

s (λ0),
(5.5) follows from (5.10). ¤

Let ±t ≥ 0 and Γ±
s (R, ε) 3 (r, θ, ρ, ω) 7→ (r, θ, ρ̂±(t), ω̂±(t)) ∈ Γ±

s (λ0) the inverse mappings of
f±(t), respectively.

Lemma 5.4. For 0 ≤ ±s ≤ ±t and (r, θ, ρ, ω) ∈ Γ±
s (R, ε), we define

(r±t (s), θ±t (s), ρ±t (s), ω±
t (s)) := (r, θ, ρ, ω)(s, r, θ, (ρ̂±, ω̂±)(t, r, θ, ρ, ω)).

We then have, for all (j, α, k, β) ∈ Z2d
+ ,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(ρ̂±(t) − ρ)| ≤ Cr−j−|β||ω/r|(2−|β|)+ ,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(ω̂±(t) − ω)| ≤ Cr1−j−|β||ω/r|(2−|β|)+ ,

uniformly with respect to (r, θ, ρ, ω) ∈ Γ±
s (R, ε) and ±t ≥ 0.

Proof. Since (r, θ, ρ̂±(t), ω̂±(t)) ∈ Γ±
s (λ0), we have

(5.11)

|ρ̂±(t) − ρ| + r−1|ω̂±(t) − ω| = |ρt(0) − ρ±t (t)| + r−1|ωt(0) − ω±
t (t)|

≤ C sup
Γ±

s (λ0)

(|ρ(t) − ρ| + r−1|ω(t) − ω|)

≤ C|ω/r|2,

where C is independent of R0, ε0 and λ0. We next consider the derivatives. Let γ = (j, α, k, β),
|γ| = 1. Applying ∂γ = ∂j

r∂α
θ ∂k

ρ∂β
ω to the equality

(ρ, ω) = (ρ, ω)(t, r, θ, ρ̂±(t), ω̂±(t)),

we have

A(Z±(t))
(

∂γ(ρ̂±(t) − ρ)
r−1∂γ(ω̂±(t) − ω)

)
=

(
∂γ(ρ − ρ(t))

r−1∂γ(ω − ω(t))

) ∣∣∣∣
Z±(t)

,(5.12)

where Z±(t) = (r, θ, ρ̂±(t), ω̂±(t)) and

A(Z±(t)) =
(

(∂ρρ)(t, Z±(t)) r(∂ωρ)(t, Z±(t))
r−1(∂ρω)(t, Z±(t)) (∂ωω)(t, Z±(t))

)
.

(4.3) and (5.11) show that A(Z±(t)) are invertible, A(Z±(t)) and A(Z±(t))−1 are bounded on
Γ±

s (R, ε) and the right hand side of (5.12) is bounded by

r−j−|β||ω/r|(2−|β|)+ .
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The proof for higher derivatives is obtained by a simple induction with respect to |γ|, and we
omit the details. ¤

The following easily follows from Lemma 4.1, Proposition 4.2 and Lemma 5.4.

Corollary 5.5. For all ±t ≥ 0, (r, θ, ρ, ω) ∈ Γ±
s (R, ε), we have

r±t (t) ≥ C−1(r + |t|).

Moreover, for all (j, α, k, β) ∈ Z2d
+ ,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(r±t (t) − r ∓ tρ)| ≤ Cr1−j−|β||ω/r|(2−|β|)+ ,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(θ±t (t) − θ)| ≤ Cr−j−|β||ω/r|(1−|β|)+ .

Proof of Theorem 5.1. We give the proof for the case t ≥ 0, and the proof for the case t ≤ 0 is
analogous. Define Λ+(t) ∈ C∞(Γ+

s (R, ε)) for t ≥ 0 by

(5.13) Λ+(t, r, θ, ρ, ω) = r+
t (t)ρ + θ+

t (t) · ω +
∫ t

0
L(r+

t (s), θ+
t (s), ρ+

t (s), ω+
t (s))ds,

where L(r, θ, ρ, ω) = ∂ρp(r, θ, ρ, ω)ρ+∂ωp(r, θ, ρ, ω) ·ω−p(r, θ, ρ, ω) is the Lagrangian associated
with p. Note that the smoothness of Λ+(t) follows from the smoothness of (r+

t , θ+
t , ρ+

t , ω+
t ). By

the standard Hamilton-Jacobi theory, Λ+(t) solves
∂tΛ+(t) = p(r, θ, ∂rΛ+(t), ∂θΛ+(t)),

Λ+(0) = rρ + θ · ω,

∂r,θ,ρ,ωΛ+(t) = (ρ̂+(t), ω̂+(t), r+
t (t), θ+

t (t)).

Put F+(t) = Λ+(t) − 1
2 tρ2. The energy conservation, namely

p(r, θ, ρ̂+(t), ω̂+(t)) = p(r+
t (t), θ+

t (t), ρ, ω),

implies

∂tF
+(t) =

1
2r+

t (t)2

(
hjk(θ+

t (t)) + ajk(r+
t (t), θ+

t (t)
)

ωjω
0
k.

By Lemma 5.4 and Corollary 5.5, we have

|∂j
r∂

α
θ ∂k

ρ∂β
ω∂tF

+(t)| ≤ C(r + |t|)−2−jr2−|β||ω/r|(2−|β|)+ ,

and hence ∣∣∣∣∫ ∞

0
∂j

r∂
α
θ ∂k

ρ∂β
ω∂tF

+(t)dt

∣∣∣∣ ≤ Cr1−j−|β||ω/r|(2−|β|)+

for all t ≥ 0, (r, θ, ρ, ω) ∈ Γ+
s (R, ε) and (j, α, k, β) ∈ Z2d

+ . If we put q0(θ, ω) = hjk(θ)ωjωk, then
the mean value theorem and Corollary 5.5 imply∣∣∣∣∂j

r∂
α
θ ∂k

ρ∂β
ω

(
1

2r+
t (t)2

q0(θ+
t (t), ω) − 1

2(r+tρ)2
q0(θ, ω)

)∣∣∣∣
≤ C(r + |t|)−2r2−j−|β||ω/r|(3−|β|)+ .

Therefore, ∂tF
+(t) can be written in the form

1
2(r+tρ)2

q0(θ, ω) + R̃+(t)

with R̃+(t) ∈ C∞(Γ+(R, ε)) satisfying

|∂j
r∂

α
θ ∂k

ρ∂β
ωR̃+(t, r, θ, ρ, ω)|

≤ C(r + |t|)−2r2−j−|β|
(
|ω/r|(3−|β|)+ + r−µ|ω/r|(2−|β|)+

)
.
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Define ϕ̃+, S̃+ on Γ+
s (R, ε) by

ϕ̃+(r, θ, ρ, ω) :=
∫ ∞

0
∂tF

+(t, r, θ, ρ, ω)dt,

S̃+(r, θ, ρ, ω) := rρ + θ · ω + ϕ̃+(r, θ, ρ, ω).

The above argument shows that ϕ̃+, S̃+ are smooth and ϕ̃+ satisfies (5.1) and (5.2) on Γ+
s (R, ε).

Moreover, we have
∂r,θS̃

+ = lim
t→+∞

∂r,θΛ+(t) on Γ+
s (R, ε).

By using the energy conservation and Corollary 5.5, we see that S̃+ satisfies the Eikonal equation
on Γ+

s (R, ε):

p(r, θ, ∂rS̃
+, ∂θS̃

+) = lim
t→+∞

p(r, θ, ∂rΛ+(t), ∂θΛ+(t))

= lim
t→+∞

p(r+
t (t), θ+

t (t), ρ, ω)

= ρ2/2.

Choosing a smooth cut-off function χ+ on R2d so that 0 ≤ χ+ ≤ 1, χ+ ≡ 1 on Γ+
s (R, ε),

suppχ+ ⊂ Γ+
s (λ), λ ≥ λ0 and that

|∂j
r∂

α
θ ∂k

ρ∂β
ωχ(r, θ, ρ, ω)| ≤ C〈r〉−j−|β| on R2d,

we define ϕ+, S+ ∈ C∞(R2d) by ϕ+ = χ+ϕ̃+, S+ := rρ + θ ·ω + ϕ+. Clearly, ϕ+ and S+ satisfy
the statements of Theorem 5.1. ¤

Definition 5.6. For a± ∈ Ssc(Γ±(R, ε)) and h ∈ (0, 1], we define the FIO’s for the Isozaki-
Kitada parametrix by

I±IK(a±)u(r, θ) = (2πh)−d

∫
e

i
h
(S±(r,θ,ρ,ω)−r′ρ−θ′·ω)a±(r, θ, ρ, ω)u(r′, θ′)dr′dθ′dρdω.

The following theorem shows that I±IK(a±) are bounded on L2(Rd) uniformly with respect to
R > 0 and h ∈ (0, 1].

Proposition 5.7. Let R0, ε0, λ0 > 0 be as in Theorem 5.1, λ ≥ λ0, R ≥ λ4R0 and 0 < ε ≤
λ−4ε0. Then, for all N ≥ 0 and a±, b± ∈ Ssc(Γ±(λ3)), there exist symbols c±j ∈ Ssc(Γ±(λ4)), j =
0, 1, ..., N, such that if we put c±h =

∑N
j=0 hjc±j , then

||I±IK(a±)I±IK(b±)∗ − c±h (r, θ, hDr, hDθ)||L(L2(Rd))
≤ CNhN+1, h ∈ (0, 1].

In particular, we have
||I±IK(a±)||L(L2(Rd)) ≤ C, h ∈ (0, 1].

Here CN , C > 0 may be taken uniformly with respect to R and h.

The following shows that any elliptic FIO (in the semiclassical sense) has a microlocal ap-
proximate inverse.

Proposition 5.8. Let R0, ε0, λ0 > 0 be as in Theorem 5.1, λ ≥ λ0, R ≥ λ4R0, 0 < ε ≤
λ−4ε0 and N ≥ 0 a non-negative integer. Choose arbitrarily sequences of symbols (a±j )0≤j≤N ⊂
Ssc(Γ±(λ3)) satisfying

a±0 > C−1
0 on Ω±

s (λ)

with some fixed C0 > 0, respectively. Then for all c± ∈ Ssc(Γ±(R, ε)), there exist sequences of
symbols (b±j )0≤j≤N ⊂ Ssc(Γ±(λ)) such that

||I±IK(a±)I±IK(b±)∗ − c±(r, θ, hDr, hDθ)||L(L2(Rd)) ≤ CNhN+1, h ∈ (0, 1],

where a±h =
∑N

j=0 hja±j and b±h =
∑N

j=0 hjb±j . Moreover CN > 0 can be taken uniformly with
respect to R and h.
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To prove the above two propositions, we need the following lemma.

Lemma 5.9. Define (ρ±1 , ω±
1 )(r, θ, ρ, ω, r′, θ′) : R3d → Rd by

(ρ±1 , ω±
1 ) =

∫ 1

0
(∂r,θS

±)(r′ + σ(r − r′), θ′ + σ(θ − θ′), ρ, ω)dσ.(5.14)

Then the followings hold for all λ ≥ λ0, R ≥ λR0 and 0 < ε ≤ ε0/λ.
(i) If (r, θ, ρ, ω) ∈ Γ±

s (R, ε), then

(r, θ, ρ±1 , ω±
1 )|r′=r,θ′=θ ∈ Γ±

s (λ).(5.15)

Conversely, if (r, θ, ρ±1 , ω±
1 )|r′=r,θ′=θ ∈ Γ±

s (R, ε), then

(r, θ, ρ, ω) ∈ Γ±
s (λ).(5.16)

(ii) We set Γ̃±
s (λ) := {(r, θ, ρ, ω, r′, θ′) ∈ R3d; (r, θ, ρ, ω), (r′, θ′, ρ, ω) ∈ Γ±(λ)} and Γ̃±

s (R, ε) :=
Γ̃±

s (1). Then, the map (r, θ, ρ, ω, r′, θ′) 7→ (r, θ, ρ±1 , ω±
1 , r′, θ′) is a diffeomorphism from Γ̃±

s (λ)
onto its range, and satisfies

πρ,ω(Γ̃±
s (R, ε)) ⊂ (ρ±1 , ω±

1 )(πρ,ω(Γ̃±
s (λ))),

respectively. Denoting by (ρ±2 , ω±
2 ) the corresponding inverse, the same properties as in (i) hold

with (ρ±1 , ω±
1 ) replaced by (ρ±2 , ω±

2 ), respectively.
(iii) If λ, λ′ ≥ λ0, R ≥ max(λ, λ′)R0 and 0 < ε ≤ min(λ−1, λ′−1)ε0, then we have

(5.17)
|∂γ(ρ±2 − ρ)| + min(r, r′)−1|∂γ(ω±

2 − ω)|

≤ C min(r, r′)−j−j′−|β|(max(λ, λ′)ε)(2−|β|)+ ,

for all (r, θ, ρ±2 , ω±
2 ) ∈ Γ±

s (λ) and (r′, θ′, ρ±2 , ω±
2 ) ∈ Γ±

s (λ′), where we use the notation ∂γ :=
∂j

r∂α
θ ∂k

ρ∂β
ω∂j′

r′∂
α′
θ′ for γ = (j, α, k, β, j′, α′) ∈ Z3d

+ .

Proof. We only consider the outgoing case. Remark that (5.14) is equivalent to

(ρ+
1 , ω+

1 ) = (ρ, ω) +
∫ 1

0
(∂r,θϕ

+)(r′ + σ(r − r′), θ′ + σ(θ − θ′), ρ, ω)dσ.

Suppose that (r, θ, ρ, ω) ∈ Γ+
s (R, ε). Since

(ρ+
1 − ρ, ω+

1 − ω)|r′=r,θ′=θ = (∂r,θϕ
+)(r, θ, ρ, ω),

(5.1) implies (|ρ+
1 − ρ| + r−1|ω+

1 − ω|)|r′=r,θ′=θ ≤ Cε2, and

|p1 − p| ≤ Cpε2, ρ+
1 |r′=r,θ′=θ ≥

√
(1 − Cε2)2p1,

with some C > 0 which is independent of R, ε and λ0, where we denote p = p(r, θ, ρ, ω)
and p1 = p(r, θ, ρ+

1 , ω+
1 )|r′=r,θ′=θ. Choosing λ > 0 large enough such that λ2 > C, we have

(r, θ, ρ+
1 , ω+

1 )|r′=r,θ′=θ ∈ Γ+(λ). Next, consider the mapping

f+ : (r, θ, ρ, ω) 7→ (r, θ, ρ+
1 , ω+

1 )|r′=r,θ′=θ.

By (5.1), we have

(5.18)

∣∣∣∂j
r∂

α
θ ∂k

ρ∂β
ω(ρ+

1 |r′=r,θ′=θ − ρ)
∣∣∣ ≤ Cjαkβr−j−|β||ω/r|(2−|β|)+ ,∣∣∣∂j

r∂
α
θ ∂k

ρ∂β
ω(ω+

1 |r′=r,θ′=θ − ω)
∣∣∣ ≤ Cjαkβr1−j−|β||ω/r|(2−|β|)+ .

By same argument as that in the proof of Lemma 5.3, we obtain that f+ is injective and
Γ+

s (R, ε) ⊂ f+(Γ+
s (λ)) provided that λ > 0 is large enough. We note that this λ can be taken

uniformly with respect to R and ε. This fact implies (5.16).
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We next prove (ii). We write (rσ, θσ) = (r′ + σ(r − r′), θ′ + σ(θ − θ′)) for short. Since
|ω| . min(r, r′)λε, (5.1) implies, for γ = (j, α, k, β, j′, α′) ∈ Z3d

+ ,

|(∂γϕ+)(rσ, θσ, ρ, ω)| ≤ Cγr1−j−|β|
σ |ω/rσ|(2−|β|)+

≤ Cγ min(r1−j−|β|, (r′)1−j−|β|)(λε)(2−|β|)+ ,

and hence

|∂γ(ρ+
1 − ρ)| + |∂γ(ω+

1 − ω)|
min(r, r′)

≤ CγR
−j−|β|
0 (λε)(2−|β|)+ ≤ CγR

−j−|β|
0 (λεε0)(1−|β|)+ .(5.19)

In particular, (r, θ, ρ±1 , ω±
1 , r′, θ′) ∈ Γ̃+

s (λ2) if λ > 0 is large enough. By a same argument as that
in the proof of Lemma 5.3, we obtain the first assertion of (ii). Applying (5.16) and (5.15) with
(ρ, ω) = (ρ+

2 , ω+
2 )|r′=r,θ′=θ, we obtain

(r, θ, ρ+
2 , ω+

2 )|r′=r,θ′=θ ∈ Γ+
s (λ) if (r, θ, ρ, ω) ∈ Γ+

s (R, ε),

(r, θ, ρ, ω) ∈ Γ+
s (λ) if (r, θ, ρ+

2 , ω+
2 )|r′=r,θ′=θ ∈ Γ+

s (R, ε).

Finally we shall prove (iii). Since (r, θ, ρ+
2 , ω+

2 ) satisfy

(ρ+
2 , ω+

2 ) = (ρ, ω) −
∫ 1

0
(∂r,θϕ

+)(r′ + σ(r − r′), θ′ + σ(θ − θ′), ρ+
2 , ω+

2 )dσ,(5.20)

(5.1) implies
(ρ+

2 − ρ)| + min(r, r′)−1|ω+
2 − ω| ≤ C max(λ, λ′)2ε2

for (r, θ, ρ+
2 , ω+

2 ) ∈ Γ+
s (λ) and (r′, θ′, ρ+

2 , ω+
2 ) ∈ Γ+

s (λ′). For the derivatives, differentiating (5.20)
with respect to ∂j

r∂α
θ ∂j′

r′∂
α′
θ′ ∂

k
ρ∂β

ω and using (5.1), we obtain (5.17) by an induction with respect
to j + |α| + k + |β| + j′ + |α′|. ¤

Proof of Proposition 5.7. We only prove the outgoing case. Note that since R ≥ λ4R0 and
ε ≤ λ−4ε0, (ρ+

2 , ω+
2 ) is well-defined for r, r′ > λ−3R. The Schwartz kernel of I+

IK(a+)I+
IK(b+)∗

can be written in the form

(2πh)−d

∫
e

i
h
(S+(r,θ,ρ,ω)−S+(r′,θ′,ρ,ω))a+(r, θ, ρ, ω)b+(r′, θ′, ρ, ω)dρdω.

Since (r, θ, ρ, ω, r′, θ′) ∈ Γ̃+
s (λ4), Lemma 5.9 implies that (ρ+

2 , ω+
2 ) is well-defined and

1/2 < |det ∂ρ,ω(ρ+
2 , ω+

2 )| < 3/2.(5.21)

for all (r, θ, ρ, ω, r′, θ′) with (r, θ, ρ+
2 , ω+

2 , r′, θ′) ∈ Γ̃+
s (λ4). We thus can make the change of

variables (ρ, ω) 7→ (ρ+
2 , ω+

2 )(r, θ, ρ, ω, r′, θ′), and the above integral can be brought to the form

(2πh)−d

∫
e

i
h
[(r−r′)ρ−(θ−θ′)·ω]A+(r, θ, ρ, ω, r′, θ′)dρdω,

where A+ = a+(r, θ, ρ+
2 , ω+

2 )b+(r′, θ′, ρ+
2 , ω+

2 )|det ∂ρ,ω(ρ+
2 , ω+

2 )|. By using (5.17), (5.21) and the
support properties of a+ and b+, ∂j

r∂α
θ ∂k

ρ∂β
ω∂j′

r′∂
α′
θ′ A

+ are uniformly bounded on R3d for all
(j, α, k, β, j′, α′) ∈ Z3d

+ , and the Calderón-Vaillancourt theorem implies

||I+
IK(a+)I+

IK(b+)∗||L(L2(Rd)) ≤ Cd

∑
|γ|≤Md

||∂γA+||L∞(R3d) ≤ C,

uniformly with respect to R > 0 and h ∈ (0, 1], with some Cd,Md > 0 depending only on
d. In particular I+

IK(a+)L(L2(Rd)) is bounded on L2(Rd) uniformly with respect to R > 0 and
h ∈ (0, 1]. Furthermore, by the standard symbolic calculus (e.g., see the textbook [15]), the
simplified symbol of the above operator has the following asymptotic expansion∑

l+|α|=j

hj

l!α!

(
∂l

ρ∂
α
ωDl

r′D
α
θ′A

+
)

(r, θ, ρ, ω, r, θ).
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By Lemma 5.9 (ii) and (iii), we see that (∂l
ρ∂

α
ωDl

r′D
α
θ′A

+)(r, θ, ρ, ω, r, θ) is supported in Γ+
s (λ4)

and belongs to Ssc(Γ+(λ4)). ¤

Proof of Proposition 5.8. Let c+ ∈ Ssc(Γ+(R, ε)). By Proposition 5.7, it suffices to show that
there exist b+

j ∈ Ssc(Γ+(λ)), j = 0, 1, ..., N, such that c+
0 = c+ and c+

j ≡ 0 for j = 1, 2, ..., N .
We set Jk = |det ∂ρ,ω(ρ+

k , ω+
k )|. b+

j can be defined inductively as follows. We first note that, by
the construction, b+

h should satisfy

c+(r, θ, ρ, ω)

=
N∑

j=1

∑
l+|α|=j

hj

l!α!

(
∂l

ρ∂
α
ωDl

r′D
α
θ′a

+
h (r, θ, ρ+

2 , ω+
2 )b+

h (r′, θ′, ρ+
2 , ω+

2 )J2

) ∣∣∣∣
r′=r,θ′=θ

.

Define b+
0 by

b+
0 (r, θ, ρ, ω) := (a+

0 (r, θ, ρ, ω))−1c+(r, θ, ρ+
1 , ω+

1 )J1

∣∣
r′=r,θ′=θ

.

Since supp c+ ⊂ Γ+
s (R, ε), Lemma 5.9 (i) implies that c+(r, θ, ρ+

1 , ω+
1 )

∣∣
r′=r,θ′=θ

is supported in
Γ+

s (λ). Since a+
0 is elliptic on Γ+

s (λ), b+
0 is well-defined and supported in Γ+

s (λ). Moreover,
(5.18) implies that b+

0 ∈ Ssc(Γ+(λ)). Next, let j ≥ 1 and assume that b+
k ∈ Ssc(Γ+(λ)) for all

k < j. We then define b+
j by

a+
0 (r, θ, ρ+

2 , ω+
2 )b+

j (r′, θ′, ρ+
2 , ω+

2 )J2

∣∣
r′=r,θ′=θ

= r+
j (r, θ, ρ, ω),(5.22)

where r+
j takes the form

j∑
k=0

∑
l+|α|=k,

k0+k1=j−k,
k1≤j−1

1
l!α!

(
∂l

ρ∂
α
ωDl

r′D
α
θ′a

+
k0

(r, θ, ρ+
2 , ω+

2 )b+
k1

(r′, θ′, ρ+
2 , ω+

2 )J2

) ∣∣∣∣
r′=r,θ′=θ

.

Substituting (ρ, ω) = (ρ+
1 , ω+

1 ) for (5.22) and dividing by a+
0 , we have

b+
j (r, θ, ρ, ω) = (a+

0 (r′, θ′, ρ, ω))−1r+
j (r, θ, ρ+

1 , ω+
1 )J1

∣∣
r′=r,θ′=θ

.

By induction hypothesis, we conclude that b+
j ∈ Ssc(Γ+(λ)). The proof for the incoming case is

similar. ¤

5.2. Construction of the parametrix. By using the FIO defined in the previous subsection,
we construct the semiclassical Isozaki-Kitada parametrix.

Theorem 5.10. For any N ≥ 0, there exist RIK, λIK > 0 large enough and εIK > 0 small
enough such that if R ≥ RIK, 0 < ε ≤ εIK and λ ≥ λIK, then we can find

b±h =
N∑

j=0

hjb±j with b±j ∈ Ssc(Γ±(λ3)), j = 0, 1, ..., N,

such that, for any a±s ∈ Ssc(Γ±(R, ε)), there exist

c±h =
N∑

j=0

hjc±j with c±j ∈ Ssc(Γ±(λ)), j = 0, 1, ..., N,

such that, for all T > 0, h ∈ (0, 1] and 0 ≤ ±t ≤ Th−1,

||e−ith bP Opκ(a±s ) − κ∗I±IK(b±h )e−ith 1
2
D2

r I±IK(c±h )∗κ∗||L(L2(cM))
≤ CN,T hN−1,(5.23)

where CN,T may be taken uniformly with respect to h, t and R.

Remark 5.11. Since π(supp b±h ), π(supp c±h ) ⊂ (2,∞) × Ũκ, we see that

I±IK(b±h )e−ith 1
2
D2

r I±IK(c±h )∗ = Ψ̃κI±IK(b±h )e−ith 1
2
D2

r I±IK(c±h )∗Ψ̃κ,

and κ∗I±IK(b±h )e−ith 1
2
D2

r I±IK(c±h )∗κ∗is well-defined on M .



24 HARUYA MIZUTANI

We shall prove Theorem 5.10 for the outgoing case, and the proof for the incoming case is
completely analogous. Set B+ := I+

IK(b+
h ), C+ := I+

IK(c+
h ). By the Duhamel formula, we have

e−ith bP κ∗B+C∗
+κ∗

= κ∗B+e−ith 1
2
D2

r C∗
+κ∗ −

i

h

∫ t

0
e−i(t−s)h bP κ∗(h2P̂κB+ − B+h2 1

2
D2

r)e
−ish 1

2
D2

r C∗
+ds.

To prove (5.23), it suffices to show that

||(h2P̂κB+ − B+h2 1
2
D2

r)e
−ish 1

2
D2

r C∗
+||

L(L2(Rd))
. hN+1,(5.24)

||a+
s (r, θ, hDr, hDθ) − B+C∗

+||L(L2(Rd))
. hN ,(5.25)

uniformly with respect to h ∈ (0, 1], 0 ≤ s ≤ Th−1 and R > 0. To prove above two estimates,
we prepare several lemmas.

Let p + p1 + p2 be the full symbol of P̂κ:

P̂κ = p(r, θ,Dr, Dθ) + p1(r, θ,Dr, Dθ) + p2(r, θ).

Choosing R0 > 0 and ε0 > 0 so that S+ is well-defined and solves the Hamilton-Jacobi equation
on Γ+

s (R0, ε0), we define smooth tensors X+ and Y + by

X+ := ∂ρ,ωp(r, θ, ∂rS
+, ∂θS

+), Y + := (p + p1)(r, θ, ∂r, ∂θ)S+,

and define symbols d+
j , j = 1, 2, ..., N + 2, by

h2P̂κB+ − B+h2 1
2
D2

r =
N+2∑
j=1

hjI+
IK(d+

j ).

Then d+
j should satisfy

(5.26)

{
id+

1 = X+ · ∂r,θb
+
0 + Y +b+

0 ,

id+
j = X+ · ∂r,θb

+
j−1 + Y +b+

j−1 + iP̂κbj−2, j = 2, ..., N + 2,

where b+
N+1 ≡ 0. To construct b+

j , we solve transport equations.

Lemma 5.12. There exist R1 ≥ R0, λ1 > 1 large enough and ε1 ≤ ε0 small enough such that,
for all N ≥ 0, R ≥ λN+5

1 R1 and 0 < ε ≤ λ−N−5
1 ε1, we can find b+

j ∈ Ssc(Γ+
s (λ3

1)), j = 0, 1, ..., N

such that b+
0 is elliptic on Γ+

s (λ1), and that b+
j solve transport equations on Γ+

s (λ2
1):

(5.27)

{
X+ · ∂r,θb

+
0 + Y +b+

0 = 0,

X+ · ∂r,θb
+
j + Y +b+

j + iP̂κb+
j−1 = 0, j = 1, ..., N.

For (r, θ, ρ, ω) ∈ Γ+
s (λN+4

1 ), we consider the flow (r+(t), θ+(t)) generated by X+, i.e.,

(r+(t), θ+(t)) = (r+, θ+)(t, r, θ, ρ, ω)

is the solution to {
(ṙ+(t), θ̇+(t)) = X+(r+(t), θ+(t), ρ, ω),

(r+(0), θ+(0)) = (r, θ).

Then (r+(t), θ+(t)) is defined on [0,∞) × Γ+
s (λN+4

1 ), and satisfies the following:

Lemma 5.13. For all t ≥ 0, (r, θ, ρ, ω) ∈ Γ+
s (λN+4

1 ) and (j, α, k, β) ∈ Z2d
+ ,

(r+(t), θ+(t), ρ, ω) ∈ Γ+
s (λN+5

1 ),

|∂j
r∂

α
θ ∂k

ρ∂β
ω(r+(t) − r − tρ)| ≤ Cjαkβr1−j−|β||ω/r|(2−|β|)+ ,(5.28)

|∂j
r∂

α
θ ∂k

ρ∂β
ω(θ+(t) − θ)| ≤ Cjαkβr−j−|β||ω/r|(1−|β|)+ ,(5.29)
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Proof. Let (r, θ, ρ, ω) ∈ Γ+
s (λN+4

1 ). Since X+ = (∂rS
+, r−2(hjk + ajk)∂θkS+), it follows from

(5.1) that
|ṙ+(t) − ρ| ≤ C0|ω/r+(t)|2, |θ̇+(t)| ≤ C0r

+(t)−1|ω/r+(t)|
with some C0 > 0. In particular, we have

|ṙ+(0) − ρ| ≤ C0|ω/r|2 ≤ C1ε1, |θ̇+(0)| ≤ C0r
−1|ω/r| ≤ C1r

−1ε1(5.30)

with some C1 > 0. We set C2 = inf J and

F := {t ≥ 0 | r+(s) ≥ r + sρ/2, |θ+(s) − θ| ≤ 4C0C
−1
2 |ω/r| for 0 ≤ s ≤ t}.

By (5.30), it is easy to see that 0 ∈ F 6= ∅. Let t0 = supF . We then have

|ṙ+(t) − ρ| ≤ C0(r + sρ/2)−2|ω|2 ≤ C0C1ε
2
1, |θ̇+(t)| ≤ C0(r + sρ/2)−2|ω|,

for 0 ≤ t ≤ t0, and hence

|r+(t) − r − tρ| ≤ C0C1ε
2
1t, |θ+(t) − θ| ≤ 2C0C

−1
2 |ω/r|,

for 0 ≤ t ≤ t0. Choosing ε1 > 0 such that ρ−C0C1ε
2
1 > ρ/2 and δ > 0 small enough, we see that

t0 +δ ∈ F which implies t0 = ∞. Therefore, (r+(t), θ+(t)) is well-defined on [0,∞), and satisfies
(5.28) and (5.29) with (j, α, k, β) = 0 for all t ≥ 0. In particular, (r+(t), θ+(t), ρ, ω) ∈ Γ+

s (λN+5
1 )

for t ≥ 0, provided that λ1 > 0 large enough. The proof for higher derivatives is obtained by
(5.1) and an induction with respect to j + |α| + k + |β|. ¤

Proof of Lemma 5.12. Define a smooth real-valued function Z+ by

Z+(t) := Y +(r+(t), θ+(t), ρ, ω) ∈ C∞([0,∞) × Γ+
s (λN+4

1 )).

By (2.3), (5.1) and Lemma (5.13), we have Z+(t) ∈ L1
t ([0,∞)) and∣∣∣∣∂j

r∂
α
θ ∂k

ρ∂β
ω

∫ ∞

0
Z+(t, r, θ, ρ, ω)dt

∣∣∣∣ ≤ Cjαkβr−j−|β| on Γ+
s (λN+4

1 ).(5.31)

We now define smooth functions b̃j on Γ+
s (λN+4−j

1 ) by
b̃0(r, θ, ρ, ω) = e

R ∞
0 Z+(t)dt,

b̃j(r, θ, ρ, ω) =
∫ ∞

0
(iP̂κb̃j−1)(r+(t), θ+(t), ρ, ω)e

R t
0 Z+(s)dsdt, j = 1, 2, ..., N.

By a standard Hamilton-Jacobi theory, b̃j solve (5.27). Moreover, by (2.3), Lemma 5.13 and
(5.31), we have

|∂l
r∂

α
θ ∂k

ρ∂β
ω b̃j(r, θ, ρ, ω)| ≤ Clαkβr−l−|β| on Γ+

s (λN+4−j
1 ).

Take χ+ ∈ C∞
0 (R2d) so that 0 ≤ χ+ ≤ 1, χ+ ≡ 1 on Γ+

s (λ2
1), suppχ+ ⊂ Γ+

s (λ3
1), and that

|∂l
r∂

α
θ ∂k

ρ∂β
ωχ+(r, θ, ρ, ω)| ≤ Clαkβr−l−|β| on Γ+

s (λ3
1),

and define b+
j := χ+b̃j . By the construction, b+

j solve (5.27) on Γ+
s (λ2

1), b+
0 is elliptic on Γ+

s (λ1)
and b+

j ∈ Ssc(Γ+
s (λ3

1)). ¤

Proof of Theorem 5.10. Let R ≥ λN+5
1 R1 and 0 < ε ≤ λ−N−5

1 ε1. We first prove (5.25). By
Proposition 5.8, there exists a symbol c+

h =
∑N

j=0 hjc+
j ∈ Ssc(Γ+

s (λ1)) such that

||a+
s (r, θ, hDr, hDθ) − B+C∗

+||L(L2(Rd))
≤ CNhN+1, h ∈ (0, 1],

where CN may be taken uniformly with respect to h and R.
We next prove (5.24). Let d+

j , j = 1, 2, ..., N +2, be defined by (5.26). Then d+
j ∈ Ssc(Γ+

s (λ3
1))

and d+
j ≡ 0 on Γ+

s (λ2
1). For each j and k, I+

IK(d+
j )e−ish 1

2
D2

r I+
IK(c+

k )∗ has the distribution kernel

I(s, h) = (2πh)−d

∫
e

i
h((r−r′)ρ+

1 +(θ−θ′)·ω+
1 − 1

2
sρ2)d+

j (r, θ, ρ, ω)c+
k (r′, θ′, ρ, ω)dρdω,
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where (ρ+
1 , ω+

1 )(r, θ, ρ, ω, r′, θ′) is defined in Lemma 5.9. Since d+
j ≡ 0 on Γ+

s (λ2
1), one of the

followings hold at least:

λ−3
1 R < r ≤ λ−2

1 R,(5.32)

θ ∈ Ũ
κ,
√

λ3
1ε

\ Ũ
κ,
√

λ2
1ε

,(5.33)

p(r, θ, ρ, ω) ∈ Jλ6
1ε2 \ Jλ2

1ε2 ,(5.34)

λ2
1ε . |ω/r| . λ3

1ε.(5.35)

We first assume (5.32) or (5.35). Then, it is easy to see that

r − r′ < −R/(2λ1)

if R > 0 is large enough. Therefore, by (5.19), we have

(r − r′)∂ρρ
+
1 + (θ − θ′)∂ρω

+
1 − sρ ≤ −R/(4λ1) − sρ ≤ −R0/2 − sρ ≤ −〈s〉,

and we obtain (5.24) by a standard integration by parts. We next assume (5.34). Since
p(r, θ, ρ, ω) − ρ2/2 = O(|ω/r|2) = O(ε2

0), for sufficiently small ε0 > 0, the amplitude vanishes
identically in this case, and we have (5.24). Finally, we assume θ ∈ Ũ

κ,
√

λ3
1ε

\ Ũ
κ,
√

λ2
1ε

. Since

θ′ ∈ Ũκ,
√

λ1ε and

|∂ωρ+
1 | . r−1|ω/r| . r−1λ3

1ε . r−1
√

λ1ε1ε, |∂ω(ω+
1 − ω)| . |ω/r| . λ3

1ε . ε1,

we have

(5.36) |θ − θ′| & λ1

√
ε.

Therefore, ∣∣∂ω

(
(r − r′)ρ+

1 + (θ − θ′) · ω+
1 − sρ2/2

)∣∣
≥ |θ − θ′|(1 − Cε1) − C|r − r′|r−1

√
λε1ε

& (λ1 − Cε1 −
√

λ1ε1)
√

ε

>
√

ε,

for sufficiently large λ1 > 0 and small ε1 > 0. We now fix the constants RIK, εIK, λIK so that
λIK = λ1, RIK = λN+5

IK R1, εIK = λ−N−5
IK ε1. Put

L(r, θ, ρ, ω, r′, θ′) =
h((r − r′)∂ωρ+

1 + (θ − θ′) · ∂ωω+
1 )

i|(r − r′)∂ωρ+
1 + (θ − θ′) · ∂ωω+

1 |2
· ∂ω,

and integrate by parts I(s, h) with respect to L. For any n ≥ 0, I(s, h) then reads

I(s, h) = hn(2πh)−d

∫
e

i
h
((r−r′)ρ+

1 +(θ−θ′)·ω+
1 − 1

2
sρ2)G+(r, θ, ρ, ω, r′, θ′)dρdω,

where G+ = (L∗)n(d+
j (r, θ, ρ, ω)c+

k (r′, θ′, ρ, ω)). Using the change of the variables (ρ, ω) 7→
(ρ+

2 , ω+
2 ), we have

I(s, h) = hn(2πh)−d

∫
e

i
h
Φ+(s,r,θ,ρ,ω,r′,θ′)G+(r, θ, ρ2

+, ω2
+, r′, θ′)dρdω,

where Φ+(s, r, θ, ρ, ω, r′, θ′) := (r− r′)ρ+(θ− θ′) ·ω− 1
2sρ+

2 (r, θ, ρ, ω, r′, θ′)2, and (ρ+
2 , ω+

2 ) is the
inverse of (ρ+

1 , ω+
1 ). By Lemma 5.9 and (5.36), ρ+

2 (r, θ, ρ, ω, r′, θ′) and G+(r, θ, ρ2
+, ω2

+, r′, θ′) are
smooth and uniformly bounded functions on R3d. Applying the Calderón-Vaillancourt theorem,
we hence have

||I+
IK(d+

j )e−ish 1
2
D2

r I+
IK(c+

k )∗||
L(L2(Rd))

≤ CN,d,εh
n−nd〈s〉nd ≤ CN,d,ε,T hn−2nd

for all n ≥ 0, h ∈ (0, 1] and 0 ≤ s ≤ Th−1, where nd > 0 depends only on d, and CN,d,ε,T is
independent of h and R. Choosing n > 0 with n − 2nd > N + 1, we complete the proof ¤
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5.3. Dispersive estimates. We here prove dispersive estimates for the Isozaki-Kitada parametrix.
Let RIK, εIK, λIK > 0 be as in Theorem 5.10. In this subsection we use the notation ∂γ :=
∂j

r∂α
θ ∂k

ρ∂β
ω∂j′

r′∂
α′
θ′ for γ = (j, α, k, β, j′, α′) ∈ Z3d

+ .

Theorem 5.14. For sufficiently large R > RIK, small 0 < ε < εIK, all b± ∈ Ssc(Γ±(λ3
IK)) and

c± ∈ Ssc(Γ±(λIK)), we can write

I±IK(b±)e−ith 1
2
D2

r I±IK(c±)∗ = U±
IK(t, h) + R±

IK(t, h),

where U±
IK(t, h) satisfy dispersive estimates

||r−
d−1
2 U±

IK(t, h)r−
d−1
2 ||L(L1(Rd),L∞(Rd)) ≤ C|th|−d/2, 0 < ±t ≤ h−1, h ∈ (0.1],

and R±
IK(t, h) are rapidly decaying with respect to h: for any N ≥ 0,

||R±
IK(t, h)||L(L2(Rd)) ≤ CNhN , 0 < ±t ≤ h−1, h ∈ (0.1].

Moreover C,CN > 0 can taken uniformly with respect to h, t and R.

We prove the theorem for the case t ≥ 0, and the proof for the case t ≤ 0 is similar. The
distribution kernel of I+

IK(b+)e−ith 1
2
D2

r I+
IK(c+)∗ takes the form

IA+(t, h) = (2πh)−d

∫
e

i
h
Φ+(t,r,θ,ρ,ω,r′,θ′)A+(r, θ, ρ, ω, r′, θ′)dρdω,(5.37)

where

Φ+(t, r, θ, ρ, ω, r′, θ′) := (r − r′)ρ + (θ − θ′) · ω − 1
2
t(ρ+

2 )2,

A+(r, θ, ρ, ω, r′, θ′) := b+(r, θ, ρ+
2 , ω+

2 )b+(r′, θ′, ρ+
2 , ω+

2 )|det ∂ρ,ω(ρ+
2 , ω+

2 )|,

and (ρ+
2 , ω+

2 ) = (ρ+
2 , ω+

2 )(r, θ, ρ, ω, r′, θ′) is given by Lemma 5.9. Note that since (r, θ, ρ+
2 , ω+

2 ) ∈
Γ+

s (λ3
IK) and (r′, θ′, ρ+

2 , ω+
2 ) ∈ Γ+

s (λIK), (5.17) implies

C−1 ≤ ρ ≤ C, |ω/
√

rr′| ≤ Cε1 on suppA+,

and ∂γA+ and ∂γρ+
2 are uniformly bounded on R3d.

We first remove a smoothing term from IA+(t, h). Let χρ ∈ C∞
0 (R), χω ∈ C∞

0 (Rd−1) be
smooth cut-off functions such that

suppχρ ⊂ (−1, 1), χρ ≡ 1 on (−1/2, 1/2),

suppχω ⊂ {|θ| ≤ 1}, χω ≡ 1 on {|θ| ≤ 1/2},

and define A+
δ := χρ (∂ρΦ+) χω(∂ωΦ+/δ)A+, where δ > 0 is a small parameter. We denote the

operator having the Schwartz kernel IA+
δ
(t, h) by UA+

δ
(t, h).

Lemma 5.15. For all N > 0 and δ > 0, we have

||I+
IK(b+)e−ith 1

2
D2

r I+
IK(c+)∗ − UA+

δ
(t, h)||

L(L2(Rd))
≤ CNhN ,

uniformly with respect to h ∈ (0, 1], 0 ≤ ±t ≤ h−1 and R > 0.

Proof. We split A+ − A+
δ = (1 − χρ)χωA+ − (1 − χω)A+ =: A+

1 + A+
2 , and denote by IA+

j
the

oscillatory integral of the form (5.37) with the phase Φ+ and the amplitude A+
j , respectively.

We set L1 := (h/i∂ρΦ+)∂ρ, L2 := (h/i|∂ωΦ+|2)(∂ωΦ+) · ∂ω. Since∣∣∂γ
(
1/∂ρΦ+

)∣∣ . 1 on suppA+
1 ,

∣∣∂γ
(
∂ωΦ+/|∂ωΦ+|2

)∣∣ . 1/δ on suppA+
2 ,

n-times integration by parts IA+
j

with Lj , respectively, implies that IA+
j

reads

IA+
j

= (2πh)−d

∫
e

i
h
((r−r′)ρ+(θ−θ′)·ω)Ã+

j (r, θ, ρ, ω, r′, θ′)dρdω,
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where Ã+
j = e−

i
h

t
2
(ρ+

2 )2(L∗
j )

nAj satisfies

|∂γÃ+
j (r, θ, ρ, ω, r′, θ′)| ≤ Cnhn−|γ|〈t〉|γ| ≤ Cnhn−2|γ| on R3d,

for all γ ∈ Z3d
+ , h ∈ (0, 1], and 0 ≤ ±t ≤ h−1. By the Calderón-Vaillancourt theorem, there

exists an integer Nd > 0 depending only on d such that

||I+
IK(b+)e−ith 1

2
D2

r I+
IK(c+)∗ − UA+

δ
(t, h)||

L(L2(Rd))
≤ Cnhn−2Nd .

Choosing n ≥ 0 with n − 2Nd ≥ N , we obtain the assertion. ¤

To prove dispersive estimates for UA+
δ
(t, h), we next study the phase function more precisely

.

Lemma 5.16. On suppA+, 1
2ρ+

2 (r, θ, ρ, ω, r′, θ′)2 takes the form

1
2
ρ+
2 (r, θ, ρ, ω, r′, θ′)2 =

1
2
ρ2 +

1
2rr′

q0(θ, ω) + Q+(r, θ, ρ, ω, r′, θ′),

where q0(θ, ω) = hjk(θ)ωjωk. Moreover we can write

Q+ = Q+
1 + (θ − θ′) · Q+

2

such that, for all (r, θ, ρ, ω, r′, θ) ∈ suppA+ and γ = (j, α, k, β, j′, α′) ∈ Z3d
+ ,

(5.38)

 |∂γQ+
1 (r, θ, ρ, ω, r′, θ′)| ≤ CR

−j−j′−|β|
1

(
ε
(3−|β|)+
1 + R−µ

1 ε
(2−|β|)+
1

)
,

|∂γQ+
2 (r, θ, ρ, ω, r′, θ′)| ≤ CR

−j−j′−|β|
1 ε

(2−|β|)+
1 ,

where R1, ε1 are given by Lemma 5.12.

Proof. We start from the formula ρ+
2 = ρ−

∫ 1
0 (∂rϕ

+)(rs, θs, ρ
+
2 , ω+

2 )ds, where (rs, θs) = (r′, θ′)+
s(r − r′, θ − θ′). By using the mean value theorem, we have

(∂rϕ
+)(rs, θs, ρ

+
2 , ω+

2 ) = (∂rϕ
+)(rs, θ, ρ

+
2 , ω+

2 ) − (θ − θ′) · F+(s),

where F+(s) is defined by

F+(s) := (1 − s)
∫ 1

0
(∂θ∂rϕ

+)(rs, θsσ, ρ+
2 , ω+

2 )dσ, θsσ = θ + σ(θs − θ).

By (5.1) and (5.17), we obtain

sup
s∈[0,1]

|∂γF+(s)| . R
−j−j′−|β|
1 ε

(2−|β|)+
1 .

Since RIK ≥ λ4
IKR1 and εIK ≤ λ−4

IK ε1, by the mean value theorem, we can write

(∂rϕ
+)(rs, θ, ρ

+
2 , ω+

2 ) = − 1
2r2

sρ
q0(θ, ω) − G+(s),

where, by (5.2) and (5.17), G+(s) satisfies

sup
s∈[0,1]

|∂γG+(s)| . R
−j−j′−|β|
1

(
ε
(3−|β|)+
1 + R−µ

1 ε
(2−|β|)+
1

)
.

Set F̃+ =
∫ 1
0 F+(s)ds and G̃+ =

∫ 1
0 G+(s)ds. Since

∫ 1
0 r−2

s ds = 1/
√

rr′, we have

(ρ+
2 )2 =

(
ρ +

1
2rr′ρ

q0(θ, ω) + (θ − θ′) · F̃+ + G̃+

)2

.

If we set

Q+
1 = 4ρG̃+ + 2

(
1

2rr′ρ
q0(θ, ω) + (θ − θ′) · F̃+ + G̃+

)2

, Q+
2 = 4ρF̃+,

then Q+ = Q+
1 + Q+

2 satisfy (5.38). ¤
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Using the change of the variable ω 7→
√

rr′ν, IA+
δ
(t, h) reads

IA+
δ
(t, h) =

(rr′)
d−1
2

(2πh)d

∫
e

i
h
Φ+(t,r,θ,ρ,

√
rr′ν,r′,θ′)A+

δ (r, θ, ρ,
√

rr′ν, r′, θ′)dρdν,

where Ã+
δ (r, θ, ρ, ν, r′, θ′) := A+

δ (r, θ, ρ,
√

rr′ν, r′, θ′) is bounded on R3d and compactly supported
with respect to (ρ, ν). Moreover, πρ,ν ◦ supp Ã+

δ is bounded uniformly with respect to R > 0,
where πρ,ν : R3d → Rd is a canonical projection onto the (ρ, ν)-space.

Proposition 5.17. There exists δ > 0 small enough such that, for all h ∈ (0, 1] and 0 < t ≤ h−1,
we have

||r−
d−1
2 UA+

δ
(t, h)r−

d−1
2 ||

L(L1(Rd),L∞(Rd)
≤ C|th|−d/2,

where C may be taken uniformly with respect to R, h and t.

Proof. For 0 < t ≤ h, it follows from

r−
d−1
2 |IA+

δ
(t, h)|r′−

d−1
2 ≤ Ch−d ≤ C|th|−d/2.

Suppose that h ≤ t ≤ h−1 and assume 2h ≤ h−1 without loss of generality. Define

Φ̃+(t, r, θ, ρ, ν, r′, θ′) :=
1
t
Φ+(t, r, θ, ρ,

√
rr′ν, r′, θ′)

=
r − r′

t
ρ +

θ − θ′

t
·
√

rr′ν − 1
2
ρ+
2 (r, θ, ρ,

√
rr′ν, r′, θ′)2.

By Lemma 5.16, we obtain

∂ρΦ̃+(t) =
r − r′

t
− ρ + O(ε2

1), ∂νΦ̃+(t) =

√
rr′(θ − θ′)

t
+ O(ε1)

on the support of Ã+
δ . Thus, if we restrict the support of Ã+

δ to one of the regions∣∣∣∣r − r′

t
− ρ

∣∣∣∣ ≥ ε1 or

∣∣∣∣∣
√

rr′(θ − θ′)
t

∣∣∣∣∣ ≥ 1,

then we have |∂ρΦ̃(t)| + |∂νΦ̃(t)| ≥ ε1 with sufficiently small ε1 > 0. Take χ1 ∈ C∞
0 (R) and

χ2 ∈ C∞
0 (Rd−1) satisfying χ1 ≡ 1 on (−1/2, 1/2), suppχ1 ⊂ (−1, 1), χ2 ≡ 1 on {|θ| ≤ 1/2} and

suppχ2 ⊂ {|θ| ≤ 1}, and put

χ̃1(t, r, θ, ρ, r′, θ′) = χ1

(
r − r′

ε1t
− ρ

ε1

)
χ2

(√
rr′(θ − θ′)

t

)
.

Integrating by parts, we then obtain the non stationary estimates∣∣∣∣(2πh)−d

∫
e

i
h

tΦ̃+(t)(1 − χ̃1)Ã+
δ dρdν

∣∣∣∣ ≤ Cε1,λIK
h−d|t/h|−n ≤ Cε1,λIK

|th|−d/2,

for all h ∈ (0, 1], h ≤ t ≤ 2h−1, δ > 0 and n ≥ d/2, where Cε1,λIK
may be taken uniformly in R.

Since C−1 ≤ ρ ≤ C for some C > 0, if ε1 > 0 is sufficiently small, then

C−1
0 |t| ≤ r − r′ ≤ C0|t| with some C0 > 0,

on the support of χ̃1Ã
+
δ , and this estimate implies |t/

√
rr′| . 1. We now fix δ with 0 < δ ≤ ε1.

Since ∂νΦ̃+(t) = (
√

rr′/t)∂ωΦ+(t), we have

|θ − θ′| ≤ C|t/
√

rr′|(|∂νΦ̃+(t)| + ε1) ≤ C1ε1 with some C1 > 0,(5.39)

on the support of χ̃1Ã
+
δ . We fix λ′

IK > λIK with 2λIK > λ′
IK, and choose χ3, χ4 ∈ C∞

0 (R2d) so
that χ3 ≡ 1 on Ω+(λ3

IK), suppχ3 ⊂ Ω+(λ′3
IK), χ4 ≡ 1 on Ω+(λIK), suppχ4 ⊂ Ω+(λ′

IK) and

|∂j
r∂

α
θ ∂k

ρ∂β
ωχj(r, θ, ρ, ω)| ≤ Cjαkβλ1〈r〉

−j−|β| on R3d, j = 3, 4.(5.40)
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We also choose χ5 ∈ C∞
0 (Rd−1) with χ5 ≡ 1 on {|θ| ≤ 1/2} and suppχ5 ⊂ {|θ| ≤ 1}. We now

define

Φ+
0 (t, r, θ, ρ, ν, r′, θ′)

:=
r − r′

t
ρ +

θ − θ′

t
·
√

rr′ν − 1
2
ρ2 − 1

2
q0(θ, ν) − χ̃3χ̃4χ̃5Q

+(r, θ, ρ,
√

rr′ν, r′, θ′),

where χ̃3, χ̃4 and χ̃5 are defined by

χ̃3(r, θ, ρ, ν, r′, θ′) := χ3(r, θ, (ρ+
2 , ω+

2 )(r, θ, ρ,
√

rr′ν, r′, θ′))

χ̃4(r, θ, ρ, ν, r′, θ′) := χ3(r′, θ′, (ρ+
2 , ω+

2 )(r, θ, ρ,
√

rr′ν, r′, θ′))

χ̃5(θ, θ′) := χ5

(
θ − θ′

2C1ε1

)
.

It is easy to see that Φ+
0 is smooth on [h,∞) × R3d and Φ+

0 ≡ Φ̃+ on supp χ̃1Ã
+
δ . Moreover by

Lemma 5.16, (5.39) and (5.40), we have

|∂k
ρ∂β

ν Φ+
0 (t, r, θ, ρ, ν, r′, θ′)| ≤ Ckβ

for all (r, θ, ρ, ν, r′, θ′) ∈ R3d, h ≤ t ≤ h−1 and |k + β| ≥ 2, where Ckβ > 0 may be taken
uniformly in h, t and R. We also obtain

∂2
ρ,νΦ

+
0 = −

(
1 0
0 hjk

)
+ O(ε1 + R−µ

1 ) on [h, h−1] × R3d.

Since |det(hjk)| & 1, if R1 is large enough and ε1 is small enough,

|det ∂2
ρ,νΦ

+
0 | & 1

on [h, h−1] × R3d uniformly with respect to R, h and t. Therefore the mapping

(ρ, ν) 7→ ∂ρ,νΦ+
0 (t, r, θ, ρ, ν, r′, θ′)

is a diffeomorphism from Rd to Rd, and Φ+
0 has a unique non-degenerate critical point (ρc, νc) =

(ρc, νc)(t, r, r′, θ, θ′). Moreover, ∂k
ρ∂β

ν Φ+
0 (t, r, θ, ρc, νc, r

′, θ′) are bounded uniformly with respect
to R and t if |k + β| ≥ 2. We hence can apply the stationary phase theorem and obtain∣∣∣∣(2πh)−d

∫
e

i
h

tΦ̃+(t)χ̃1Ã
+
δ dρdν

∣∣∣∣ =
∣∣∣∣(2πh)−d

∫
e

i
h

tΦ+
0 (t)χ̃1Ã

+
δ dρdν

∣∣∣∣
≤ C ′

ε1,λIK
h−d|t/h|−d/2

≤ C ′
ε1,λIK

|th|−d/2,

for h ∈ (0, 1] and h ≤ t ≤ h−1, where C ′
ε1,λIK

> 0 does not depend on R > 0. We complete the
proof ¤

Proof of Theorem 5.14. We set

U+
IK(t, h) = UA+

δ
(t, h), R+

IK(t, h) = I+
IK(b+)e−ith 1

2
D2

r I+
IK(c+)∗ − UA+

δ
(t, h).

Clearly, they satisfy the assertion. When −h−1 ≤ t < 0, the proof is analogous. ¤

6. Microlocal smoothing properties

Fix arbitrarily a coordinate chart κ0 : Vκ0 → Uκ0 . Let Ũκ0 b Uκ0 , J b (0,∞) and −1 < σ < 1
be an in Definition 2.5. In this section we prove the following:

Theorem 6.1. Fix arbitrarily t1 > 0 and let ε > 0 be small enough. Then there exist δε,t1 > 0
and Lε,t1 > 0 such that for all (σl)0≤l≤Lε,t1

⊂ (−1, 1/2] satisfying (2.12), sufficiently large
R0 > 0, all R2 ≥ R1 ≥ R0, all symbols

a±l ∈ Ssc(Γ±
i (R1, Ũκ0 , J, ε, δε,t1 , l)) b±l ∈ Ssc(Ω±

i (R2, Ũκ0 , J, ε, δε,t1 , l)),
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and N ≥ 0, we have

||Opκ0,h(a±l )e−ith bP Opκ0,h(b±l )||
L(L2(cM))

≤ CN,lh
N ,(6.1)

uniformly with respect to h ∈ (0, 1], R2t1 ≤ ±t ≤ h−1 and R2.

We prove Theorem 6.1 for the case t ≥ 0, and the proof for case t ≤ 0 is analogous. We need
the following Egorov theorem.

Theorem 6.2 (The Egorov theorem). For any T > 0, N ≥ 0 and symbol b+ ∈ Ssc(Ω+(R2, Ũκ0 , J, σ)),
there exist symbols

b+
κ,h(t) =

N∑
j=0

hjb+
κ,j(t) with b+

κ,j(t) ∈ Ssc(κ∗ exp tHp(κ−1
0∗ supp b+)),

and a constant CN,T > 0, independent of R2, such that∣∣∣∣∣
∣∣∣∣∣e−ith bP Opκ0

(b+)eith bP −
∑

κ

Opκ(b+
κ,h(t))

∣∣∣∣∣
∣∣∣∣∣
L(L2(cM))

≤ CN,T hN+1|t|(6.2)

uniformly with respect to 0 ≤ t ≤ R2T and h ∈ (0, 1]. Moreover, b+
κ,j(t) is uniformly bounded in

Ssc(κ∗ exp tHp(κ−1
0∗ supp b+)) with respect to 0 ≤ t ≤ R2T .

Proof. This theorem is basically well known, and we hence give the sketch of the proof. By
(4.19), we can choose t1 > 0, independent of R2, such that the geodesic is contained one fixed
coordinate neighborhood if 0 ≤ t ≤ R2t1. Define the map ϕ̃(t) = (r̃(t), θ̃(t), ρ̃(t), ω̃(t)) by

(r̃(t), θ̃(t), ρ̃(t), ω̃(t)) = FR2 ◦ exp tHpκ0
◦ F−1

R2
(r, θ, ρ, ω),

where FR2(r, θ, ρ, ω) = (r/R2, θ, ρ, ω/R2). By (4.4), we have for all (x, θ, ρ, ν) ∈ FR2Ω
+(R2, Ũκ0 , J, σ),

0 ≤ t ≤ R2t1 and γ = (j, α, k, β),

|∂γ(r̃(t) − x)| + |∂γ(θ̃(t) − θ)| + |∂γ(ρ̃(t) − ρ)| + |∂γ(ω̃(t) − ν)| ≤ CγR
−j−|β|
2 t1,

and hence
|∂γ(∂ϕ̃(t) − Id)| ≤ Ct1 < 1/2,

where x = r/R2, ν = ω/R2 and ∂γ = ∂j
r∂α

θ ∂k
ρ∂β

ω . For all 0 ≤ t ≤ R2t1 and (r, θ, ρ, ω) ∈
ϕ̃(t, FR2Ω

+(R2, Ũκ0 , J, σ)), ϕ̃(t) thus has the inverse

ϕ̃(t)−1 = (r̃(t)−1, θ̃(t)−1, ρ̃(t)−1, ω̃(t)−1),

and ϕ̃(t)−1 satisfies

|∂γ(r̃(t)−1 − x)| + |∂γ(θ̃(t)−1 − θ)| ≤ CγR
−j−|β|
2 t1,

|∂γ(ρ̃(t)−1 − ρ)| + |∂γ(ω̃(t)−1 − ν)| ≤ CγR
−j−|β|
2 t1.

After the rescaling (x, ν) 7→ (R2x,R2ν), we see that

(r(t)−1, θ(t)−1, ρ(t)−1, ω(t)−1) = (exp tHpκ0
)−1(r, θ, ρ, ω)

exists for all (r, θ, ρ, ω) ∈ exp tHpκ0
(Ω+(R2, Ũκ0 , J, σ)) and 0 ≤ t ≤ R2t1, and satisfies

(6.3)
|∂γ(r(t)−1 − r)| + |∂γ(ω(t)−1 − ω)| ≤ CjαkβR

1−j−|β|
2 t1,

|∂γ(θ(t)−1 − θ)| + |∂γ(ρ(t)−1 − ρ)| ≤ CjαkβR
−j−|β|
2 t1.

We now define b+
j (t) inductively as follows. Put

b+
0 (t, r, θ, ρ, ω) = b+ ◦ (exp tHpκ0

)−1(r, θ, ρ, ω) on exp tHpκ0
(supp b+),
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and b+
0 (t, r, θ, ρ, ω) = 0 outside exp tHpκ0

(supp b+). By (6.3), (b+
0 (t))0≤t≤R2t1 is bounded in

Ssc(exp tHpκ0
(supp b+)). It is well known that b+

0 (t) solves the first transport equation

∂b+
0

∂t
+ {pκ0 , b

+
0 } = 0, b+

0 (0) = b+,

where {·, ·} is the Poisson bracket. Moreover, a standard semiclassical symbolic calculus yields
that

∂

∂t
Opκ0,h(b+

0 (t)) +
i

h
[h2P̂κ0 , Opκ0,h(b+

0 (t))] = h Opκ0,h(r+
0 (t)),

where r+
0 (t) is supported in supp b+

0 (t) modulo O(h∞) on L2(M̂), i.e., for all n ≥ 0, there exists
a symbol r̃+

0 (t) ∈ Ssc(supp b+
0 (t)) such that

||Opκ0,h(r+
0 (t)) − Opκ0,h(r̃+

0 (t))||
L(L2(cM))

≤ Cnhn, h ∈ (0, 1],

for 0 ≤ t ≤ R2t1. Next, put

b+
1 (t, r, θ, ρ, ω)) =

∫ t

0
r̃+
0 (s, exp sHpκ0

◦ (exp tHpκ0
)−1(r, θ, ρ, ω))ds

on exp tHpκ0
(supp b+), and b+

1 (t, r, θ, ρ, ω)) = 0 otherwise. Again (6.3) implies (b+
1 (t))0≤t≤R2t1

is bounded in Ssc(exp tHpκ0
(supp b+)). b+

1 (t) is a solution to the second transport equation

∂b+
1

∂t
+ {pκ0 , b

+
1 } = r̃+

0 , b+
0 (0) = 0,

which implies

∂

∂t
Opκ0,h(b+

0 (t) + hb+
1 (t)) +

i

h
[h2P̂κ0 , Opκ0,h(b+

0 (t) + hb+
1 (t))] = h2 Opκ0,h(r+

1 (t)),

where r+
1 (t) is supported in supp b+

0 (t) modulo O(h∞) on L2(M̂). Iterating this procedure and
putting b+

h (t) =
∑N

j=0 hjb+
j (t), we have

∂

∂t
Opκ0,h(b+

h (t)) +
i

h
[h2P̂κ0 , Opκ0,h(b+

h (t))] = O(hN+1),

and Opκ0,h(b+
h (0)) = Opκ0,h(b+). Integrating the above equation with respect to t ∈ [0, R2t1],

we obtain the assertion for t ∈ [0, R2t1]. For general T > 0, we divide the geodesics into a finite
number of small curves, as well as the proof of Corollary 4.3, so that each curve is contained
some fixed coordinate neighborhood. Applying the above argument on each chart, we have the
assertion by a partition of unity argument. ¤

The following tells us that the support of e−ith bP Opκ0
(b+

l ) is essentially away from the support
of Opκ0

(a+
l ) if t = O(r), which is crucial to prove Theorem 6.1.

Proposition 6.3. There exists c0 > 0 that for all 0 < ε < 1/2 and t1 > 0, if we choose
δε,t1 < c0ε

2〈1/t1〉−1 and Lε,t1 = δ−1
ε,t1

, then for all (σl)0≤l≤Lε,t1
⊂ (−1, 1/2] satisfying (2.12) with

δ = δε,t1, L = Lε,t1 and all t ≥ R2t1,

exp tHpκ
−1
0∗ Ω+

i (R2, Ũκ0 , J, ε, δε,t1 , l) ∩ κ−1
0∗ Γ+

i (R1, Ũκ0 , J, ε, δε,t1 , l) = ∅.(6.4)

Proof. It suffices to show that (6.4) holds with Ω+
i (R2, Ũκ0 , J, ε, δε,t1 , l) replaced by

Ω+
i (R1, R2, Ũκ0 , J, ε, δε,t1 , l),

since Ω+
i (R2, Ũκ0 , J, ε, δε,t1 , l) ⊂ Ω+

i (R1, R2, Ũκ0 , J, ε, δε,t1 , l). We also note that, by Corollary
4.3, Ω+

i (R1, R2, Ũκ0 , J, ε, δε,t1 , l) is invariant with respect to ρ under the geodesic flow and coor-
dinate transformations. Therefore, by the definition of the intermediate regions and the energy
conservation law, it suffices to check that

ρ(t)√
2E0

>
ρ√
2E0

+ 2δε,t1 , t ≥ R2t1,
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where E0 = pκ0(r, θ, ρ, ω) and (r, θ, ρ, ω) belongs to

{R1 < r < 4R2, θ ∈ Ũκ0 , E0 ∈ J, ρ/
√

2E0 ∈ [−1/2,
√

1 − ε2/4]}.

Note that all Ω+
i (R1, R2, Ũκ0 , J, ε, δε,t1 , l) are contained in the above region. By (4.1) and (4.3),

for sufficiently large r > R1 and all t ≥ 0,

ρ̇(t) ≥ 1
r(t)3

(hjk(θ(t)) − O(r(t)−µ))ωj(t)ωk(t) & (r + |t|)−3r2ε2
√

2E0.

Since ∫ R2t1

0
(r + |t|)−3r2dt & R2t1

r + R2t1
≥ t1

4 + t1
,

we can find c0 > 0 small enough such that
ρ(R2t1)√

2E0
≥ ρ√

2E0
+ 2c0ε

2 t1
1 + t1

>
ρ√
2E0

+ 2δε,t1 ,

which implies the assertion since ρ̇(t) is non-negative. ¤

Proof of Theorem 6.1. Since (4.5) implies

|
√

2E0 − ρ(t)| . R2/(R2 + |t|), t ≥ 0,

it follows from (4.17) and (4.18) that there exists a constant C0 > 0 such that for any 0 < ε0 <

1/2, we can find Tε0 > 0 such that

(6.5)
expR2Tε0Hp(κ−1

0∗ Ω+
i (R2, Ũκ0 , J, ε, δε,t1 , l))

⊂
⋃
κ

κ−1
∗ Ω+

s (R2Tε0/C0, C0R2Tε0 , Ũκ, J, ε0),

where Ũκ b Uκ. Note that C0 and Tε0 may be taken uniformly with respect to R2. We fix such
a Tε0 with Tε0 ≥ C0. By Theorem 6.2, we obtain that for all N ≥ 0,

Opκ0
(a+

l )e−ith bP Opκ0
(b+

l ) = Opκ0
(a+

l )
∑

κ

Opκ(b+
κ,h(t))e−ith bP + O(hN+1|t|)

on L2(M̂) uniformly with respect to R2 and 0 ≤ t ≤ R2Tε0 , where

b+
κ,h(t) ∈ Ssc(κ∗ exp tHp(κ−1

0∗ Ω+
i (R2, Ũκ0 , J, ε, δε,t1 , l))).

Suppose that R2t1 ≤ t ≤ R2Tε0 . Since the support of a+
l does not intersect with the support

of (κ ◦ κ−1
0 )∗b+

κ,h(t) for any κ with Vκ0 ∩ Vκ 6= ∅ by Proposition 6.3, The semiclassical symbolic

calculus (see subsection 2.2) implies that the above operator is bounded on L2(M̂) with the norm
dominated by CNhN+1〈t〉, where the constant CN > 0 may be taken uniformly with respect to
R2, t and h. If R2Tε0 ≥ h−1, then we obtain (6.1). We thus assume R2Tε0 ≤ t ≤ h−1. By (6.5)
and Theorem 6.2, there exist symbols b+

κ,h(R2Tε0) ∈ Ssc(Ω+
s (R2Tε0/C0, C0R2Tε0 , Ũκ, J, ε0)) such

that

e−ith bP Opκ0
(b+

l ) = e−i(t−R2Tε0 )h bP e−iR2Tε0h bP Opκ0
(b+

l )

= e−i(t−R2Tε0 )h bP
∑

κ

Opκ(b+
κ,h(R2Tε0))e

−iR2Tε0h bP + O(hN )

on L2(M̂). Put B =
∑

κ Opκ(b+
κ,h(R2Tε0)) and divide B as follows

B = ϕκ0Bϕ̃κ0 + (1 − ϕκ0)Bϕ̃κ0 + B(1 − ϕ̃κ0),

where ϕκ0 , ϕ̃κ0 ∈ C∞(M̃∞) such that

supp ϕ̃κ0 ⊂ suppϕκ0 ⊂ (2,∞) × Vκ0 , ϕκ0 ≡ 1 close to supp ϕ̃κ0 .

Since supp(1−ϕκ0)∩ supp ϕ̃κ0 = ∅, the second term is O(h∞) on L2(M̂). The third term is also
O(h∞) on L2(M̂) since supp b+

κ,h(R2Tε0) ∩ supp(1 − ϕ̃κ0) = ∅, which follows from the facts

r > R2 > 2 on supp b+
κ,h(R2Tε0), 0 < r < 2 on supp(1 − ϕ̃κ0).
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By invariance properties of the strongly outgoing region and h-PDO under coordinates trans-
formations, we can write

ϕκ0Bϕ̃κ0 = Opκ0
(b̃+

κ0,h(R2Tε0)) + O(h∞)

on L2(M̂) with some b̃+
κ0,h(R2Tε0) ∈ Ssc(Ω+

s (R2Tε0/C0, C0R2Tε0 , Ũ
′
κ0

, J, ε0)), where Ũ ′
κ0

b Uκ0 .
Consider a splitting of the interval [R2Tε0/C0, C0R2Tε0 ]:

R2Tε0/C0 = R̃0 < R̃1 < R̃2 < · · · < R̃k, R̃j = 2jR̃0, R̃k−1 < C0R2Tε0 < R̃k.

Clearly 2k ≤ 2C2
0 . Using a method of the partition of unity, we split b̃+

κ0,h(R2Tε0) as b̃+
κ0,h(R2Tε0) =∑k−2

j=0 b̃+
κ0,h,j with b̃+

κ0,h,j ∈ Ssc(Ω+
s (R̃j , Ũ

′
κ0

, J, ε0)). By Theorem 5.10, we can construct the

Isozaki-Kitada parametrix of e−i(t−R2Tε0 )h bP Opκ0
(b̃+

κ0,h,j) for sufficiently large R2 ≥ RIK, λ ≥ λIK

and small 0 < ε0 ≤ εIK, and we obtain

e−ith bP Opκ0
(b+

l )

=
k−2∑
j=0

κ∗
0I

+
IK(c+

h,j)e
−i(t−R2Tε0 )h 1

2
D2

r I+
IK(d+

h,j)
∗κ0∗e

−iR2Tε0h bP + Q(t, h,N,R2),

where, for each j, I+
IK(c+

h,j) and I+
IK(d+

h,j) are FIO’s defined in Definition 5.6 with some phase
function S+

κ0,j ∈ C∞(Rd; R), which satisfies the statement of Theorem 5.1 with R = R̃j , and
some amplitudes

c+
h,j ∈ Ssc(Ω+

s (λ−3R̃j , λ
3R̃j , Ũ

′
κ0

, J, λ3ε0)),

d+
h,j ∈ Ssc(Ω+

s (λ−1R̃j , λR̃j , Ũ
′
κ0

, J, λε0)).

The remainder term Q(t, h,N,R2) is uniformly bounded on L2(M̂) with the norm of order hN

with respect to R2 and R2Tε0 ≤ t ≤ h−1. By the composition rule of FIO’s with PDO’s,
a+

l (r, θ, hDr, hDθ)I+
IK(c+

h,j) is also FIO’s (up to the smoothing term O(h∞) on L2(M̂)) with the
phase S+

κ0,j and the amplitude supported in

X = {(r, θ, ρ, ω) | a+
l (r, θ, ∂rS

+
κ0,j , ∂θS

+
κ0,j)c

+
h,j(r, θ, ρ, ω) 6= 0}.

By the support property of a+
l , we see that

∂rS
+
κ0,j ≤

√
2(1 − ε2/4)pκ0(r, θ, ∂rS

+
κ0,j , ∂θS

+
κ0,j).

Since (r, θ, ρ, ω) ∈ supp c+
h,j ⊂ Ω+

s (λ−3R̃j , λ
3R̃j , Ũκ0 , J, λ3ε0), by the above estimate and (5.1),

we have
ρ/

√
2pκ0(r, θ, ρ, ω) ≤

√
1 − ε2/4 − C|λ3ε0|2 ≤

√
1 − ε2/8.

On the other hand, choosing ε0 > 0 small enough so that λ3ε0 < ε2/8 (note that λ > λIK is
fixed), the support property of c+

h,j implies

ρ/
√

2pκ0(r, θ, ρ, ω) ≥
√

1 − λ3ε0 >
√

1 − ε2/8.

The above two inequalities show that X = ∅ and hence a+
l (r, θ, hDr, hDθ)I+

IK(c+
h,j) is O(h∞) in

L2(M̂). Since κ∗
0e

−i(t−R2Tε0 )h 1
2
D2

r I+
IK(d+

h,j)
∗κ0∗e

−iR2Tε0h bP is uniformly bounded on L2(M̂) with
respect to R2, h and t, we obtain the assertion and conclude the proof. ¤

7. The WKB parametrix

In the previous section we proved that Opκ0,h(a±l )e−ith bP Opκ0,h(b±l ) are rapidly decaying with
respect to h ∈ (0, 1] if Rt1 ≤ ±t ≤ h−1 with any t1 > 0 and large R > 0. Therefore, it remains
to control the above operators for 0 ≤ ±t ≤ Rt0 with sufficiently small t0. This section discuss
construction of the WKB parametrix of propagator e−it bP Opκ(a±) for 0 ≤ ±t ≤ Rt0, where a+

(resp. a−) is supported in an outgoing (resp. incoming) region. By (4.18), we can always work
on a fixed coordinate neighborhood Uκ and hence do not write the subscript κ explicitly. Let
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Ũκ b Uκ be as in Example 2.2 and fix open subsets U b U0 b U1 b U2 b Ũκ, open intervals
J b J0 b J1 b J2 b (0,∞) and constants −1 < σ < σ0 < σ1 < σ2 < 1 arbitrarily.

7.1. Fourier integral operators for the WKB parametrix. We here study time dependent
FIO’s which will be used to construct the WKB parametrix. We first construct the phase
function.

Theorem 7.1. We can choose t0 > 0 small enough such that, for sufficiently large R2 > 0 and
all R1 > R2, there exist smooth and real-valued functions

Ψ+ ∈ C∞((0, R1t0) × R2d), Ψ− ∈ C∞((−R1t0, 0) × R2d),

satisfying the following Hamilton Jacobi equation on Γ±(R1, U1, J1, σ1):

(7.1)

{
∂tΨ± + p(r, θ, ∂rΨ±, ∂θΨ±) = 0, 0 ≤ ±t ≤ R1t0,

Ψ±|t=0 = rρ + θ · ω,

such that we have the followings all 0 ≤ ±t ≤ R1t0:

supp
(
Ψ±(t, r, θ, ρ, ω) − rρ − θ · ω

)
⊂ Γ±(R2, U2, J2, σ2),∣∣∣∂j

r∂
α
θ ∂k

ρ∂β
ω

(
Ψ±(t, r, θ, ρ, ω) − rρ − θ · ω

)∣∣∣ ≤ Cjαkβ〈r〉−j−|β||t| on R2d.(7.2)

Moreover, for all (r, θ, ρ, ω) ∈ Γ±(R1, U1, J1, σ1), we have

|∂j
r∂

α
θ ∂k

ρ∂β
ω

(
Ψ±(t, r, θ, ρ, ω) − rρ − θ · ω + tp(r, θ, ρ, ω)

)
| ≤ Cjαkβr−j−|β||t|t0.(7.3)

Proof. This theorem can be proved similarly to Theorem 5.1. We only prove the theorem for
the case t ≥ 0, and the proof for the case t ≤ 0 is similar. Let R1 > R′

1 > R1/2, U1 b U ′
1 b Ũκ,

J1 b J ′
1 b (0,∞) and σ1 < σ′

1 < 1. Let FR1 : (r, θ, ρ, ω) 7→ (r/R1, θ, ρ, ω), and define g+(t) and
g̃+(t) by

g+(t) := (r(t, r, θ, ρ, ω), θ(t, r, θ, ρ, ω), ρ, ω),

g̃+(t) = (r̃(t, x, θ, ρ, ω), θ̃(t, x, θ, ρ, ω), ρ, ω)

:= FR1 ◦ g+(t) ◦ F−1
R1

(x, θ, ρ, ω),

where (r(t, r, θ, ρ, ω), θ(t, r, θ, ρ, ω)) is the Hamilton flow generated by p, and x = r/R1. By
Proposition 4.2, we have

|∂j
x∂α

θ ∂k
ρ∂β

ω(r̃(t) − x)| ≤ CjαkβR−1
1 |t| ≤ Cjαkβt0,

|∂j
x∂α

θ ∂k
ρ∂β

ω(θ̃(t) − θ)| ≤ CjαkβR′−1
1 |t| ≤ Cjαkβt0,

and
|∂g̃+(t) − Id | ≤ Ct0 < 1/2,

for all (x, θ, ρ, ω) ∈ FR1Γ
+(R′

1, U
′
1, J

′
1, σ

′
1) and 0 ≤ t ≤ R1t0 as long as t0 > 0 is small enough.

Applying a same argument as that in the proof of Lemma 5.3 to g̃+(t), we see that g+(t) is
diffeomorphic from Γ+(R′

1, U
′
1, J

′
1, σ

′
1) onto its range for all 0 ≤ t ≤ R1t0, and satisfies

Γ+(R1, U1, J1, σ1) ⊂ g±(t)(Γ+(R′
1, U

′
1, J

′
1, σ

′
1)), 0 ≤ ±t ≤ R1t0.

Let Γ+(R1, U1, J1, σ1) 3 (r, θ, ρ, ω) 7→ (r̂+(t), θ̂+(t), ρ, ω) be the inverse of g+(t), and put
(r+(t, s), θ+(t, s), ρ+(t, s), ω+(t, s)) := (r, θ, ρ, ω)(s, r̂+(t), θ̂+(t), ρ, ω) for 0 ≤ s ≤ t ≤ R1t0.
Then, by a same argument as that in the proof of Lemma 5.4 and Lemma 5.5, we have

(7.4)

{
|∂j

r∂
α
θ ∂k

ρ∂β
ω(r̂+(t) − r)| + |∂j

r∂
α
θ ∂k

ρ∂β
ω(ω+(t, t) − ω)| ≤ Cjαkβr−j−|β||t|,

|∂j
r∂

α
θ ∂k

ρ∂β
ω(θ̂+(t) − θ)| + |∂j

r∂
α
θ ∂k

ρ∂β
ω(ρ+(t, t) − ρ)| ≤ Cjαkβr−j−|β|t0,

Define Ψ̃+ ∈ C∞((0, R1t0) × Γ+(R1, U1, J1, σ1)) by

Ψ̃+(t) := rρ + θ · ω +
∫ t

0
L(r+(t, s), θ+(t, s), ρ+(t, s), ω+(t, s))ds,
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where L = (ρ∂ρp + ω · ∂ωp − p)(r, θ, ρ, ω). By a standard Hamilton-Jacobi theory, it is easy to
see that Ψ̃+(t) solves (7.1) and satisfies

∂Ψ̃(t) = (ρ+(t, t), ω+(t, t), r̂+(t), θ̂+(t)).

By (7.4) and the energy conservation law

p(r, θ, ∂rΨ̃+(t), ∂θΨ̃+(t)) = p(r̂+(t), θ̂+(t), ρ, ω),

we have ∣∣∣∂j
r∂

α
θ ∂k

ρ∂β
ω

(
p(r, θ, ∂rΨ̃+(t), ∂θΨ̃+(t)) − p(r, θ, ρ, ω)

)∣∣∣ ≤ Cjαkβr−j−|β|t0.

Therefore, ∣∣∣∂j
r∂

α
θ ∂k

ρ∂β
ω

(
Ψ̃+(t) − rρ − θ · ω + tp(r, θ, ρ, ω)

)∣∣∣ ≤ Cjαkβr−j−|β||t|t0.

Choose χ+ ∈ C∞(R2d) so that

0 ≤ χ+ ≤ 1, χ+ ≡ 1 on Γ+(R1, U1, J1, σ1), suppχ+ ⊂ Γ+(R2, U2, J2, σ2),

and that ∣∣∣∂j
r∂

α
θ ∂k

ρ∂β
ωχ+(r, θ, ρ, ω)

∣∣∣ ≤ Cjαkβ〈r〉−j−|β| on R2d.

We now define Ψ+(t) := rρ+θ ·ω+χ+(Ψ̃+(t)−rρ+θ ·ω). Clearly, Ψ(t)+ satisfies the statement
of theorem 7.1. ¤

Suppose (a±(t))0≤±t≤R1t0 are bounded in Ssc(Γ±(R1, U1, J1, σ1)), respectively. We define the
FIO’s for the WKB parametrix I±WKB(a±(t)) : S(Rd) → S(Rd) by

I±WKB(a±(t))u(r, θ)

:=
1

(2πh)d

∫
e

i
h
(Ψ±(t,r,θ,ρ,ω)−r′ρ−θ′·ω)a±(t, r, θ, ρ, ω)u(r′, θ′)dr′dθ′dρdω.

Proposition 7.2. I±WKB(a±(t)) are bounded on L2(Rd) uniformly with respect to 0 ≤ ±t ≤ R1t0:

||I±WKB(a±(t))u||L2(Rd) ≤ C||u||L2(Rd).

Proof. For (r, θ, ρ, ω, r′, θ′) ∈ R3d with r, r′ > R1 and 0 ≤ t ≤ R1t0, define the map (ρ1
+, ω1

+) by

(ρ1
+, ω1

+)(t, r, θ, ρ, ω, r′, θ′) =
∫ 1

0
(∂r,θΨ+)(t, r′ + s(r − r′), θ′ + s(θ − θ′), ρ, ω)ds.

By (7.2), we have

sup
0≤t≤R1t0

(∣∣∂γ(ρ1
+ − ρ)

∣∣ + R−1
1

∣∣∂γ(ω1
+ − ω)

∣∣) ≤ CγR
−j−j′−|β|
1 t0,

where ∂γ = ∂j
r∂α

θ ∂k
ρ∂β

ω∂j′

r′∂
α′
θ′ with γ = (j, α, k, β, j′, α′). By this estimate and a similar argument

as in the proof of Lemma 5.9, we obtain that, for all (r, θ, r′, θ′) ∈ R2d with r, r′ > R1 and
0 ≤ t ≤ R1t0, the map (ρ, ω) 7→ (ρ1

+, ω1
+)(t, r, θ, ρ, ω, r′, θ′) is a diffeomorphism from Rd onto

itself provided that t0 > 0 is small enough. We also see that the corresponding inverse (ρ, ω) 7→
(ρ2

+, ω2
+)(t, r, θ, ρ, ω, r′, θ′) satisfies

sup
0≤t≤R1t0

(∣∣∂γ(ρ2
+ − ρ)

∣∣ + R−1
1

∣∣∂γ(ω2
+ − ω)

∣∣) ≤ CγR
−j−j′−|β|
1 t0.(7.5)

Using the change of variable (ρ, ω) 7→ (ρ2
+, ω2

+), I+
WKB(a+(t))I+

WKB(a+(t))∗ can be regarded as a
h-PDO with the amplitude

a+(t, r, θ, ρ2
+, ω2

+)a+(t, r′, θ′, ρ2
+, ω2

+)|det ∂ρ,ω(ρ2
+, ω2

+)|.

By (7.5), this amplitude and its all derivatives with respect to ∂γ are bounded on R3d uniformly
with respect to 0 ≤ t ≤ R1t0. The assertion then follows from the Calderón-Vaillancourt theorem
and the L2-functional calculus. When −R1t0 ≤ t ≤ 0, the proof is similar. ¤
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7.2. Construction of the parametrix. The main result in this section is the following.

Theorem 7.3. There exists RWKB > 0 large enough and tWKB > 0 small enough such that, for
all R > R0 > R1 > RWKB, a± ∈ Ssc(Γ±(R,U, J, σ)) and N ≥ 0, we can find

b±h (t) =
N∑

j=0

hjb±j (t)

with (b±j (t))0≤±t≤R1tWKB
bounded in Ssc(Γ±(R0, U0, J0, σ0)) such that, for all h ∈ (0, 1] and

0 ≤ ±t ≤ R1tWKB,

||e−ith bP Opκ(a±) − κ∗I±WKB(b±h (t))κ∗||L(L2(cM))
≤ CNhN+1|t|

where CN > 0 can be taken uniformly with respect to h, t and R1.

Remark 7.4. The essential point of Theorem 7.3 is to construct the parametrix on the time
interval 0 ≤ |t| ≤ R1tWKB which allow us to choose the constant δ > 0 in Theorem 3.3 inde-
pendently with respect to R1. When |t| > 0 is small and independent of R1, such a parametrix
construction is basically well known (see [18] for the case of elliptic operators on the Euclidean
space, and [3] for the case of the Laplace-Beltrami operator on an asymptotically hyperbolic
manifold).

We prove the theorem for the case when t ≥ 0. Put B+(t) = I+
WKB(b+

h (t)). By the Duhamel
formula, we have

e−ith bP κ∗B+(0)κ∗ = κ∗B+(t)κ∗ +
i

h

∫ t

0
e−i(t−s)hP κ∗(hDs + h2P̂κ)B+(s)κ∗ds,

where Ds = i−1∂s. Since the off-diagonal decay of the h-PDO implies

||Opκ(a+) − κ∗a+(r, θ, hDr, hDθ)κ∗||L(L2(cM))
≤ Cnhn,

for all n ≥ 0, it suffices to show that there exists b+
h (t) such that b+

h (0) = a+ and

||(hDs + h2P̂κ)B+(s)||L(L2(Rd)) ≤ CNhN+2(7.6)

for h ∈ (0, 1] and 0 ≤ s ≤ R1tWKB.
Define smooth tensors x+(t) and y+(t) by

x+(t) := ∂ρ,ωpκ(r, θ, ∂rΨ+(t), ∂θΨ+(t)), y+(t) := (p + p1)(r, θ, ∂r, ∂θ)Ψ+(t).

Then, b+
h (t) satisfying (7.6) can be constructed by solving the following transport equations.

Lemma 7.5. For sufficiently small t0 > 0, there exist

(b+
j (t))0≤t≤R1t0 bounded in Ssc(Γ±(R0, U0, J0, σ0)), j = 0, 1, ..., N,

such that b+
j (t) solve the transport equations:

(7.7)

{
∂tb

+
0 (t) + x+(t) · ∂r,θb

+
0 (t) + y+(t)b+

0 (t) = 0,

∂tb
+
j (t) + x+(t) · ∂r,θb

+
j (t) + y+(t)b+

j (t) + iP̂κb+
j−1(t) = 0, j ≥ 1,

with the initial condition b+
0 (0) = a+, b+

j (0) = 0 for j = 1, 2, ..., N .

Proof. We mimic Bouclet’s argument [3, Lemma 6.4]. Choose R′
0, R

′′
0 > 0, U ′

0, U
′′
0 b Rd−1 and

J ′
0, J

′′
0 b (0,∞) so that

R0 > R′
0 > R′′

0 > R1, U0 b U ′
0 b U ′′

0 b U1,

J0 b J ′
0 b J ′′

0 b J1, σ0 < σ′
0 < σ′′

0 < σ1.
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For 0 ≤ s, t ≤ R1t0 and (r, θ, ρ, ω) ∈ Γ+(R′′
0 , U

′′
0 , J ′′

0 , σ′′
0), we consider the flow generated by

x+(t), that is the solution to the ODE:{
(∂tr

+(t, s), ∂tθ
+(t, s)) = x+(t, r+(t, s), θ+(t, s), ρ, ω),

(r+(s, s), θ+(s, s)) = (r, θ).

Since x+(t) = (∂rΨ+(t), r−2(hjk + ajk)∂θkΨ+(t)), by using (7.2), we have∣∣∂tr
+(t, s)

∣∣ ≤ C(1 + r+(t, s)−1|t|),
∣∣∂tθ

+(t, s)
∣∣ ≤ Cr+(t, s)−2|t|.

In particular, ∣∣∂tr
+(s, s)

∣∣ ≤ C,
∣∣∂tθ

+(s, s)
∣∣ ≤ CR′′−1

0 t0.

Therefore, a same argument as that in the proof of Lemma 5.13 implies that there exists t0 > 0,
independent of R0, such that (r+(t, s), θ+(t, s)) is well-defined on Γ+(R′′

0 , U
′′
0 , J ′′

0 , σ′′
0) for all

0 ≤ s, t ≤ R1t0, and that

|r+(t, s) − r| ≤ C|t|, |θ+(t, s) − θ| ≤ t0 on Γ+(R′′
0 , U

′′
0 , J ′′

0 , σ′′
0).

In particular, (r+(t, s), θ+(t, s), ρ, ω) ∈ Γ+(R1, U1, J1, σ1) for all 0 ≤ s, t ≤ R1t0. Moreover,
differentiating the integral equation

(r+(t, s), θ+(t, s)) = (r, θ) +
∫ t

s
x+(u, r+(u, s), θ+(u, s), ρ, ω)du

with respect to ∂γ = ∂j
r∂α

θ ∂k
ρ∂β

ω , by using (7.2) and an induction on |γ|, we have

|∂γ(r+(t, s) − r)| ≤ Cγr−j−β |t|, |∂γ(θ+(t, s) − θ)| ≤ Cγr−j−βt0,(7.8)

for all 0 ≤ s, t ≤ R1t0 and (r, θ, ρ, ω) ∈ Γ+(R′′
0 , U

′′
0 , J ′′

0 , σ′′
0). We put

Φ+(t, s) := (r+(t, s), θ+(t, s), ρ, ω),

and define b+
j (t) by

b+
0 (t) := a+(Φ+(0, t))e

R t
0 y+(s,Φ+(s,t))ds,

b+
j (t) := −

∫ t

0
(iP̂κb+

j−1)(s,Φ+(s, t))e
R t

s y+(u,Φ+(u,t))duds, j = 1, ..., N.

We remark that if we choose t0 small enough, then (7.8) implies

Φ+(t, s)(Γ+(R,U, J, σ)) ⊂ Γ+(R0, U0, J0, σ0),

Φ+(t, s)(Γ+(R0, U0, J0, σ0)) ⊂ Γ+(R′
0, U

′
0, J

′
0, σ

′
0),

Φ+(t, s)(Γ+(R′
0, U

′
0, J

′
0, σ

′
0)) ⊂ Γ+(R′′

0 , U
′′
0 , J ′′

0 , σ′′
0) ⊂ Γ+(R1, U1, J1, σ1),

for all 0 ≤ s, t ≤ R1t0. Φ+(s, t) is thus well-defined on Γ+(R′
0, U

′
0, J

′
0, σ

′
0), smooth on Γ+(R0, U0, J0, σ0),

and satisfies Φ+(s, t) = Φ+(t, s)−1. Moreover, supp b+
j (t) ⊂ Γ+(R0, U0, J0, σ0) since supp a+ ⊂

Γ+(R,U, J, σ). If we extend b+
j (t) on R2d so that b+

j (t) = 0 outside Γ+(R0, U0, J0, σ0), then
b+
j (t) are still smooth with respect to (r, θ, ρ, ω). Furthermore, by (2.3), (7.2) and (7.8), we see

that (b+
j (t))0≤t≤R1t0 is bounded in Ssc(Γ±(R0, U0, J0, σ0)). Finally, a standard Hamilton-Jacobi

theory shows that b+
j (t) solve (7.7) for 0 ≤ t ≤ R1t0. ¤

Proof of Theorem 7.1. By the construction, B+(0) = a+(r, θ, hDr, hDθ). Ψ+ solves (7.1) on
Γ+(R1, U1, J1, σ1) which contains Γ+(R0, U0, J0, σ0), and b+

j satisfy (7.7) on the latter region.
Therefore, a direct computation yields

(hDs + h2P̂κ)B+(s) = hN+2iP̂κb+
N (s).

Since (P̂κb+
N (s))0≤s≤Rt0 is bounded in Ssc(Γ±(R0, U0, J0, σ0)), (7.1) implies that I+

WKB(iP̂κb+
j (s))

is bounded on L2(Rd) uniformly with respect to h ∈ (0, 1] and 0 ≤ s ≤ Rt0. We hence proved
(7.6). ¤
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7.3. Dispersive estimates. We here prove dispersive estimates for the WKB parametrix. Let
R0 > R1 > RWKB and tWKB > 0 be as in Theorem 7.3.

Theorem 7.6. For any (b±(t))0≤±t≤R1tWKB
bounded in Ssc(Ω±

s (R0, U0, J0, σ0)), we can write

I±WKB(b±(t)) = U±
WKB(t, h) + R±

WKB(t, h),

where U±(t, h) satisfy

||r−
d−1
2 U±

WKB(t, h)r−
d−1
2 ||L(L1(Rd),L∞(Rd)) ≤ C|th|−d/2,(7.9)

for all 0 < ±t ≤ min(R1tWKB, h−1), h ∈ (0.1]. Moreover the remainder terms R±
WKB(t, h) are

rapidly decaying with respect to h: for any N ≥ 0,

||R±
WKB(t, h)||L(L2(Rd)) ≤ CNhN , 0 ≤ ±t ≤ min(R1tWKB, h−1), h ∈ (0.1].(7.10)

Here constants C,CN > 0 may be taken uniformly with respect to h and R1.

Proof. Since the proof is similar as that of Theorem 5.14, we omit details and give the sketch of
the proof. We consider the outgoing case only. The distribution kernel of I+

WKB(b+(t)) is written
in the form

Ib+(t, h) = (2πh)−d

∫
e

i
h

ψ+(t,r,θ,ρ,ω,r′,θ′)b+(t, r, θ, ρ, ω)dρdω,

where ψ+(t, r, θ, ρ, ω, r′, θ′) = Ψ+(t, r, θ, ρ, ω)− r′ρ− θ′ ·ω. Let χρ ∈ C∞
0 (R), χω ∈ C∞

0 (Rd−1) be
as in the proof of Theorem 5.14, and set

B+(t) = χρ(∂ρψ
+)χω(∂ωψ+)b+(t).

We then have |∂ρψ
+| < 1 and |∂ωψ+| < 1 on suppB+. We denote the operator having the kernel

IB+(t, h) by UB+(t, h). By a same proof as that in Lemma 5.15, we obtain that R+
WKB(t, h) =

I+
WKB(b+(t)) − UB+(t, h) satisfies (7.10).
We next prove (7.9) for U+

WKB(t, h) := UB+(t, h). Assume R1 > 4 without loss of generality.
We first note that r′ ≥ R1/2 on suppB+; otherwise, there exists C0 > 0, independent of R0,
such that

|∂ρψ
+| ≥ r − r′ − C0R1tWKB ≥ (1/2 − C0tWKB)R0 > 1

if 0 < tWKB < (4C0)−1, since r > R0 > R1 on supp b+(t) and ∂ρψ = r − r′ + O(|t|) by (7.2).
This contradicts the support property of B+. We thus have

r′/4 ≤ r′ − |∂ρψ
+| − C0R1tWKB ≤ r ≤ r′ + |∂ρψ

+| + C0R1tWKB ≤ 4r′

on the support of B+. It follows from (7.3) that ψ+ may be written in the form

ψ+(t, r, θ, ρ, ν, r′, θ′) = (r − r′)ρ + (θ − θ′) · ω − tp(r, θ, ρ, ω) + Q+(t, r, θ, ρ, ω)

on suppB+, where the remainder Q+ satisfies∣∣∣∂j
r∂

α
θ ∂k

ρ∂β
ωQ+(t, r, θ, ρ, ω)

∣∣∣ ≤ Cr−j−|β||t|tWKB on suppB+.

Let χ ∈ C∞(R2d) be such that 0 ≤ χ ≤ 1, suppχ ⊂ Γ+(R1, U1, J1, σ1), χ ≡ 1 on Γ+(R0, U0, J0, σ0),
and that ∂j

r∂α
θ ∂k

ρ∂β
ωχ = O(〈r〉−j−|β|). We then define

ψ+
0 (t, r, θ, ρ, ω, r′, θ′)

:= (r − r′)ρ + (θ − θ′) · ω − tp(r, θ, ρ, ω) + χ(r, θ, ρ, ω)Q+(t, r, θ, ρ, ω).

Since ψ+
0 ≡ ψ+ on [0, R1tWKB] × suppB+, using the change of the variable ω 7→ rν, IB+(t, h)

reads

IB+(t, h) =
rd−1

(2πh)d

∫
e

i
h

ψ+
0 (t,r,θ,ρ,rν,r′,θ′)B̃+(r, θ, ρ, ν, r′, θ′)dρdν,

where B̃+(r, θ, ρ, ν, r′, θ′) := B+(r, θ, ρ, rν, r′, θ′) is compactly supported with respect to (ρ, ν),
and all derivatives of B̃+ are bounded on R3d. Since (7.9) is obvious for 0 < t < h (note
that r′/4 < r < 4r′), we may assume that h < t ≤ R1tWKB. Set ψ̃+

0 (t, r, θ, ρ, ν, r′, θ′) :=
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t−1ψ+
0 (t, r, θ, ρ, rν, r′, θ′). Choose χ1 ∈ C∞

0 (R) so that χ1 ≡ 1 on (−1/2, 1/2) and suppχ1 ⊂
(−1, 1), and set

B̃1 = χ1

(
r − r′

C1t

)
B̃+, B̃2 = B̃+ − B̃1,

with some large C1 > 0. Since ∂ρψ̃
+
0 = (r− r′)/t− ρ−O(tWKB), if C1 > 0 is large enough, then

we have |∂ρψ̃
+
0 | & 1 on supp B̃2. An integration by parts then implies that∣∣∣∣ 1
(2πh)d

∫
e

i
h

tψ̃+
0 (t,r,θ,ρ,ν,r′,θ′)B̃+

2 (r, θ, ρ, ν, r′, θ′)dρdν

∣∣∣∣ ≤ CtWKB |th|
−d/2

for h ≤ t ≤ R1tWKB, where CtWKB is independent of R1. Since

∂2
ρ,νp(r, θ, ρ, rν) =

(
1 0
0 hjk(θ) + ajk(r, θ)

)
is bounded from above and below on Rd, we obtain

|∂k
ρ∂β

ν ψ̃+
0 (t, r, θ, ρ, ν, r′, θ′)| ≤ C for |k + β| ≥ 2,

uniformly with respect to (r, θ, ρ, ω, r′, θ′) ∈ R3d and 0 < t ≤ R1tWKB. Moreover, if tWKB > 0,
which can be taken uniformly with respect to R1, is small enough, then we have

|det ∂2
ρ,νψ̃

+
0 (t, r, θ, ρ, ν, r′, θ′)| & 1, (r, θ, ρ, ω, r′, θ′) ∈ R3d, 0 < t ≤ R1tWKB.

By a same argument as that in Section 5, we can apply the stationary phase theorem, and have
the assertion since r′/4 < r < 4r′ on the support of B̃+. ¤

8. Proof of Theorem 3.3

We here prove Theorem 3.3. We only consider the case t ≥ 0, and the proof for the case t ≤ 0
is similar. Recall that Ah =

∑
κ Oppr

κ (aκ,h) is a sum of properly supported h-PDO’s. By (2.9),
(2.11) and their adjoint estimates with respect to Ĝdz, we have

(8.1)

 ||r−
d−1
2 Ah||L(L2(cM),L∞(cM))

+ ||A∗
hr−

d−1
2 ||

L(L1(cM),L2(cM))
≤ Ch− d

2 ,

||r−
d−1
2 Ahr

d−1
2 ||

L(L∞(cM))
+ ||r

d−1
2 A∗

hr−
d−1
2 ||

L(L1(cM))
≤ C,

uniformly with respect to h ∈ (0, 1].
Choose R0 > 0 and ε0 > 0 so that Theorems 5.10, 5.14, 6.1, 7.3 and 7.6 hold for all R ≥ R0

and 0 < ε ≤ ε0, and let N ≥ d.
We first prove (3.5). A standard symbolic calculus implies that Opκ(b+

s )∗ can be replaced by
Opκ(b̃+

s ) modulo a smoothing term O(hN+1) on L2(M̂), where b̃+
s ∈ Ssc(Ω+

s (R2, Ũκ, J, ε)). More-
over, Opκ(a+

s )−Oppr
κ (a+

s ) has the L(L2(M̂))-norm of order hN+1 by (2.7). Therefore, Theorems
5.10, 5.14 with R = R2 and (2.11) with (q, s) = (∞, (d−1)/2) imply that Opκ(a+

s )e−ith bP Opκ(b+
s )∗

can be brought to the form
U+

s (t, h,N) + hN+1R+
s (t, h,N),

where U+
s (t, h,N) and R+

s (t, h,N) satisfy

||r−
d−1
2 U+

s (t, h,N)r−
d−1
2 ||

L(L1(cM),L∞(cM))
≤ CN |th|−

d
2 ,

||R+
s (t, h,N)||

L(L2(cM))
≤ CN ,

uniformly with respect to h ∈ (0, 1] and 0 < ±t ≤ h−1. By using (8.1), we obtain (3.5) since
1 ≤ |th|−

d
2 for 0 < t ≤ h−1.

Next, let R2 ≥ R0 and R1 > 0 so that 2R1 > R2 > R1. Then, there exists tWKB > 0,
independent of R2, such that Theorems 7.3 and 7.6 with R = R2 hold for 0 < t ≤ R2tWKB/2.
By a same argument as above, we obtain (3.4) with t0 = tWKB/2.

For any t1 > 0, a same argument as above and Theorem 6.1 imply

||Opκ(a+
l )e−ith bP Opκ(b+

l )∗||
L(L2(cM))

≤ CNhN+1,
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for h ∈ (0, 1] and R2t1 ≤ t ≤ h−1. Combining this estimate with (8.1), we obtain (3.6). We
complete the proof. ¤

Appendix A. Proof of Theorem 1.2

We here give the sketch of the proof of Theorem 1.2. It is sufficient to prove that, for any
K b M , χK ∈ C∞

0 (M) with χK ≡ 1 on K and admissible pair (p, q), the following estimate
holds under the nontrapping condition:

||χKe−itP u0||Lp([0,1];Lq(M)) ≤ C||u0||L2(M).(A.1)

We mimic the Bouclet-Tzvetkov argument [4, Section 5 and 6].

Proposition A.1. Let ϕ ∈ C∞
0 ((0,∞)). Then there exist t0 > 0 and C > 0 such that for all

h ∈ (0, 1] and admissible pair (p, q),

||χKϕ(h2P )e−itP u0||Lp([0,t0h];Lq(M)) ≤ C||u0||L2(M).(A.2)

Proof. Let {κ : Vκ → Uκ}κ be a finite atlas on K and {ψκ}κ ⊂ C∞
0 (M) be a partition of unity

subordinate to {Vκ}. Let ψ̃κ ∈ C∞
0 (M) so that ψ̃κ ≡ 1 on a neighborhood of supp ψ. For a

symbol a ∈ C∞
0 (Uκ × Rd), we define Opκ(a)u = κ∗(a(z, hDz)κ∗(ψ̃κu)). Since a has a compact

support with respect z and ξ, the Schur lemma implies that for 1 ≤ q ≤ r ≤ ∞ and h ∈ (0, 1],

||a(z, hDz)||L(Lq(Rd),Lr(Rd)) ≤ Ch−d(1/q−1/r).(A.3)

By a same argument as that in [6, Section 2] which studied the case of compact manifolds
without boundaries (see also [1]), there exist symbols aκ,h ∈ C∞

0 (Uκ × p−1
κ (suppϕ)) such that

we can approximate χKϕ(h2P ) by
∑

κ Opκ(aκ,h) up to O(hN ) on L2(M) for any N ≥ 0. In
particular if we obtain the following estimate:

||Opκ(b)Opκ(a)e−itP u0||Lp([0,t0h];Lq(M)) ≤ C||u0||L2(cM)
, h ∈ (0, 1],(A.4)

for any a, b ∈ C∞
0 (Uκ × p−1

κ (suppϕ)), then a same argument as that in Section 3 implies (A.2).
(A.4) follows from (A.3), the TT ∗-argument and the WKB parametric approximation of the
propagator e−ithP Opκ(a) for 0 ≤ t ≤ t0 with sufficiently small t0 > 0. The construction of the
WKB parametrix is basically well known and its proof is similar as that in the case of elliptic
operators on the Euclidean space. We refer to [18] for details. Dispersive estimates can be
proved similarly to the case of compact manifolds without boundaries [6]. ¤

Proof of (A.1). The Duhamel formula implies

ϕ(h2P )χKe−itP u0 = e−itP ϕ(h2P )χKu0 − i

∫ t

0
e−i(t−s)P ϕ(h2P )[P, χK ]e−isP u0ds.

By Theorem 1.1, Proposition A.1 and a same argument as that in [4, Section 5 and 6], we obtain

||ϕ(h2P )χKe−itP u0||Lp([0,1];Lq(M))

. ||ϕ(h2P )χKu0||L2(M) + h−1/2||ϕ(h2P )χKe−itP u0||L2([0,1];L2(M))

+ h1/2||ϕ(h2P )[P, χK ]e−isP u0||L2([0,1];L2(M))

. ||ϕ(h2P )u0||L2(M) + h1/2||u0||L2(M) + ||χKϕ(h2P )e−itP u0||L2([0,1];H1/2(M)),

where H1/2(M) is the Sobolev space with the norm ||(1 + P )1/4 · ||L2(M). In the last line we
used inequalities

||[ϕ(h2P ), χK ]||L(L2(M)) . h, ||[ϕ(h2P ), [P, χK ]]||L(L2(M)) . 1,

||[P, χK ]χ̃Kϕ(h2P )||L(H1/2(M),H−1/2(M)) . 1,

where χ̃K ∈ C∞
0 (M) is a cut-off function so that χ̃K ≡ 1 on suppχK . These inequalities follow

from the pseudodifferential approximations of χKϕ(h2P ) and (1 − χK)ϕ(h2P ) such as Lemma
2.4 (see also [1]) and the symbolic calculus.
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We now use the nontrapping condition on the metric. Under the nontrapping condition,
Cardoso-Vodev [7] proved that for sufficiently large λ > 0,

||χK(P − λ ± i0)−1χK ||L(L2(M)) . 〈λ〉−1/2.

By the abstract Kato smooth perturbation theory, this resolvent estimate implies the local
smoothing effect:

||χKe−itP u0||L2([0,1];H1/2(M)) . ||u0||L2(M).

Using this estimate, we obtain

||ϕ(h2P )χKe−itP u0||Lp([0,1];Lq(M)) . ||ϕ(h2P )u0||L2(M) + h1/2||u0||L2(M)

uniformly with respect to h ∈ (0, 1]. Applying the Littlewood-Paley decomposition proved by
[2], we obtain (A.1) and conclude the proof. ¤

References

[1] Bouclet, J.- M. Semi-classical calculus on non compact manifolds with ends and weighted Lp estimates. To

appear in Ann. Inst. Fourier.

[2] Bouclet, J.- M. (2010). Littlewood-Paley decompositions on manifolds with ends. Bull. Soc. Math. France.

138:1–37

[3] Bouclet, J.- M. Strichartz estimates on asymptotically hyperbolic manifolds. To appear in Analysis and PDE.

[4] Bouclet, J.- M., Tzvetkov, N. (2007). Strichartz estimates for long range perturbations. Amer. J. Math.

129:1565–1609.

[5] Bouclet, J.- M., Tzvetkov, N. (2008). On global Strichartz estimates for non trapping metrics. J. Funct.

Analysis. 254:1661–1682.

[6] Burq, N., Gérard, P., Tzvetkov, N. (2004). Strichartz inequalities and the nonlinear Schrödinger equation on

compact manifolds. Amer. J. Math. 126:569–605.

[7] Cardoso, F., Vodev, G. (2002). Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite

volume Riemannian manifolds, II. Ann. Henri Poincaré. 3:673–691.
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