STRICHARTZ ESTIMATES FOR SCHRODINGER EQUATIONS ON
SCATTERING MANIFOLDS

HARUYA MIZUTANI

ABSTRACT. The present paper is concerned with Schrodinger equations on non-compact Rie-
mannian manifolds with asymptotically conic ends. It is shown that, for any admissible pair
(including the endpoint), local in time Strichartz estimates outside a large compact set centered
at origin hold. Moreover, we prove global in space Strichartz estimates under the nontrapping
condition on the metric.

1. INTRODUCTION

Let us recall that the Strichartz estimates for the free Schrodinger equation on the Euclidean
space R? ([21, 10, 23, 14]) state that

||e*z UOHLP([—T,T};Lq(Rd)) < CTHUOHB(Rd)’ U € LQ(Rd)’
where the pair (p, ¢) satisfies the following admissible condition:

(1.1) ]23 j = g, p.q>2, (d,p,q)# (2,2,00).
It is well known that these estimates are fundamental in studying low regularity well-posedness
of the Cauchy problem for nonlinear Schrodinger equations. It is a natural question if the same
estimates hold for Schrédinger equations on manifolds. Though the global in time estimates (i.e.,
supp Cr < o0) do not hold in general, the local in time estimates have been proved by many
authors under several geometric conditions. The purpose of the present paper is to prove sharp
Strichartz estimates on scattering manifolds for any admissible pair (including the endpoint
(2, d%cg)), where the scattering manifolds are non-compact manifolds which have asymptotically
conic ends. The paper is also concerned with studying a relationship between Strichartz esti-
mates and microlocal properties of the solution. More precisely, we show that (local in time)
Strichartz estimates follow from the dispersive estimates for spatially and frequency localized
solutions which we call microlocal dispersive estimates.

We consider the following model. We mean by the scattering manifold a non-compact manifold
with an asymptotically conic structure. Let M be a non-compact Riemannian manifold of
dimension d > 2 such that M can be decomposed as

M = M, U M.,

where M. € M is relatively compact, and there exists a (d — 1)-dimensional closed Riemannian
manifold OM such that M is diffeomorphic to (0,00) x M. Let

t: My 32— (r(2),0(2)) € (0,00) x OM

be an identification mapping which is called a boundary decomposition. Suppose that M. N
My C (0,1) x OM under this identification. Throughout the paper we fix a boundary de-
composition ¢ and do not write it explicitly, and denote local coordinates on (0,00) x M by

(r,0).
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We next recall the definition of the scattering metric on M. Let g be a Riemannian metric
on M such that, for sufficiently large Rj; > 0, g takes the form
(1.2) g = dr* +r?(hjx + a;5)d®?do*  for (r,0) € (R, 00) x OM,

where (hj;) is the Riemannian metric on dM and (aji) is a smooth and real-valued tensor.
Here we used the Einstein summation convention. We may assume that Ry; = 1 without loss of
generality, and define the scattering region by My = (1,00) x M. We also assume throughout
the paper that there exists ¢ > 0 such that for any (I, «) € Z‘j_,

(1.3) 10L08 aji(r,0)] < Cior ™1, (r,0) € M.
Such a g is said to be a long-range scattering metric (in normal form).
Let Ay be the Laplace-Beltrami operator associated to g on L?(M):
1 _
Ag = @@lG(z)g’m(z)@l, (9"(2)) = (gim(2)) ™", G(2) = V/det gim(2),
and set P = —1A, where LP(M) := LP(M,G(z)dz), 1 < p < co. In the setting we consider the
Schrédinger equation:
i0wu(t) = Pu(t), teR,
(1.4) )
u(0) = ug € L*(M).
Since P is essentially self-adjoint on C§°(M) under the above condition, (1.4) has a unique
solution u(t) = e~*Puq by the Stone theorem. The main result is the following.

Theorem 1.1 (Strichartz estimates near infinity). There exist a large compact subset M, C
K C M and xg € C§°(M) with xxk =1 on K such that

(1.5) (1 - XK)e_itPuo"LP([O,l};Lq(M)) < CHUOHLQ(M)v up € Cg° (M),
provided that (p,q) satisfies the admissible condition (1.1).

Let p(z,&) be the principal symbol of P. We say that M is nontrapping if for any (zo, &%) €
T*M with €° # 0, the geodesic flow (z(t, 20, £°), £(t, 20,£°)) generated by H,, satisfies

|2(t, 20, €9)| — 400 as t — Fo0,

where H), = Z?:1 (%% - %(‘%) is the Hamilton vector field associated to p(z,§). If M is
nontrapping, then using local smoothing effects which follow from resolvent estimates proved
by [7] (see also [8]), we obtain local in time Strichartz estimates (without loss of derivatives)
for xxe "Fug (see Appendix A for more details). Combining with Theorem 1.1, we have the

following;:

Theorem 1.2 (Global in space estimates). Suppose that M is a nontrapping scattering manifold.
Then, for any (p,q) satisfying (1.1), we have

(1.6) ||e_itPu0|’LP([O,l};Lq(M)) = C||u0||L2(M)’ ug € Cg°(M).

Remark 1.3. (i) Let T > 0. Since e~*F is unitary on L?(M), the time interval [0, 1] in (1.5)
and (1.6) can be replaced by [T, T] provided that we replace the constant C' > 0 by some
Cr > 0 depending on T'.

(ii) (Metrics in not normal form) Let g be a more general Riemannian metric than in normal
form such that g takes the form

g = (1+a")dr® + ra3(drdt’ + d0’dr) + r*(hjy, + a3y)d6? do”

on (1,00) x OM, where a® (r,0) are smooth and real-valued tensors satisfying (1.3) with some
0 < uny < 1. Then, there exists a change of coordinates (/,6") = (R(r,0),0(r,8)) such that, for
some 0 < p < un ,

R(r,0) =r+0@'H), O(r,0) =0+ O(r ") as r — +o0,
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and g can be brought to a long-range metric in normal form as above. Hence the statements of
Theorem 1.1 and Theorem 1.2 also hold for such a metric in not normal form. We refer to [11,
Section 10.6] for more details.

(iii) (Potential perturbations) Let V' be a smooth and real-valued potential on M of short-
range type i.e.,

10L05°V (r,0)| < Crar 7771 for (r,0) € (1,00) x OM,

with some v > 0. Our proof still works well if we replace P with P + V. Hence the statements
of Theorem 1.1 and Theorem 1.2 are still hold for P + V.

The local in time Strichartz estimates on manifolds recently have been studied by many
authors. Staffilani-Tataru [20], Robbiano-Zuily [17] and Bouclet-Tzvetkov [4] studied the case
of Schrodinger equations on the Euclidean space with the asymptotically flat metric under several
settings. In [6], Burq-Gérard-Tzvetkov proved Strichartz estimates with a loss of derivative 1/p
on any compact manifolds without boundaries. They also proved that the loss 1/p is optimal
in the case of M = S?. Hassell-Tao-Wunsch [11] considered the case of nontrapping scattering
manifolds except the endpoint estimate. Our result thus is regarded as a generalization of their
result to the critical exponent case, however the method of the proof is considerably different.
More recently, Bouclet [1, 2, 3] studied the case of an asymptotically hyperbolic manifold which
is a non-compact Riemannian manifold with the metric of the form dr? + e (hjy, + aj;i,)d07 do*
in the scattering region, and he proved Strichartz estimates localized near infinity without the
nontrapping condition. The present paper is motivated by his works. Global in time Strichartz
estimates has been studied by [5, 22, 16] in the case of Euclidean space with an asymptotically
flat metric.

On the other hand, dispersive estimates for Schrodinger equations with potentials on the
flat Euclidean space (Rd,5jk) also have been studied by many authors. In particular, it was
shown by Fujiwara [9] that if V(x) is smooth, real-valued and increases at most quadratically
at infinity, namely |09V (x)| < Cy if |a| > 2, then the fundamental solution E(t,z,y) of the
propagator e =¥ for P = —1A 4 V(z) satisfies the dispersive estimate |E(t,z,y)| < Ct|=%? on
R? provided that ¢ # 0 is small enough. Local in time Strichartz estimates are immediate conse-
quences of this estimate and the TT*-argument due to [14]. Long time dispersive estimates for
e~ P P,.(P), which implies global in time Strichartz estimates, also have been proved by many
authors (e.g., Journé-Soffer-Sogge [13], Yajima [24, 25]) under suitable conditions of potentials
and assumptions for the zero energy, where P,.(P) is the projection onto the absolutely contin-
uous spectrum of P. For more references on dispersive estimates for Schrodinger equations with
potentials, we refer to Schlag’s survey [19].

The rest of the paper is devoted to the proof of Theorems 1.1 and 1.2. Though the proof
is based on Bouclet’s argument in [3], the behavior of classical trajectories at infinity r —
+oo is different from the case of an asymptotically hyperbolic manifold and the class of the
phase function of the parametrix becomes even worse. We thus cannot apply straightforwardly
his method to the case of a scattering manifold. To overcome this difficulty, we introduce a
localization in the r-variable by using the dyadic decomposition. The proof of Theorem 1.1 is
then reduced to that of microlocal dispersive estimates.

The paper is organized as follows. In Section 2 we fix notations and the pseudodifferential
setup, and collect results on the functional calculus recently proved by Bouclet [1, 2]. Section
3 discusses a localization of both space and energy, and we show that Theorem 1.1 follows
from microlocal dispersive estimates. We study some properties of the geodesic flow in Section
4. In Section 5 we construct the semiclassical Isozaki-Kitada parametrix and prove microlocal
dispersive estimates on the strongly outgoing and incoming regions (cf. Definition 2.5). By using
an Egorov type theorem, we prove microlocal smoothing properties of the propagator in Section
6 which imply microlocal dispersive estimates on intermediate regions. In Section 7, we construct
the semiclassical WKB parametrix and prove short time microlocal dispersive estimates on the
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outgoing and incoming regions. We complete the proof of Theorem 1.1 in Section 8. We give
the sketch of the proof of Theorem 1.2 in Appendix A.

Throughout the paper we use the following notations: We denote the set of multi-indices by
Zi. For Banach spaces X and Y, L(X,Y") denotes the Banach space of bounded operators from
X to Y, and we write L(X) := L(X, X). For a € R, we use the notation a, = max(a,0). (r)
stands for y/1+ |r|2. For A,B > 0, A < B means that there exists some universal constant
C > 0 such that A < CB.

Acknowledgments: The author would like to thank Jean-Marc Bouclet for helpful dis-
cussions and comments regarding the construction of the parametrix, in particular the spatial
localization. He also would like to thank his advisor Shu Nakamura for much of comments and
suggestions. He also thanks the anonymous referee for careful reading the manuscript and for
giving useful comments.

2. PRELIMINARIES

In this section we set up some standard notations on scattering manifolds. Notice that a
boundary decomposition is always fixed. The first step is to choose a suitable atlas and a
partition of unity on the scattering region My,. Let

{k: My D (1,00) x V. — (1,00) x Up C R},

be a finite atlas on Moo such that k = Id ®kp, where {ky : OM > V,, — U, & Rd_l}n is
a finite atlas on M. We denote the associated pull-back and push-forward by x* and k., =
(k~1)*, respectively. We also denote the induced chart diffeomorphism T*((1,00) x Vi) —
T*((1,00) x Uyg) = (1,00) x U, x R? by the same symbol r, if there is no confusion. Let
{tr, } C C§°(Vy) be a partition of unity subordinate to {V,} and ¢ € C*°(R) a cut-off function
such that supp ¢ C (2,00) and ¢ = 1 for r > 3. We set ¢}, := 1) Xt,,. Then, {1, }, is a partition
of unity subordinate to {(1,00) x Vi;}.. Let Uy € C%(Vi) be a cut-off function such that Uy
takes the form v, = 1 X 1y, , where 1 € C®(R), 1., € C5°(Vi), supp?) C (3/2,00), ¥ = 1 on
(2,00) and ¢Nb = 1 close to supp ,. Define smooth functions ¥, and W, on (1,00) x Uy, by
U, = K., and \IJH = F.Z*I/Jm respectlvely Then, {¥,}, is a partition of unity subordinate to
{(1,00) x Uy}, and W, satisfies ¥,, = 1 on supp ¥,.

2.1. Manifolds with asymptotically cylindrical ends. Noting that r(z) can be extended
to a positive smooth function on M and is bounded on M, from above and below, we define a
new density
G(2)dz :=r(2)"%G(2)dz, z € M,
and set LP(M) := LP(M,G(z)dz) for 1 < p < oo, L°(M) := L°°(M). (1.3) implies that
|0L05 (G (r,8) — (det hyx(0)Y/%)] < Clor ™t for > 1,

and that G (r,0)drdf is comparable with drd6 for r > 1. This fact implies that, for every function

u supported in (1,00) x V with V' € V, ||u|]Lp(]\7

We next define an operator P on L2(M M) by P =r(z )%Pr(z)_%. It is easy to see that P
is unitarily equivalent to P under the unitary map

) is equivalent to |[r.ul|p(gay forall 1 < p < oc.

L*(M) > u r(z)_d%lu € L*(M),

and P is essentlally self-adjoint on C’O (M). We denote the unique self-adjoint extension by the
same symbol p. By definition, (M, G) can be regarded as a manifold with an asymptotically
cylindrical end. For the most part of the paper we shall work with P instead of P. By the
formula (1.2) of the scattering metric g, P, := k,Pr* takes the form

= __1"71 jnsl 1 0 a
ﬂ_QG(m%mGQh+JQWJ+W (r,0) € (1,00) x Uy,
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where h = (k%) := (hjr)~! and a = (a’/*) are smooth and real-valued tensors, and W is a
smooth and real-valued potential such that
(2.1) 108050 (1, 0)| < Crar 7Y, 10LOSW (r,0)| < Crar 1 #7t for 7> 1.

Denoting by (p,w) the dual coordinate to the vector field (9., dg), the principal symbol of ]3,.€ is

written in the form

1 1 . ;
(2.2) pi(r, 0, p,w) = §p2 + Tﬂ(h]k(a) +a?*(r,0))wjwr, on  T*((1,00) x Uy).

Moreover, the full symbol of ]3,{ takes the form p, + px1 + px2, where p,; can be written in the
form

pi(r0,p0) = D B0 w/r)’,
kA2

with some smooth functions bﬁf (r,0) on (1,00) x Uy satisfying
k 1—p—
(2.3) |0L950, (r, 0)] < Claggr ™+,

2.2. Pseudodifferential calculus on scattering manifolds. In this subsection we define
pseudodifferential operators and study their properties. Moreover we collect known results on
the functional calculus on scattering manifolds which were proved in [1] in a more general setting.
We begin with the definition of our symbol class.

Definition 2.1. Let X be an open subset of T*((1,00) x R¢1) = (1,00), x Rgfl x R, x R4
such that 7p(X) is relatively compact, and that
(2.4) w| <r in X,
where 7y is the projection onto the #-space. We define the symbol class Ss.(X) as the set of all
a € C™(R?%) such that suppa C X, and that
(2.5) |0295059a(r,0, p,w)| < Clargr 71 on  X.
Example 2.2. Let U, € U, be an open subset with U, =1 on (2,00) X 0,4, pr the principal
symbol of P, and ¢ € C§°((0,00)). For R > 2 and an open interval J € (0, 00) with supp ¢ € J,
we set X, = (R,00) x Ug x REN p(J). Since |p|? + |w/r|? < Cpu(r,0,p,w) < CsupJ, X,
satisfies (2.4). Moreover, by (2.1) and (2.2), we have

0105 050pw (1,0, p, )| < Crargr™ (1 + [p* + w/r[?).
Therefore, pop, € Ssc(Xx). @opy is the principal symbol of the semiclassical pseudodifferential
approximation of ¢(h?P) in the coordinated neighborhood (1,00) x Uy (cf. Lemma 2.4).

Suppose that X, C (1,00) x U, x R? satisfies (2.4) and ¥, = 1 near n(X,), where 7 :
T*R% — R? is the projection onto the base space. For all h € (0,1] and a € Sy.(X,), we define
the semiclassical pseudodifferential operator (h-PDO for short) by

Op,(a)u := K" (a(r, 0,hD,, hDg)m(ﬁ%u)) :CG° (M) — C°(M),
where a(r,0, hD,,hDy) is the standard h-PDO which has the kernel

(2rch) 4 / eh [r=rDp+ 0= (1, 6, p, w)dpdw.
R4

Note that since w(suppa) C (2,00) x U, for any f, € C®°(M) with k.f. = 1 on 7(suppa),
we see that Op,(a)u = f, Op,(a)u. Op,(a) is thus well-defined on M. Morever, the Calderén-
Vaillancourt theorem shows that Op, (a) extends to a bounded operator on L?(M) and satisfies

(2:6) 10 (@)l gaimy < Ca D 110 py @l sy <
[v|<Myq

uniformly with respect to h € (0, 1], where Cy, My > 0 depend only on d.
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We next describe basic symbolic calculus for Se.(X,). We first note that (2.4) and (2.5)
are invariant under coordinate transformations since any chart diffeomorphism k takes the form
k = Id ®kyp. Let a € Ssc(X,;) and b € Sgc(X,/). The above fact allow us to define the composition
Op,.(a) o Op,.,(b), though Op,,(b) is not a properly supported h-PDO (see Definition 2.3) in
general. A standard symbolic calculus implies that the symbol of composition has the following
semiclassical expansion:

N pltlal

i 0b05a(r, 0, p,w) DL D (W,b) (1,0, p,w) + WV e (r,0, p,w),
I+]a|=0

where 7y € Se(X,) and 1, is the induced chart diffeomorphism with respect to v, = K} o K)b_l.

Note that if V, N V,y =0, then Op,(ax) o Op,./(by) = 0.

Following [1], we also define the properly supported h-PDO.
Definition 2.3. Let ¥ € C$°(R?) be a cut-off function such that supp ¥ C {|z| < §} and ¥ =1
on {|z| < 6/2} with some small 6 > 0. For a € Ss.(X), we then define the properly supported
h-PDO

Opf'(a) : C5° (M) — Cg°(M)
as the operator so that k. Op?(a)x* has the kernel
(27rh)_d / e%[(’"_rl)pﬂe_g/)‘”]a(r, 0, p,w)¥(r —r' 0 — 0" dpdw.
When § is small, ¥ = 1 sufficiently near m(X,) since suppa C X,. We hence removed the

factor ¥y, of the amplitude. We also note that Op}’ (a) is uniquely determined on L? (]\//.7 ) up to
O(h*). More precisely, we have for any N > 0,

T N
(27) H Opm(a) - Opﬁ (a)HL(LQ(M\)) < C’Nh )

uniformly with respect to h € (0, 1] since supp(1 — ¥) away from the diagonal. We here describe
a simple property of the properly supported h-PDO. Choose arbitrarily xo, x1 € C§°((2,00)) so
that x1 =1 on {r|dist(supp xo,7) < 26}. We then have

xo(M)¥(r —r',0 —0') = xo(r)¥(r —1',0 — ") x1(r").
In particular,

Xo(r) OpY’ (@) = xo(r) OPE (a)x1(r'), OPE(a)xo(r') = x1(r) Opy (a)x0(r")-
This property plays an important role in the spatial localization.

Fix ¢ € C3°((0,00)) and a relatively compact open interval J € (0,00) so that suppy € J.
Let x € C§°(M) be a smooth cut-off function such that y(z) = 1 for z € MUt ((0, Ro) x OM),
x(2) =0 for z € 171 ((Rp + 1,00) x M) with some Ry > 1. By using above h-PDO’s, we have
two kinds of the semiclassical approximations of (1 — x)(h2P).

Lemma 2.4 ([1]). Let § > 0 be small enough. Then, for each k and all N > 0, there ezist
semiclassical symbols
N
Ay = Zhja,i,j with ay j € Sse((Ro,00) x Uy x RTNp (),
=0
such that

(1= X)p(h*P) = > Opy(ans) + W Ry (h) = Y Opl (an) + AV RE (h)

on LQ(]\/Z). Moreover, there exists Cny > 0 such that the followings hold true uniformly with
respect to h € (0,1]:
(i) (L?(M)-boundedness)

(28) || Opn(am,h)||L(L2(j/[\)) + ||RN(h)||L(L2(]/\/[\)) < COn;
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(ii) (semiclassical Sobolev embedding) for 2 < q < oo,

_d—1 - _ _
(2.9) [[r="2 Op (an,h)HL(m(]\/Z)Lq(M)) < Cnh d(1/2 1/q)’

(2.10) Hrf%R%(h) < Oyh~¥1/2-1/9),

&2 (@) Laqany)

—

(iii) (weighted L1(M)-boundedness) for 1 < q < oo and all s € R,
(2.11) [[r—® Opﬁr(an,h)TSHL(Lq(ﬁ)) < Cn.

Proof. The proof was essentially given by [1]. We hence only check that a,.; € Ss((Ro,00) X
Us x RENp (). awp is explicitly given by a0 := k(1 — X) - ¢ 0 ps. Moreover, for each j,
ay,; is of the form

Z djk - (0%¢) op,  for some 0 < N; < cc.
k<N,

For each k, d;j, is a polynomial of degree 2k — j > 0 with respect to (p,w/r), and its coefficients
are linear combinations of products of derivatives of W,, k.(1 — x) and the full symbol of P,.
Therefore, a, ; takes the form

ki (7,0, p,w) = b j(r,0, p,w/r),
where by ; is compactly supported with respect to p and w, and satisfies
|0L05 0 b (r, 0, p,w)| < Crargrer ™"
We hence obtain a, j € Ss.((Ro,00) x U, x R* N p1(J)). O
2.3. Outgoing and incoming regions. In this subsection we recall the definition of the out-

going and incoming regions and study some basic properties of these regions needed later. Let
R > 1, U, € Uy an open subset , J € (0,00) an open interval and o € (—1,1).

Definition 2.5. (i) We set
(R, U, J,0) ={(r,0,p,w) €R¥ | r > R, 0 € U, pp €J, £p>—0+/2px},

where p, = p(r, 0, p,w). TT(R, U, J, o) (resp. I'" (R, U, J, 0)) is said to be the outgoing (resp.
incoming) region.
(ii) Let U,, = and J.2 be an /e-neighborhood of Uy and an g2-neighborhood of .J, respectively:

U, vz =1{0 € R dist(Uy,0) < Ve}, Je:={p+e’ € (0,00)|pe J}.

For sufficiently small € > 0 such that U,; z € Uy, we define the strongly outgoing and incoming
regions as follows:

IY(R, Uy, Joe) :=T5(R,U, sz, Je2, =1 = €2).
(iii) For sufficiently small ¢, > 0, and for any L > 0 and 0; € (—1,1/2],1= 0,2, ..., L, satisfying

L—1
(2.12) (—V1-e2/4,1/2) = lzul(ffl—l,ﬁlﬂ),

—V1-e/d=0p<o1<..<op=1/2, |opg1 —o_1] <34,
the intermediate outgoing region and incoming region are defined by
TF(R,U,, J,e,8,1)
=T%(R,U, sz Je2,1/2) N {=0141V/2pe < £p < —01-1/2px}.
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We describe basic properties of these regions. I't(R, U, J, o) are monotonously decreasing
with respect to R, and increasing with respect to Uy, J and o. By definition, we have

(R,00) x Us x RN p () € [ JTH(R, Uy, J,1/2).
+

We also obtain
~ ~ L_l ~
T*(R,Ux, J,1/2) CTE(R,Us, J,) U | TF (R, Us, J,£,6,1),
=1

respectively. Moreover for sufficiently large Ry, C > 0, all 0 < e < 1/2 and R > Ry,
lw/r| < Ce on THR,U,,Je).

Indeed, since p? > (1 - e2) (p? + T%(hj’c + a/M)wjwy) on T'E(R, Uy, J,€), taking Ry > 0 large
enough so that (W% +a’%); ;. > Cy ' Id for some fixed Cy > 0, we obtain |w/r|? < Cop?e?/(1—¢?).
We also define spatial localized regions as follows.

Definition 2.6. Let ¢,6, L, 07 be as above. For Ry > Ry > 1, we define the spatial localized
outgoing and incoming regions Q% (Ry, Ry, Uy, J,0) by
OF (R1, Ry, Uy, J,0) :=TH(Ry, Uy, J,0) N {R) <r < 4R5}.

We shall use the notation Q% (R, U, J, o) = QF(R,R, U, J, o). We also define the corresponding
spatial localized strongly outgoing (incoming) and intermediate regions

Q;‘:(Rla RQ, 0Na Ja 5)7 Q;E(Ra Uliv J7 6)7 QrLi(Rla R27 UK? J’ g, 6’ l)?
and Qii(R, Uy, J,€,8,1) in the same manner, respectively.

Remark 2.7. Since the principal symbol of P is invariant under coordinate transformations,
these regions define invariant subsets in 7 MOO except the choice of the boundary decomposition.
Moreover we will prove in Section 4 that these regions are also invariant under the geodesic flow
generated by p. This property will be used to prove microlocal smoothing properties of the
propagator (see Section 6).

3. REDUCTION TO MICROLOCAL DISPERSIVE ESTIMATES

In this section we shall show that (1.5) follows from microlocal dispersive estimates. We
first recall the frequency localization using the Littlewood-Paley decomposition. The following
theorem was proved by Bouclet [2] for a large class of non-compact manifolds with ends (including
scattering manifolds).

Proposition 3.1 ([2]). Let ¢ € C§°((0,00)) be a smooth cut-off function such that
suppt C [1/4,4], 0<y <1, D ¢(27¥X) =1 for A€ [l,00).
j=0

Then, for all x € C§°(M) with supp(l — x) C Moo and 2 < g < 0o with 0 < d(1/2—-1/q) <1,
there exists C' > 0 such that

2

11 = x)ullpaqary < Cllullgzgary +C | DI =)@ Pullpa
j=0

Using this proposition, we see that (1.5) follows from semiclassical Strichartz estimates. More
precisely, it suffices to prove that for x € C§°(M) as above and every ¢ € C§°((0,0)),

(3.1) (1 - X)SO(hQP)@_itPUO"Lp([o,l];LQ(M)) < CHUOHL2(M)
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uniformly with respect to h € (0, 1], where (p, ¢) satisfies the admissible condition (1.1). This
reduction is a standard and can be proved by using the L?-functional calculus and the almost
orthogonality of (272 P). By the definition of P, (3.1) is equivalent to

_d-1 S\ —itP
(32) H’F 2 (1 - X)gD(h2P)€ tPU'OHLP([Q,l];Lq(M)) < C||u0||L2(M\)a h e (07 1]

For R > 2, we take a cut-off x € C§°(M) so that x(z) = 1 for r(z) < R, x(z) = 0 for
r(z) > R+ 1. Let J € (0,00) be an open interval so that suppy € J and N > d/2 an integer.
By Lemma 2.4, we then can find a semiclassical symbol a,j, € Ssc((R,00) x U, x R N p;1(J))
such that (1 — y)p(h2P) is well approximated by A4 := 3 . Op? (ay, ). Moreover, the following
holds.

Proposition 3.2. To prove (3.2), it suffices to show that for sufficiently large R > 1 and all
a € Ssc((R,00) x Ug x RENp-H()),

—d=1 —itP o]
(3.3) 17~ A Op(@)e™ P uoll o o, 13, Laary) < Clluoll o7y w0 € CE°(M),
uniformly with respect to h € (0, 1], where (p,q) satisfies (1.1).

This proposition is a direct consequence of Lemma 2.4, and the proof is completely same as
[3, Proposition 2.18].

We next describe the spatial localization and give the main step of the proof of Theorem 1.1.
The following theorem is the main result of this section. We here fix U, and J, and hence do
not write explicitly. We also use a notation such as I'*(R, Uy, J,0) = ['*(R, o) for short.

Theorem 3.3 (Microlocal dispersive estimates). There exist Ry > 0 and €9 > 0 such that the
following hold for all Ry > Ry > Ry, 0 < e < gp and h € (0,1].
(i) There exists tg > 0, independent of Ro, such that for all symbols

at € Seo(TE(R1,1/2)), b5 € Sec(F(R2,1/2)),
and 0 < +t < min(Rato, h™1), we have

_d=1 _ithP % 4% —a=1L _d
(34) ||T 2 Ay Opn(ai)e thPOpn(bi) R 2 ||L(L1(M\)7LOO(M\)) §00|th| 2.

(ii) For all symbols
a;l: € SSC(th(Rlve))» b;t € SSC(Q;t(RZ,E:)),
and 0 < £t < h™!, we have

_d—1 _ithP % g% —a=1 _d
(35) ||T 2 Ah Opn(a;t)e thPOpn(b;t) R 2 ||L(L1(M\)7LOO(M\)) §01|th| 2.

(iii) For allt; > 0, we can find 6.1, > 0 and L.+, > 0 such that for all o7 € (—1,1/2] satisfying
(2.12), all symbols

aiF € Ssc(TF (R1,2,0c49,1)), b € Ssc(QF (Ra, €, 6210, 1)),
and Rot; < +t < h™!, we have

_d—1 —q P * Ak a1 -
(3.6) 17~ A Op, (@i )e ™™ Op, (57 ) Ajr™ "7 |l o (i) 1w iy S Colthl 2.

Moreover Cy, C1,Co > 0 may be taken uniformly with respect to h, t and Rs.

We give the proof of Theorem 3.3 in Section 8. Before proving Theorem 1.1, we prepare the
following lemma.

Lemma 3.4. Let R,§,L >0, 0 < e <1 and (07)1<i<. C (—1,1/2] so that (2.12) is satisfied.
Then for any a € Sso((R,00) x Ug x REN p-1(J)), there exist symbols a* € Ss(T*(R,1/2)),
af € Seo(TE(R,€)) and af € Ssc(TF(R,¢,6,1)), 1 = 1,2,...,L — 1, such that
L—1
a=a"+a” :a:'—i—as_—}—Z(af—i—a;).
=1
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Proof. Define v(r,0, p,w) := p/+/2px(7,0, p,w). v is then smooth on T*(R,1/2), and satisfies
\8,]:63‘828511(7“, 0,p,w)| < Cijarpr 1% on TE(R,1/2),
since p,; is of the form (2.2). Take a cut-off function y € C*°(R) such that

x(t) +x(=t) =1, suppx C (—=1/2,00),

and define a* = x(%+v) - a. Then a* € Sy (I'*(R,1/2)) and a = a™ + a~. Next, choose
Xs € C®°(R) and x; € C°(R), 1 =1,2,...,L — 1, so that

supp xs C (V1 —¢€2,00), suppx; C (o141, —01-1), suppxr C (=1, —or_1),

and that s + Zle xi = 1. We define af := xs(£v) - a® and aljE := x1(4v) - a*, respectively. It
is easy to see that they satisfy the assertion. O

Proof of Theorem 1.1. Choose Ry, 9,9 > 0 so that (i) and (ii) in Theorem 3.3 hold for all
Ry > Ry > Rp and 0 < € < gg. Next, fix €,0¢4,, Let, > 0 so that (iii) holds with ¢; = 5. By
virtue of Proposition 3.2, it suffices to show (3.3) for any a € Ss.((R1,00) x U, x RENp-1(J)).
Using Lemma 3.4 with § = .4, and L = L., we split Op, (a) as follows:
Letg—1
Op,(a) = Op,(af) + Op.la;) + Y (Op.(a)) +Op,(q;)),
=1

where af € So(I'F(R1,¢)) and aj € Ss(TF(Ri,¢€,0:40,1)). By virtue of the TT*-argument
[14], it suffices to show the L(L?(M), L?*(M))-boundedness and L'(M) — L>°(M) estimates for
corresponding operators uniformly with respect to h € (0, 1].

—

By (2.6), (2.9) and the fact that e~ is unitary on L?(M), we obtain
_d-1 _uP

|7~ 2 Ay Op,i(asi)e ltPUOHLZ(M) < CHUOHL2(M\)7
_d-1 _iP

|lr="2" Aj, Op,.(ai)e ol paapy < Clluoll L2 37y

uniformly with respect to h € (0,1], t € Rand [ = 1,2,..., Lo, — 1. After the time rescaling
t — th, we set

U::(t) = T‘_%Ah ()p%(a;‘:)e—iﬂlﬁ7 Uli(t) = T_%Ah Opﬁ(alj[)e_ithﬁ,

It remains to show that UX(t)UF(s)* and Uli(t)Uli(s)* satisfy dispersive estimates for 0 <
|t —s| < h~!. We here use a trick by [4, Lemma 4.3]. We denote by K*(t — s,7,0,7',0') the
kernel of UZF (t)UZ£(s)*, respectively. Since UX(t)UZE(s)* = (UF(s)UX(t)*)*, we see that

Ki(t —5,1,0,7,0) = K*(s—t,7,0,1,0).

A same property holds for the kernel of Uli (t)Uli(s)*. We hence can restrict the sign of ¢ — s so

that 0 < (¢t — s) < h™!, and it is enough to prove the following:

57) NUZOUZ () wol| oo ary + U OV (5) w0l | oo (a)
: _d

< C|(t—s)h|"2 HUOHLI(M),

uniformly with respect to h € (0,1] and 0 < j:St\— s)<h Y= 1,2, ey Le iy — 1, respectively.
Combining with the facts L' (M) = r~(@=DLY(M), L>°(M) = L>°(M) and
(2 ) = "5 L2(M) — LP(M),
(3.7) follows from
UEOVE (s)uoll e 57, + IVE OV ()l o i

(3.8) w
< C(t = )| uol 1 7
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where V. (s) and Vli(s) are given by

Vi(s) — eiShP Opn(aét)* ;;7-7%7 ‘/li(s) — 6ishP Opn(ali)* ZTﬁ%-

S

We now introduce a spatial localization. Let x € C§°((0,00)) be a smooth cut-off function such
that

oo
suppx C [1,4], 0<x <1, Zx(2*jr) =1 forre[2,00).
j=0

Choose X' € C§°((0,00)) so that supp x’ C [1/2,8], X' =1 on supp x, and set x;(r) := x(277r),
X;(r) =X (2797). Since ¥ is supported in a small ball centered at origin (see Definition 2.3),
we obtain that

Xi(r)¥(r =10 = 0") = x;(r)¥(r —r",0 = 0)x;(r'), 5 > Jo,
with some large jo > 0. In particular, we have
Op,(x;a)" A}, = Op,(xja)"A4x; for j = jo.
If we choose jg as 270 > Ry and set Ry = 27°, then
af = Z xjat, af = Z xjait.
J=jo J=jo
Since Xja;t € Se(QF(27,¢)) and XjaljE € SSC(Qf(Qj,E,557tO,l)), applying Theorem 3.3 with
Ry = 20 to UE (t)VE(s) and Ui (t)V/=(s), we have
U5 (OVE (s)uoll e iy + 10OV ()0l oo 7

_d
< C|(t - S)h‘ 2 Z HX;UOHLI(M\)
J=jo
_d
< 4C(t = s)H* ol
uniformly with respect to h € (0,1] and 0 < £(t—s) < h~!. We hence obtain (3.8) and conclude
the proof of Theorem 1.1. O

Remark 3.5. Since b*, bsi and bli are compactly supported with respect to both the space and
the frequency, the above argument tells us that Strichartz estimates follows from microlocal
dispersive estimates.

4. CLASSICAL TRAJECTORIES

In this section we study the behavior of the geodesic flow which we denote by
exptHy, : T"M — T*M.

Recall that the principal symbol p,; of ﬁ,{ is of the form

1

2r2(hjk((9) + a*(r,0))wjwg, (r,0,p,w) € (1,00) x U, x RY,

1
pe(r,0, p,w) = 502 -

where a/F(r, 0) satisfies (2.1). We put
) p

(r(t),&(t),p(t),w(t)) = exp tH, H(r,@,p,w),
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which solves the following Hamilton equation:

0= (),
P (1) = S OOW) + sy (r(0). 000
w pE) = O (O(t) + 3 (), 00 (1)
1 dal®
o (1), 0(8) o (e 1),
kl akl
51(8) =~ 5778 g COWAE(0) = 5 T (0, B () 0

We first prepare an a priori estimate for exptH,

Lemma 4.1. Let J € (0,00) and —1 < o < 1. Then, there exist Ry > 0 such that for all
R > R07

(4.2) CHr+[t) <r(t) < CUr+1t),  |p@) + |w(t)/r| < C,
uniformly with respect to (r,0,p,w) € T=(R, U, J,0) and £t > 0, where the constant C may be
taken uniformly with respect to R and t.

Using Lemma 4.1, we obtain the behavior of the geodesic flow near infinity.

Proposition 4.2. Let Ry > 0 be as in Lemma 4.1 and R > Ry. Then the following estimates
hold for all (r,0, p,w) € TE(R, Uy, J,0), £t > 0 and (j, o, k, B) € Z3? as long as the trajectory
belongs to the same coordinate neighborhood (1,00) x Uy:

10108 0500(r(t) — r F tp)| < Cr I 18l|w/r| @1+ Gty Ny

s 0105 050(0(t) — )] < Cr I o 1),
0050500 (p(t) = p)| < Cr I e/ (),
005 50w (t) — w)| < Cr' T W0 ),
" {mww%ﬂ<>rﬂﬂw%%%ww—MVImew
0103 0500(6(t) — 0)] + 10105 0502 p(t) — p)] < Cr 19,

Moreover, for all (1,0, p,w) € T¥(R, Uy, J,0) and +t > 0, we have
(4.5) [V2Eo F p(t)| < Clo/r*(t/r) ™",
where Ey := py(r,0, p,w) is the initial energy.

Proof of Lemma 4.1. We prove the lemma for ¢ > 0, and the proof for ¢t < 0 is analogous. We
first note that the energy conservation low, namely

Ey :p,{(r(t),Q(t),p(t),w(t)), t eR,
implies |p(t)| + |w(t)/r(t)| < Cp as long as r(t) large enough, where Cy > 0 depends only on
Vv Ey. In particular, we can find Ry, C; > 0 so large that

#0) = 0(1), 3(0) = I (B)wzn + OGH),

for r > Ry, and hence

S0 =2 (W)p(t) + (P00 2 4 — Crr T
t=0

Since o € (—1,1), we can choose 0 < 6 < 1 and C2 > 0 so that

1
r2 — 207\/2Eot + 2(1 — 6)?Egt* > E(r +t\/2Ep)?, >0, t > 0.
2
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We now suppose that there exist R > 0 and ¢y > 0 such that
(4.6) 4By — Cyr(t) ™ > 4(1 — 6)*Ey
holds true for r > R and 0 <t < ty. We then have
r(t)? > 12 + 2rpt + 2(1 — §)%Ept?
> r2 — 207\/2Eot + 2(1 — 6)%Eot?

1
2 E(T + t\/ 2E0)2,
2

for 0 <t < to and (1,0, p,w) € TT(R, Uy, J, o). Moreover, if we put qo(t) = h/*(0(t))w; (t)wi(t),
then a direct computation yields

) L OhIk .
1 i e ORI . 1 (OnIm  pgim
= 07 o g — W (G + gnen

= O(r(t) " "Fqo(1)).
Integrating with respect to s € [0, ], we have

t
qo(t) < qo(0) + C/ (r + |s|v/2Eo) " Fqo(s)ds, 0 <t <tg.
0

By Gronwall’s inequality and the ellipticity of gy, we obtain

(4.7) \w(t)\ < 03\/(% S 037“\/ 2E0 for 0 S t S to.
Applying (4.7) to (4.1), we have
(4.8) F(t) = p(t), 0(t) = O(r(t)?r), p(t) = O(r(t)"*r?), w(t) = O(r(t)*r?).

In particular, we see that |p(t)| < Cyv/2Ey for 0 <t <ty with some large Cy > 0. Therefore, it
is enough to check that (4.6) holds with ¢ty = co. Define

S :={t>0] (4.6) holds for all s € [0, ¢]}.

For sufficiently large r > Ry, the above argument shows that 0 € S and S # (). Set tg = sup S.
The above argument then implies

r(t) > Cyt(r +1\/2Ey) for r> Ry, 0<t <t
with some Ry > R; large enough. Taking R3 > Ro so that
46Ey — 6°Ey > C1CEr™# for r > Rs,

we have
0
4By — Cyr(t) ™" > 4(1 — 5)21570 +46Fy — §°Fy — C1CY (r +t\/2Eo) ™"
0
> 4(1 — 5)2E0
for r > Rg and 0 < t < tg. Therefore, ty + & € S for some £ > 0 which implies tg = oo by the
definition of tg. The estimate of r(¢) from above is obvious. O

Proof of Proposition 4.2. Let t > 0. The proof for ¢ < 0 is similar. Take Ry > 0 as in Lemma
4.1. (4.3) with j + || + k + |3] = 0 is a direct consequence of Lemma 4.1 and (4.8) since

t
/ (r+ |s|)"'"%ds < Cr~%(r/t)"* for any a > 0.
0
We next consider the derivatives. Put z(t) := r(t) — tp(t). It is easy to see that

W(t) == (2(t),0(), p(t), w(t)) = exp(—tHy 2) o exp tHp, (1,0, p,w)

1
2
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solves the following Hamilton equations:
. 0K . 0K 0K . 0K
z = -, = — = —— w =

p aw’ P 0z’ 00

with a time dependent Hamiltonian:

Rk (6) + aék(z +tp,0)

1
K(t,2,0,p,w) = =p> = pu(z + tp,0, p,w) = —

2 2(z + tp)? nchl
Lemma 4.1 shows that K (¢, W (t)) satisfies
(4.9) (8105 050 K) (1, W ()| < Cr(t) > w| 1D+ it |g] < 2,

and (agagagaﬁK)(t,W(t)) =0if |[f] > 3. Let v = (j,a, k,8), |7| = 1, and denote 97 =
ol 83‘8’;85 for short. By differentiating the Hamilton equation with respect to 97, we have

(4.10) 007 (W (t) — W(0)) = A(t)0" (W (t) — W(0)) + A(t)0"W(0),
where A(t) = (A;(t))1<j<a := dHi (W (t)) satisfies

[AL(t)] < Or(t) 2w, [A2(t)] < Cr(t)~|wl,
(4.11) a2 oy 12

[As(8)] < Cr()"|w]”, [Aa(®)] < Cr(t) ™ |w]".

If we put
f(t) = (f1(t), fo(t), f3(t), f1(1))

- (“t)) 57(0(t) — 0), 8 (p(t) — p).

r T

then, by using (4.2), (4.9), (4.10) and (4.11), we have

(412) AOISC [ (72 6l 4 r(6) 1 56)1) s
We similarly obtain

(4.13) ROl <C / t (r< )72 1D ()72 ()] ) ds
(414) RO <0 [ (1) 020 4 r(s) 7)) s
(415) RO <0 [ () 2 ol 4 1(6) 1 s6)]) s

Gronwall’s inequality then implies
t

(4.16) f@)] < C/ r(s) 2 || I ds 1T | (1D ()
0

and we obtain the estimate for 97(0(t) — 6). For the proof on other variables, we set
g(t) = (7 (2(t) = 1), 0 (p(t) — p), 7707 (w(t) — w).
Combining the second estimate of (4.3) with (4.9), (4.12), (4.14) and (4.15), we have
9015 [+ ) 2ol 0% () Zrlg(o)]) .
Again Gronwall’s inequality implies
9(6)] < Cr2 ol Gy

and we obtain the estimates for 07p(t), 0"w(t). Moreover the first estimate of (4.3) follows from

O((0) = p) = 07 (p(t) ~ p) = OG> [l G /)7,
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since <7"/t)_1 is monotone increasing with respect to t. Next, let | be a non-negative integer
and suppose that (4.13) holds for any v with |y| <I. Let v = (j,a, k,3), |v] =14+ 1. A direct
computation yields

0,07 (W (t) —W(0)) = A(t)0" (W (t) — W(0)) + A(t)0"W (0) + B(t),
where B(t) is a linear combination of products of

(02105 0 05" dH ) (W (1)),

N 2(t) -+ D01 2(t) X - x O wg_q () - D W2awy_y (L),
with a,711,721, ...,yggd € Za_d such that

14+(d—1)+14+(d—1
a = (a17 "-7a2d) = (a17a/7ad+l7a”) € Z++( S+ )7 1 < ’a’ < |7’,

MNA+N+ - +Yd =9, 1<AF<ph-1L
The induction hypothesis implies that each entry of B(t) = (B;(t)) satisfies
[B(t)] + | Ba(?)]
<C Z r(t) "2 p2mlo” |y 2ol peatla ] =i =18 (2lal=la’| o |5+

1<]al <],
la|<2

< C’r(t)_zr_j_w'|V|(2_|5D+,
and we similarly obtain
|By(t)] < Cr(t) 27718l | 018D+ | B3(2)| < Cr(8) 3¢9 7181|2180+

where v = w/r. By a similar argument as that in the case for |y| = 1, we obtain the assertion.
The proof of (4.4) is more simpler than (4.3), and we hence omit it.
Finally, we prove (4.5). Note that if R > 0 is large enough, then

5(0) = () (WH0(0) + O ™)) wy(Ban(t) 2 0. 1B
Therefore, integrating p(t) with respect to t, we have (4.5). O

Proposition 4.2 implies that the trajectory belongs to a fixed coordinate neighborhood as
long as either (7,0, p,w) € TT(R, U, J, o) and 0 < +t < rtg or (1,0, p,w) € TF(R, U, J, o) and
+t > 0, respectively, provided tg,e9 > 0 are small enough. It also follows from Proposition 4.2
that the outgoing and incoming regions are invariant under the geodesic flow (except the choice
of the boundary decomposition). More precisely we have the following.

Corollary 4.3. Let Ry > 0 be as in Lemma 4.1. Fix UH,ﬁN,URI,U,{/ and k' : Vu — U, so
that U, € U, and U, € U,. Then there exists C > 0 such that, for all R > Ry, Ty > 0 and
(r,0,p,w) € TT(R, Uy, J,0), we have

(4.17) K., exp T(]lei*_l(T, 0,p,w) € TT((R+1Tp)/C, U, J, o).
In particular we can find to > 0 such that, for all (r,0,p,w) € T (R, U, J, o) and 0 <t < rty,
(4.18) exptH,, (r,0,p,w) e TT((R+1)/C, ﬁm\/%’ J, o),

where (7,%\/5 is the \/to-neighborhood of (L. Moreover there exists a small constant ey > 0 such
that if 0 < e < g, (1,0, p,w) € TH(R, Uy, J,€) and t > 0, then

(4.19) exptH,, (r,0,p,w) € TS (R/C, Uy, J,e).

When t < 0, analogous results hold in the incoming region.
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Proof. We first prove (4.18) and (4.19). By Lemma 4.1, we can find R > 0 large enough such
that

G t) = L
P = o
and hence p(t) > p for ¢ > 0. Therefore, (4.18) follows from (4.2), (4.4) and the energy
conservation p,(r(t), 8(t), p(t),w(t)) = pe(r, 0, p,w). Next, let (1,80, p,w) € TH(R, Uy, J,¢). Since
(r/t)y~' <1 and

<hjk(9(t)) - O(r(t)‘“) wiwi(t) >0, >R, t>0,

w/r| < Ce on T3(R, Uy, Jse),
(4.19) follows from (4.3). To prove (4.17), divide the time interval [0, Tp] as
[0, T()] C [0, Rto] U [Rto, 2Rt0] y---u [TO — Rty, T(]].

In each interval [jRto, (j + 1)Rtp], the flow is contained some fixed coordinate neighborhood.
Since the outgoing region is invariant under coordinate transformations, applying (4.18) on each
chart, we have the assertion. O

5. THE Is0zAKI-KITADA PARAMETRIX

In this section we construct the Isozaki-Kitada parametrix of e~#"” Op, (aF), where the sym-
bols a} and a; are supported in the strongly outgoing incoming regions, respectively. Though
the method of construction is similar to the case of an asymptotically hyperbolic manifold, the
class of the phase function of the parametrix becomes even worse (see Remark 5.2). We thus
give the full details of the proof.

By Corollary 4.3, we can always work on one fixed coordinate chart (U, k), and hence drop
the subscript & if there is no confusion. Fix an open set U, € U, with U,, = 1 on (2,00) X U,
and an open interval J € (0,00) arbitrarily. We denote T*(R,e) = I'S(R, Uy, J,¢) for short.
For a large parameter A > 1, we also denote T'F(\) = I'F(R/\, Uy, J, Ae). Notice that T'F()\) and
QF () is increasing with respect to A: TF(R,¢) C TF(\) C TF(N2), 1< A < Ao

5.1. Fourier integral operators for the Isozaki-Kitada parametrix. We here study Fourier
integral operators (FIO’s for short) on RY which will be used to construct the Isozaki-Kitada
parametrix. The first step is to construct the corresponding phase function.

Theorem 5.1. There exist Rg, A\g > 0 large enough and ey > 0 small enough such that for all
R,e,\ > 0 satisfying A > Ao, R > ARy and 0 < € < g9/, we can find smooth and real-valued
functions St € C®(R?4,R) satisfying the Eikonal equation:

1
p(r, 9,8r5’i(7", H,p,w),agSi(r, 0,p,w)) = §p2, (r,0,p,w) € F;t(R, £).

If we put p*(r,0, p,w) := ST(r,0,p,w) —rp — 0 -w, then * satisfy supp p™ C TT(N\), and
(5.1) 1020505 950™ (r,0, p,w)| < Cr* I 18l|w /r| 718D+ o TEN).

Furthermore, we can write

1
(5.2) soi(h&p,W)Z%qa(ﬂ,wHRi(h@,p,W) on Ty (R,e),

where qo(0,w) = h*(Q)wjwy, and RE(r,0,p,w) satisfy
405002 B (1,0, p,w)| < Cr1=I71F1 (o B0 g e[ 1AD),

Here the constant C' > 0 can be taken uniformly with respect to R,e and .

Remark 5.2. We remark that ¢ and its derivatives with respect to (6, p) are not bounded
with respect to r even for the perfectly conic (aji, = 0) case. This condition is even worse
than that of the asymptotically flat case or asymptotically hyperbolic case. Indeed, we see that
8§8§(Si(ac, &) —x-€) = O((z)'*71°]) with some & > 0 in the asymptotically flat case [4], and
W@g@ﬁ@g(si(r, 0, p,w) —rp—0-w)=0(e"8) in the asymptotically hyperbolic case [3]. We
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refer to [4, 3] for more details. We also refer to the original paper by Isozaki-Kitada [12] which
was concerned with a long-range potential scattering theory on RY.
We also note that (5.1) implies

(5.3) (0205 0505 (10, p.w)] < C{r) I I on R,

since |w/r| < CAe < Cegp on supp ™ (C I'F())). For sufficiently large Ry > 0 and sufficiently
small g > 0, we hence have

(5.4) 1/2 < |det'd,,0,5% (1,0, p,w)| < 3/2 on R*,

though |t8p,w8r,95i —Id| is not bounded with respect to r in general. This estimate is crucial
to obtain L?-boundedness of FIO’s.

To prove Theorem 5.1, we prepare several lemmas.

Lemma 5.3. There exist Ry > 0 large enough and €9 > 0 small enough such that, for all
R,e >0, Ao > 1 satisfying R > MRy, € < €9/ o and all £t > 0, the maps

fi(t) : (7’,9,/),&}) = (r797p(t7r79?p7w)7w(t7r797p7w))

are diffeomorphisms from T'F(\o) onto its range, respectively. Moreover, for sufficiently large
Ao > 0, we have

(5.5) [T(R.e) C f5(t) (TT(N)), £t >0.

Proof. We prove the lemma for ¢ > 0 only, and the proof for ¢ < 0 is similar. Let F :
(r,0,p,w) — (r,0,p,w/r) be a global diffeomorphism from (0,00) x R4~! onto itself, and we
define for (r,0,p,v) € FTF(\o),

FH@O)(r,8,p,v) = (1,0, 5(8),6(t)) := (F o f*(t) o F1)(r,0, p,v),
where v = w/r. By (4.3), we can choose Ry,eo > 0 and Cp > 0 such that
94050507 (5(t) — p)| < Cor 7|1+ < Ry eI,

(5.6) ’ j i (2-18))
102050800 ((t) — v)| < Cor™|v| 10+ < CoRy Ty’ 7V,

and hence

(5.7) 01050500 (0 (t) —1d)| < Cep < 1/2,

uniformly with respect to (r,6, p,v) € FI't(\g), where df*(t) is the differential at (r, 6, p,v).
Choose xT € C®(R??) so that 0 < x* < 1, x* =1 on FT'J(\o), suppx™ C FI'}(2)\g), and
that
(5.8) 2 05050)xt (r,60,p,v)| < C1(r) 7 on R,
and define f (t)(r,0, p,v) = (1,0, py(t), &y (t)) by

L@, 0,p,v) = (1,0, (1 =xT)p+xTp(t), (1 = x v+ xT0(1)).
Since f;‘(t) = f*(t) on FT'F(\o), f;r(t) = Id outside FTF(2)\g), we have

DIOGROLTE (W < C, (1,0, p,) € B j+ fa] +k+ 18] > 1.

Moreover, (5.6) and (5.8) imply
59 10005 0507 (5 (1) — p)| < CoCa(r) || 3719+ < chg{eﬁf-‘ﬁ')t
0005 8500 (@ (1) — )| < CoCr(r) |10+ < ORI

on R?? with some Cy > 4/72CyC1. f; (t) hence satisfies the same estimate as (5.7) on R4
provided Ry > 0 large enough and ¢y > 0 small enough. By the Hadamard global inverse
mapping theorem, we see that f; (t) is a diffeomorphism from R?? onto its range. Since f*(t) =
F~lo ft(t)o F, f*(t) is a diffeomorphism from '} (\g) onto its range.
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Next, we define f7(t) := Flo f;{ o F, and shall prove
(5.10) Ti(R,e) C f7(t) (TS5 (X)), t=0,
for sufficiently large A\g > 0. Since f;r (t) is bijective, it suffices to show that
R¥\TF(R,2) o f{ () (R¥\TT (V). >0,
Suppose that Z := (r,0, p,w) € R2\ TF(\g). If Z € R24\ T'F(2)\), then
FE)(Z) = Z € R¥\TH (22) C R¥\ TH (R, ).
If Z e TH(2X0) \T'T(N\o), then we have

/1 4)\2:2 P /1 _ 22
p(Z) € Jppzez \ Jyze, 1 —4M5e2 < 2p(Z)S 1 — Age?.

Since |p(f;f (t)(Z)) — p(Z)| < Clw/r|> < Cef, Proposition 4.2 and the above argument imply
that if gg is small enough and \g is large enough, then we obtain

p(FE 02 ¢ Ty —LEE) T3 e i,
2w (f (1)(2))

which implies (5.10). Here py(t,Z) = (1 — x")p+ xTp(t, Z). Since f}(t) = fH(t) on I'T (Ao),
(5.5) follows from (5.10). O

Let +¢ > 0 and TF(R, ) 3 (r,0, p,w) — (1,0, p(t),0F(t)) € I'F()\g) the inverse mappings of
(1), respectively.

Lemma 5.4. For 0 < +s < £t and (1,0, p,w) € TT(R,¢), we define
(17 (5), 65 (5), i (8), wi () = (1,0, p,w) (s, 7,6, (5%, &%) (t, 7,6, p,w)).

We then have, for all (j, o, k,3) € Zid,

10305 0500(5*(t) — p)| < Cr=3 =Wl fr| 718D+

01050503 H(1) — )| < Or' Il r] 1D
uniformly with respect to (r,0,p,w) € TT(R,e) and £t > 0.
Proof. Since (1,0, p*(t),0F(t)) € TF()\g), we have

|57 (t) = pl + 77 H@F () — w| = |pe(0) = p ()] + 7 wr(0) — wi (1)]

(5.11) < C sup (|p(t) = pl + 77 Hw(t) — wl)
I'E(Mo)

< Clw/rf?,
where C' is independent Of Ry, g0 and \g. We next consider the derivatives. Let v = (4, o, k, 3),
|v| = 1. Applying 97 = 8%83‘8285 to the equality
(P, w) = (pv w)(tv r,0, pAi(t)v a}i(t))’

we have

Y(HE(H) — Y(p —
12 AZE) <r—8la(7p(wgt) f)w)) - (r—?agp(w f%»)

where Z*(t) = (r,0, pr(t), & (t)) and

oy - (@)t ZE()  r(Bup)(t, Z5(1))
sz o) = (S s etz
(4.3) and (5.11) show that A(Z*(t)) are invertible, A(Z*(t)) and A(Z*(t))~! are bounded on
I'Z(R,¢) and the right hand side of (5.12) is bounded by
=318l /| 218D+

Zi(t)7



STRICHARTZ ESTIMATES ON SCATTERING MANIFOLDS 19

The proof for higher derivatives is obtained by a simple induction with respect to |y|, and we
omit the details. O

The following easily follows from Lemma 4.1, Proposition 4.2 and Lemma 5.4.
Corollary 5.5. For all £t >0, (r,0,p,w) € I'F(R,¢), we have
riE(t) > C7Hr +|t)).

Moreover, for all (j, o, k,3) € 722,

0105 0502 (1) — 1 F tp)] < Ot /o] G190+,

10105 5000 (t) — )] < Cr=i—Pljwfr| 118D+,

Proof of Theorem 5.1. We give the proof for the case t > 0, and the proof for the case t < 0 is
analogous. Define AT (t) € C*°(T'f(R,¢)) for t > 0 by
(5.13) NH b p) = 1 O+ 07 (1) -+ [ L (5), 67 (5), o (), (5)) s,

where L(r, 0, p,w) = 0pp(r,0, p,w)p+0up(r,0, p,w)-w—p(r,0, p,w) is the Lagrangian associated
with p. Note that the smoothness of AT (¢) follows from the smoothness of (r;", 0;", p/, w;"). By
the standard Hamilton-Jacobi theory, AT (¢) solves

DA™ (1) = plr.0.9,A* (1), BpA" (1))
AT(0)=7rp+6-w,
Orp,0 AT () = (57 (8), 07 (), 7 (1), 0/ (1))
Put F*(t) = AT (t) — 3tp®. The energy conservation, namely

p(r,0, 5" (1), 0% (8)) = p(r (£). 0/ (1), p,w),
implies
1 , .
+(4) — k(p+ k(.+ + .0
OFH(0) = 5 iy (WO 0) + a0 (0,67 (1)) wye:
By Lemma 5.4 and Corollary 5.5, we have

010505050 F (1)) < C(r + [t]) 72792l /| G180

and hence

/ 8£83‘8§8£@F+(t)dt‘ < Cr1=i1Bl|g fr| 218+
0

for all t > 0, (r,0,p,w) € TT(R,¢) and (j,a, k,3) € Z%rd. If we put qo(0,w) = hjk(e)ijk, then
the mean value theorem and Corollary 5.5 imply

1 1
O Tt

< C(r + [t) 227718l /p | B=18D+

0l 050%05 <

Therefore, 9, F*(t) can be written in the form

S + (0

with Rt (t) € C®°(I'T(R,¢)) satisfying
0105 0500 R* (11,0, p,w)]
< O(r + |t]) 2214 (,w/r|(3f|ﬁ|)+ i Tw,w/r,@ﬂmn) ,
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Define ¢, St on I'f (R, €) by

(r, 0, p,w /8t (t,r,0,p,w)dt,
§H(r,0,p,w) = 1p+ 0w + G (1,0, p,w).

The above argument shows that ¢+, S* are smooth and ¢+ satisfies (5.1) and (5.2) on I'} (R, ¢).
Moreover, we have
9,95t = lim 0,AT(t) on TT(R,e).
t—+o00
By using the energy conservation and Corollary 5.5, we see that S+ satisfies the Eikonal equation
on I'M (R, ¢):
p(rv 07 87“5—"_7 895+) = hm p(?“, 0, 8,,«A+ (t)7 69A+ (t))

= hm p(rt ( ),Gzr(t),p,w)

t——+o00
= p*/2.
Choosing a smooth cut-off function y* on R?? so that 0 < x* < 1, x* = 1 on I'f(R,¢),
supp xT C I'F(N), A > Ao and that
0205 0,05x(r. 0. p.w)| < C(r) 77 on R,
we define o1, ST € C®(R??) by ot = x¢+, ST :=rp+60-w+ . Clearly, o and S+ satisfy
the statements of Theorem 5.1. U

Definition 5.6. For a* € Sy (I'F(R,¢)) and h € (0,1], we define the FIO’s for the Isozaki-
Kitada parametrix by

I (a®)u(r, 0) = (27rh)_d/eii(Si(r’g’p’“’)_’"/p_gl"")ai(r,9,p,w)u(r',@’)dr’dﬁ'dpdw.

The following theorem shows that If (a*) are bounded on L?(R?) uniformly with respect to
R >0 and h € (0,1].

Proposition 5.7. Let Ry, e0, o > 0 be as in Theorem 5.1, X > X9, R > MRy and 0 < ¢ <
A 4eqg. Then, for all N > 0 and a™,b* € S.(TF(A3)), there exist symbols c;t € Ss(TT(A\Y), j =
0,1,..., N, such that if we put c}jl[ = Z;VZO hjc]i, then

ik () I (5%)" = &5 (r, 6, h Dy, RDg)|| o2 ey < ONBYHY b€ (0,1].
In particular, we have

|’I§((ai)||L(L2(Rd)) <C, he(0,1].
Here Cn, C > 0 may be taken uniformly with respect to R and h.

The following shows that any elliptic FIO (in the semiclassical sense) has a microlocal ap-
proximate inverse.

Proposition 5.8. Let Ry, c0,\g > 0 be as in Theorem 5.1, X > Mg, R > MRy, 0 < ¢ <
A 4eg and N > 0 a non-negative integer. Choose arbitrarily sequences of symbols (a]i)ogjgN C
See(TE(N)) satisfying

af >yt on QE(N)
with some ﬁxed Co > 0, respectively. Then for all ¢t € Sso(TFT(R,€)), there exist sequences of
symbols (b Jo<j<n C Ssc(TE(N)) such that

| ik (@) I (%) = ¢ (r,0,h Dy, kD) | 2y < Onh™ T, b€ (0, 1],

)

where af = Z;V:o hjajE and b,jf = ij:o hjbf. Moreover Cn > 0 can be taken uniformly with
respect to R and h.
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To prove the above two propositions, we need the following lemma.

Lemma 5.9. Define (pi,wi)(r, 0, p,w,r’,0") : R34 — R? by
1
(5.14) () = [ @uaS™)0 +otr =)0+ 00— 0), p)dor
0

Then the followings hold for all A > \g, R > ARy and 0 < & < g/ .
(1) If (Tv 0,0,(41) S Fsi(Ra 6); then

(5.15) (r,0, pli,wli”r/:ng/:g € Fsi()\).
Conversely, if (r, H,pf,wli)\,,/:ngng € I'f(R,¢), then

(5.16) (r, 6, p,w) € TE(N).

(i) We set f;t(/\) = {(r,0,p,w,r",0") € R (r,0,p,w), (0, p,w) € TT(N\)} and ff(R,Na)
TE(1). Then, the map (1,0, p,w, ', 0") — (1,0, pf,wi,r,0') is a diffeomorphism from TE(N)
onto its range, and satisfies

(T3 (R,€)) € (o1, w1 (mpu (T (V)

respectively. Denoting by (pgc,w;c) the corresponding inverse, the same properties as in (i) hold
with (pli,wli) replaced by (pzi,uJQi), respectively.

(111) If )‘7 N > >\0; R > max()\, )\/)RO and 0 < e < min()\_l, )\/_1)50, then we have
(517) 07 (o5 — )]+ minr, ')~ (i~ )
' < Cmin(r, ') 77~ (max(, X)e) @190+

for all (r,0, p5,wi) € TEN) and (", 0, p5,wy) € TE(N), where we use the notation 97 =
6%83‘8’;858&83‘,, fory = (j,a,k, 3,5, /) € Z3.

Proof. We only consider the outgoing case. Remark that (5.14) is equivalent to

1
(pihwi_) = (paw) + / (8T79()0+)(T/ + O'(T - TJ)? o' + U<6 - 0/)7 p,w)dO'.
0
Suppose that (1,0, p,w) € T'T(R,€). Since
(pi_ - P u)f - w)‘r’:n@’ze = (87,9@+)(7"a 0,p,w),
(5.1) implies (|p] — p| + r~Hw — w|)|w=rg—s < Ce?, and

p1 =l < Cpe®s pflimrgr—g = /(1 = Ce?)2py,

with some C' > 0 which is independent of R,e and )\g, where we denote p = p(r,6,p,w)
and p; = p(r, H,pf,wf')\rfzr’g/:g. Choosing A > 0 large enough such that A2 > C, we have
(r,0,p7 ,w)|=rp—p € TT(N). Next, consider the mapping

ft (r,0, p,w) — (r,H,pi",wf)“/:rﬁ,:@,

By (5.1), we have

0185 0582 (pF | 11— rgr— — p)‘ < Cjaggr ™) r| @180+
(5.18)

0105 0K 05 (wi |y =ror—0 — W)‘ < Cjangr' ™I Plw /r| 718D+

By same argument as that in the proof of Lemma 5.3, we obtain that f* is injective and
I'f(R,e) C fT(I'f()\)) provided that A > 0 is large enough. We note that this A can be taken
uniformly with respect to R and e. This fact implies (5.16).
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We next prove (ii). We write (r5,0,) = (r' + o(r —1'),0' + o(0 — ")) for short. Since
|lw| < min(r, ") Ae, (5.1) implies, for v = (j, o, k, 3,5, ') € Z3¢,
(876 ) (10, 05, p,w)| < Cory Pl 121D+
< €, min(rt=I71B () 1=37181 (Ae) 218D+
and hence

|07 (wy” — w)]

< —j—I1Bl 218D+ <« —j—1Bl (1=18D+
min(rr) S CyR, (Xe) < CyR, (Aego)

(519)  [07(pf —p)l +

In particular, (r, 6, pf, wfc, r'.¢) e fj()@) if A > 0 is large enough. By a same argument as that
in the proof of Lemma 5.3, we obtain the first assertion of (ii). Applying (5.16) and (5.15) with
(pyw) = (p;,w;)hr:ngf:g, we obtain
(0,03, 0] )lw=rp—o €TL(N) if (r,0,p,w) €TY(R,e),
(r,0.p,w) €TS(N) if (1,0, p3 w5 )|yr=rp=0 € Ty (R,€).

Finally we shall prove (iii). Since (1,0, py,w; ) satisfy

1
(5.20) (p3,w3) = (p,w) —/ Dro™ )" +o(r —1"),0" + (0 = 0'), p3 ,wy )do,
0
(5.1) implies
(p3 — p)| + min(r, ") Hws — w| < Cmax(), \)2e?
for (r,0, p3,wy) € TH(A) and (7,6, p3 ,wi) € TH(N). For the derivatives, differentiating (5.20)

with respect to 6728331{:8(‘3‘,,6];65 and using (5.1), we obtain (5.17) by an induction with respect
to j + laf+k+ 15| + 5" + || O

Proof of Proposition 5.7. We only prove the outgoing case. Note that since R > ARy and
e < A%, (py,wy) is well-defined for 7,7’ > A"3R. The Schwartz kernel of It (a®) I (b*)"
can be written in the form

(2rch) 4 / eh (ST (r8.pw)=ST(r' 0 pw)) o+ (r,0, p,w)bt (1,0, p,w)dpdw.
Since (1,0, p,w,r’,0') € IT(A*), Lemma 5.9 implies that (py ,wy ) is well-defined and
(5.21) 1/2 < |det 9, (05, wa)| < 3/2.

for all (r,0,p,w,r’,0') with (r,0,p5,wy,7,0") € fj()\‘l). We thus can make the change of
variables (p,w) — (pg,wy)(r, 0, p,w,r’,0’), and the above integral can be brought to the form

(2mh) 4 / erlr=r)p=(0=0") ] 4+ (r,0, p,w,r’, 0" dpdw,

where AT = a*(r,0, p3,wi )bt (r, 0’,p;,w;)\ dg/t Opw(py,wy)|. By using (5.17), (5.21) and the
support properties of a™ and b, 87‘28385858;”,85“, AT are uniformly bounded on R3¢ for all
(j,a,k, 3,5',a’) € Z3¢, and the Calderén-Vaillancourt theorem implies

15K (@) I (0 Nl g oy < Ca Y 1107AT]] oo sa) < C,
7| <Mg

uniformly with respect to R > 0 and h € (0,1], with some Cy, My > 0 depending only on
d. In particular Iﬁ}(a*)L(LQ(RdD is bounded on L2(R?) uniformly with respect to R > 0 and
h € (0,1]. Furthermore, by the standard symbolic calculus (e.g., see the textbook [15]), the
simplified symbol of the above operator has the following asymptotic expansion
hi
- (6f)8ﬁD£,D3,A+> (.8, p,w, 7, 0).

lla!
I+|a|=j5



STRICHARTZ ESTIMATES ON SCATTERING MANIFOLDS 23

By Lemma 5.9 (i) and (iii), we see that (0,02D", Dg A™)(r,0, p,w,r,0) is supported in T'§ (A*)
and belongs to Ss.(I'T(A1)). O
Proof of Proposition 5.8. Let ¢* € Ss.(I'"(R,¢)). By Proposition 5.7, it suffices to show that
there exist bj € Sse(TT(N), 7 = 0,1,..., N, such that ¢ = ¢ and cj =0forj=1,2,..,N.
We set J;, = | det 9, (o), wi)|. b+ can be defined inductively as follows. We first note that, by
the construction, b; should satlsfy

c+(r 0,p,w)
= Z Z (8l GO‘DZ Da/ah (r, 9,pj,wj)bi(r’,@’,pj,wj)]ﬁ .
=1 14]a] ] ! r'=r,0'=0
Define bar by
bd (r, 0, p,w) := (af (r, 0, p,w)) "Lt (r, 0, pf,w) Ny R
Since suppct C I'f(R,¢), Lemma 5.9 (i) implies that ¢t (r, Q,pf,wf)b/:r’e,:e is supported in

'Y (N). Since af is elliptic on T ()), bl is well-defined and supported in I'f (\). Moreover,
(5.18) implies that b € Se(I'"(A)). Next, let j > 1 and assume that b} € Ss(I'"())) for all
k < j. We then define bJ-r by

(5.22) ag (r 0 p2,w2 )b+( ’,9’,p;,w;)JQ

=0 =0 = ,r;r (Tv 07 P, w)v

where T‘ takes the form

1
Z Z ol <828‘3‘D£, g,ak (1,0, p3,wy )b+( ’,9’,p;,w;)J2)
k=0 kolil‘cljl gk k,
k1<j—1

r'=r,0'=60

Substituting (p,w) = (pf,w;") for (5.22) and dividing by a, we have
b (r,0,p,w) = (ag (', 0, p,w)) " f (r, 0, pf ,wi)Jy

By induction hypothesis, we conclude that bj € Sse(TT(N)). The proof for the incoming case is
similar. ]

r'=r0'=0"

5.2. Construction of the parametrix. By using the FIO defined in the previous subsection,
we construct the semiclassical Isozaki-Kitada parametrix.

Theorem 5.10. For any N > 0, there exist Rk, \ix > 0 large enough and ejx > 0 small
enough such that if R > Rk, 0 < e < ek and A > Ak, then we can find
N
w= > hWbE with bY € S (TF(X?)), j=0,1,.., N,
§=0
such that, for any af € Ssc(TF(R,¢)), there exist

N
Cf = ZhjcjE with c;.t € Ssc(l“i()\))7 j=0,1,...,N,

such that, for all T >0, h € (0,1] and 0 < +t < Th™!,

(523) |l Op,(af) -k Iik (bF)e ™3P Ik () m < CnrhV Y,

*||£(L2(]T4\))

where Cnr may be taken uniformly with respect to h, t and R.

Remark 5.11. Since 7(supp bi) m(supp cf) C (2,00) x Uy, we see that
Iﬁ{(bi) —ithl DZI%{(C}L) _ \if Ii(bi) —ithl D""Ii( h) \ijm

and R*Iﬁi(bf) —ithy DQIi (ch) k*is well-defined on M.
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We shall prove Theorem 5.10 for the outgoing case, and the proof for the incoming case is
completely analogous. Set By := Iit (b)), Cy := Iik(¢;}). By the Duhamel formula, we have
e_ithﬁH*B_A'_ C-*W*
= R*B+e_ith%D72“Ci/<a* — % /Ot e_i(t_s)hﬁn*(hQﬁﬁBJr — B+h2%Df)e_iSh%DgCids.
To prove (5.23), it suffices to show that

~ 1 c 112
5.24 2P, By — Byh2=D2)e " *mPicn S h
( ) H( + + 2 7“)6 +HL(L2(R‘1)) ~
(5.25) [lay (.0, Dy, hDg) = B1C || g papayy S B

uniformly with respect to h € (0,1], 0 < s < Th™! and R > 0. To prove above two estimates,
we prepare several lemmas.
Let p + p1 + p2 be the full symbol of Pj:

ﬁ/{ = p(?", 97DT7D9> +p1(7"797 Drv DG) +p2(r7 9)

Choosing Ry > 0 and g9 > 0 so that ST is well-defined and solves the Hamilton-Jacobi equation
on I'F' (R, &p), we define smooth tensors X+ and Y+ by

Xt= p,wp(r7‘9787"5+7895+)7 yt= (p+p1)(T7078T789)S+7
and define symbols d;’, i=1,2,...., N+2, by

R 1 Nt2
h?P.B, — B+h2§DZ = > WIf(dh).
j=1

Then d;r should satisfy
(5.26) idf = X1 0,908 + Y b7,
' idf = XT - 0p0bl ) +YTbI +iPibja, j=2,...N+2,

where b} 41 = 0. To construct b;r, we solve transport equations.

Lemma 5.12. There exist R1 > Ry, A1 > 1 large enough and 1 < gg small enough such that,
forall N >0, R> MRy and 0 < ¢ < A\[V 5¢y, we can find b;r € Se(TF(N]), 7=0,1,..,N
such that by is elliptic on T'F (A1), and that bj solve transport equations on T'F()\3):
Xt 0,0bf +Y b5 =0,
xt.

(5.27) N
Orobl + Y0 +iPb; =0, j=1,..,N.
For (7,0, p,w) € THAN*) we consider the flow (r*(t),07(t)) generated by X7, i.e.,
(rT(),07 (1)) = (", 07)(t, 7,0, p,0)

is the solution to )
(), 07 () = XT(r™(1),07 (1), p,w),
{ (r7(0),67(0)) = (r,0).
Then (r+(t),07(t)) is defined on [0, 00) x TF (M), and satisfies the following:
Lemma 5.13. For allt >0, (1,0, p,w) € TT (A and (4, a, k, 8) € z%,
(rH (1), 67 (1), pyw) € TE(AT?),
(5.28) 0]05 0505(r* (8) = v — tp)] < Canpr' ™ 1l w/r| 1D+,
(5:29) 0705 0,05(0 (1) = 0)] < Cjapgr™ 1w /|17,
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Proof. Let (1,0, p,w) € TE(AYT). Since Xt = (9,81, 7 2(h/* + a7%)9ye ST), it follows from
(5.1) that
[ (t) = pl < Colw/r* ()P, 107(1)] < Cor™ (8) w/r* (t)]

with some Cy > 0. In particular, we have
(5.30) 17(0) — p| < Colw/r|? < Crer, [67(0)] < Corw/r| < Crr ey
with some C7 > 0. We set Cy = inf J and

F:={t>0|r(s)>r+sp/2, |67(s) — 0] <4CoCy w/r| for 0 < s <t}
By (5.30), it is easy to see that 0 € F' # (). Let tg = sup F'. We then have

[ (t) = pl < Colr + sp/2) 2|w]’ < CoCuel,  07(1)] < Colr + sp/2) 2|,
for 0 <t < ¢y, and hence

[Pt (t) —r —tp| < CoCredt, 0T (t) — 0] < 2CCy tw /|,

for 0 <t < ty. Choosing g1 > 0 such that p—CyC1e3 > p/2 and § > 0 small enough, we see that
to+0& € F which implies tg = oo. Therefore, (r*(t),0%(¢)) is well-defined on [0, 00), and satisfies
(5.28) and (5.29) with (4, a, k, 8) = 0 for all t > 0. In particular, (r*(t), 0% (t), p,w) € THANT?)
for t > 0, provided that A\; > 0 large enough. The proof for higher derivatives is obtained by
(5.1) and an induction with respect to j + |a| + k + |3]. O

Proof of Lemma 5.12. Define a smooth real-valued function Z+ by
ZH() =Yt (), 07 (1), pow) € CF([0,00) x TF (AT H).
By (2.3), (5.1) and Lemma (5.13), we have Z7(t) € L{ ([0, 00)) and

(5.31)

8¥833§35/ Z+(t,r,0,p,w)dt ngakﬁr—j—lﬂ\ on F;F()\Jl\f+4)'
0

We now define smooth functions b; on Fj()\iVH_j ) by

bo(r, 0, p,w) = eo” 2t (0t

o0
bj(r, 0, p,w) = / (iPebjo1) (7 (£), 67 (1), pyw)elo 77 Obap, =12, N.
0
By a standard Hamilton-Jacobi theory, b; solve (5.27). Moreover, by (2.3), Lemma 5.13 and
(5.31), we have
0105 0,0.b1(r,0, p,)| < Crargr™ " on TTOT).
Take x* € C$°(R?9) so that 0 < x* <1, x™ =1 on TF(\}), supp x* C I'F(A\}), and that
|a1l“80aa]pcagx+(rv H,p,w)\ < Clakﬁr_l_w)l on Fj()‘?)’

and define b} := xTb;. By the construction, b} solve (5.27) on T'F(A}), by is elliptic on I'f (A1)
Proof of Theorem 5.10. Let R > A{V+5R1 and 0 < ¢ < /\1_N_5€1. We first prove (5.25). By
Proposition 5.8, there exists a symbol ¢; = Z;V:o hjc;-F € Sse(T'F(A1)) such that

Ha?(raevh-Dra h-DG) - B+Ci|’L(L2(Rd < CNhNJrlv h e (07 ]-]7

)
where C'y may be taken uniformly with respect to h and R.
We next prove (5.24). Let dj,j =1,2,...,N+2, be defined by (5.26). Then d;L € Sse(TF(AY))

and df =0 on I't(\?). For each j and k, I (dF eish3 D2 I+ (¢F)* has the distribution kernel
j s 1 IK\™j IK\~k

I(s,h) = (2h)~ / e (=l 0=l =35%) 4 (1,0, p, w)cf (. 0, p, w)dpdo,
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where (p,wi)(r,0, p,w,r’,0') is defined in Lemma 5.9. Since dj = 0 on I'F()\?), one of the
followings hold at least:

(5.32) AMPR<r < A\[’R,
(533) 0 e UH’\/E \ []ﬂ}\/@7
(5.34) p(r, 0, p,w) € Jyee \ Jyz2,
(5.35) Me < w/r| < M.

We first assume (5.32) or (5.35). Then, it is easy to see that
r—r' < —R/(2)\1)
if R > 0 is large enough. Therefore, by (5.19), we have
(r —1")0,pF + (0 — 0")0pwy —sp < —R/(4\1) — sp < —Rp/2 — sp < —(s),

and we obtain (5.24) by a standard integration by parts. We next assume (5.34). Since
p(r, 0, p,w) — p%/2 = O(|lw/r|?) = O(ed), for sufficiently small gy > 0, the amplitude vanishes
identically in this case, and we have (5.24). Finally, we assume 6 € U, NoxE \ U, Ve Since

o' e Um/ﬂ and
Ol | S 77t w/rl SN e S Ve, [u(wi —w)| S lw/r| S Me S e,
we have
(5.36) 10— 0| > \v/e.
Therefore,
!&u ((7" — r')p;r +(—-0)- wf — sp2/2)|
> 10 = 0|(1 = Cer) = Clr —o'lr '/ Aere
2 (M= Cer =/ hen)ve
> Ve,

for sufficiently large A\; > 0 and small €1 > 0. We now fix the constants Rik, 1k, Ak so that
AMK = A, Rix = )\f\lf(+5R1, EIK = )\I_KN_SEL Put

M((r = )0upf +(0—0) O
i|(r — 1) 0upl + (0 — 0) - dpwi 2
and integrate by parts I(s,h) with respect to L. For any n > 0, I(s,h) then reads

L(ﬁ 97 P, W, 7,/7 0/> =

I(s,h) = h”(27rh)d/ei((’””l)pfﬂggl)“f§5p2)G+(7",G,p,w,r’,ﬁl)dpdw,

where Gt = (L*)”(dj(r,H,p,w)cZ(r’,B’,p,w)). Using the change of the variables (p,w) +—

(p3 ,wy ), we have

I(s,h) = h"(2mh) ™4 / en® (0wt G (9, p2 W2 1,0 ) dpdw,

where & (s, 7,0, p,w,r",0") = (r—1")p+(0—-0) w— %sp;(r, 0, p,w,r’,0")2, and (pg,wy ) is the
inverse of (p;,w;"). By Lemma 5.9 and (5.36), p3 (1,0, p,w,r’,0') and GT(r,0, p%, w2 ,r",0') are
smooth and uniformly bounded functions on R3¢. Applying the Calderén-Vaillancourt theorem,
we hence have

_ishipD2 % _ _
HIIJIF((dj)e 1sh2Dr];£<(Cz) HL(LQ(Rd)) < CN,d,gh" nd<8>nd < CN,d,e,Thn 2ng

for alln > 0, h € (0,1] and 0 < s < Th~!, where ng > 0 depends only on d, and Cn g, 1 is
independent of A and R. Choosing n > 0 with n — 2ngy > N + 1, we complete the proof ]
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5.3. Dispersive estimates. We here prove dispersive estimates for the Isozaki-Kitada parametrix.
Let RIK,EIK,)\IK > (0 be as in Theorem 5.10. In this subsection we use the notation 07 :=
20y 8kaﬁ8] 89/ for v = (j, e k, 8,5/, &) € Z3%.

Theorem 5.14. For sufficiently large R > Rik, small 0 < ¢ < ek, all b € Ssc(TT(\))) and
* € S (TH(\k)), we can write

I (05)e™ ™27 I ()7 = U (. 1) + Rige (1, h),
where Uff{(t, h) satisfy dispersive estimates
_d-1 _d-1 _ _
7= U (8, h)r ™2 (1 may, oo may) < Clth] W2 0<t<hTh he (0],
and Rf%(t, h) are rapidly decaying with respect to h: for any N > 0,
| Risc (D)l o2 (gayy < OnBY, 0 <+t <h™', he (0.1].
Moreover C,Cn > 0 can taken uniformly with respect to h, t and R.

We prove the theorem for the case ¢ > 0, and the proof for the case ¢t < 0 is similar. The
21
distribution kernel of I (b+)eitha D7 L ()" takes the form

(5.37) I+ (t,h) = (27h)™¢ / eh T bpr’ ) At (1 0 b w1 0 dpdw,

where

1
T (t,r,0,p,w, 7, 0) = —1Np+(0—0) w— §t(p§r)2,

AT (r,0,p,w,7",0') == b (r,0, p3 , Wb (r', 0, p3 , w3 )| det B, (g, wy )],

and (p3,w3) = (p3 ,w2 )(r 0, p,w,r’,0') is given by Lemma 5.9. Note that since (r,0, p3,wy) €
IF(\y) and (', 0, p3,wy) € TF (A\k), (5.17) implies

C'<p<C, |w/Vr'|<Cer on suppAT,

and 97A* and 97p5 are uniformly bounded on R3?.
We first remove a smoothing term from I4+(t,h). Let x, € C(R), xo» € CP(RYL) be
smooth cut-off functions such that

suppx, C (—1,1), xp,=1on (-1/2,1/2),
supp x» C {|0] <1}, xu =1on {|0] <1/2},

and define A := x, (9,97) x(0,®T/§) AT, where § > 0 is a small parameter. We denote the
operator having the Schwartz kernel IA; (t,h) by UA; (t,h).

Lemma 5.15. For all N > 0 and § > 0, we have

+ (hH)e—iths D2 1+ _ N
) P ()" = Uns ()] ) < Ch™

uniformly with respect to h € (0,1], 0 < £t <h~! and R > 0.
Proof. We split AT — Af = (1 — x,)xwAT — (1 — xu)AT =: AT + A, and denote by I ,+ the
J

oscillatory integral of the form (5.37) with the phase ®* and the amplitude Aj, respectively.
We set Ly := (h/i0,®7)0,, Ly := (h/i|0,P"|*)(0,®@T) - 9,. Since

‘87 (1/8p<1>+)| <1 on suppAf, ‘67 (8w<1>+/|0w<1>+|2)| <1/6 on suppAJ,

n-times integration by parts I .+ with L;, respectively, implies that I ,+ reads
J J

IA; = (27rh)_d/ i ((r=r")p (0~ 9)‘”)A+(7" 0,p,w,r’, 0" )dpdw,
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where /Nl;r — e wz(03)? (L;)"A; satisfies
lawﬁj(r,ﬁ,p,w,r',ﬁlﬂ < Cnh”_hl(t)h| < C,h" 2 on R,

for all v € Zid, h € (0,1], and 0 < £t < h~!. By the Calderén-Vaillancourt theorem, there
exists an integer Ny > 0 depending only on d such that

k(6 )e PRI ()" = Uy (8, 1) S

”L(LQ(RCI)) o
Choosing n > 0 with n — 2Ny > N, we obtain the assertion. O

To prove dispersive estimates for U A (t,h), we next study the phase function more precisely

Lemma 5.16. On supp AT, %p;(r, 0, p,w,r’ 0 takes the form

1 1 1
Ep;_(rj 9’ ot T/’ 0/)2 - 5/)2 + 2rr! qo(e’ w) + Q+(T7 9) P, W, Tlu 0/)5

where qo(6,w) = ¥ (0)w;wy. Moreover we can write
QT =QI +(0-0)-Q;
such that, for all (r,0, p,w,r’,0) € supp A" and v = (j, o, k, 3,5, a') € Z3¢,

(5.39) 07 (0, o’ 0] < ORI (I 4 a2,
107Q3 (1,0, p,w, ', 0| < CR;J'*]"7|5|5§27|5|)+’
where Ry,e1 are given by Lemma 5.12.

Proof. We start from the formula p5 = p— fol((?rcp+)(r5, 0s, p3,wy )ds, where (r5,05) = (r',0') +
s(r—1r',6 —6"). By using the mean value theorem, we have

(argo"r)(rs’(gs,p;"w-‘r) = (8T<P+)<7”s> 97)0;—7“1;) - (9 - 0/) : F+(8)7
where F'T(s) is defined by

1
F(s) = (1— s)/ (005 (1s, Oss, i o Vo, Oy = 0+ (6 — 6).
0
By (5.1) and (5.17), we obtain

sup [97F*(s)| S Ry A0
s€[0,1]

Since R > )\%KRl and e < )\ﬁgsl, by the mean value theorem, we can write

1

(ar90+)(T8797p;_7w+> = _%qO(Haw) - G+(8),

where, by (5.2) and (5.17), G (s) satisfies

sup |97GH(s)| < Rl—j—j/—lﬁ\ <€§3—|ﬂ|)+ + R1—ME§2—\5|)+) .
s€[0,1] ~

Set Ft = fol Ft(s)ds and Gt = fol G (s)ds. Since fol r52ds = 1/v/rr', we have

1
2rr'p

B 5 2
02 = (0 grrn(0) + (0~ 0)- FF 4G

If we set

2
Qr—4pé++z(21 qo<e,w>+<e—e'>.ﬁ++é+) L Qf = 4pF*,

rr'p

then Q* = Qf + Q5 satisfy (5.38). O
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Using the change of the variable w — Vrr'v, I AF (t,h) reads

d—1
’I“T', T2 % 71,0l
IA* (t, h) = L / €E<b+(t,r,0,/)7\/v7u,r ,0 )A(—Si- (T’ 9, p, /TT/V’ TI, 9/)dpdl/,
5 (2mh)d
where /I(J{(r, 0,p,v,1",0") = A(J{ (r,0, p,/rr'v, ', 0') is bounded on R3¢ and compactly supported
with respect to (p,v). Moreover, 7, , o supp A;{ is bounded uniformly with respect to R > 0,
where 7, : R3? — R? is a canonical projection onto the (p, v)-space.

Proposition 5.17. There exists § > 0 small enough such that, for allh € (0,1] and0 <t < h~!,

we have
d—1

I Uy (8, R~ 7 | <

< C|th|~%2,
L(LY(R4),Lo°(R4)

where C may be taken uniformly with respect to R, h and t.

Proof. For 0 <t < h, it follows from
_ d—1
r—%uA; )|~ < Oh~d < O|th|~42.
Suppose that h <t < h~! and assume 2h < h~! without loss of generality. Define

~ 1 —
(b+(t7 T? 0? 107 V? Tl? 0’) = ¥¢+(t7 7“7 0? 107 TTJZ/? 7“,7 0/)

-7 0—6 1
—_ trp-{— ; ~\/rr’y—ipg(r,e,p,\/rr’u,r',H’)Q.

By Lemma 5.16, we obtain

r—r \/7“7’(9—9’)
t

0,87 (1) = =1 — p+0(), 0,87 (1) = T

+ 0(61)

on the support of flj{. Thus, if we restrict the support of 121; to one of the regions

Vrr'(0 - 6')

t

r—r!
t

>1

- )

—0‘2&‘1 or

then we have |9,®(t)| 4 [0, ®(t)| > e with sufficiently small &; > 0. Take y1 € C°(R) and
X2 € Cg°(R*1) satisfying x1 = 1 on (=1/2,1/2), supp x1 C (=1,1), x2 = 1 on {|f] <1/2} and
supp x2 C {[0] < 1}, and put

—r! o _ p
wltr o ) = (28 - L) (M) |

€1t €1 t

Integrating by parts, we then obtain the non stationary estimates

<C; hid|t/h|7n < C€17/\1K|thrd/2’

1,AIK

‘(27rh)d / e ® (1 — 3y) A dpdv

for all h € (0,1], h <t <2h7!, § >0 and n > d/2, where Cey \x may be taken uniformly in R.
Since C~1 < p < C for some C > 0, if &1 > 0 is sufficiently small, then

Citt| <r—1' < Colt] with some Cp > 0,

on the support of )21;1;, and this estimate implies [t/vrr/| < 1. We now fix 6 with 0 < 0 < 7.
Since 9,2"(t) = (Vrr'/t)0,P,(t), we have

(5.39) 0 —0'| < C|t/Vrr'|(|0, T (t)| + e1) < Cre;  with some C; > 0,

on the support of )21121;'. We fix A\ > Ak with 2A\ik > Nk, and choose x3, x4 € Cs°(R2%) so
that x3 =1 on Q% (A), supp xs C QT (M%), xa =1 on Q" (Aik), supp x4 C QT (Ag) and

(5.40) 10705050 (r,0, p,w)| < Clanp, ()77 on RM, j =34,



30 HARUYA MIZUTANI

We also choose x5 € C5°(R4™!) with x5 = 1 on {|f] < 1/2} and supp x5 C {|#] < 1}. We now
define

@ar(t,r, 0,p,v,7",0")

r—r 06— — 1, 1 . e —
= n p+ ¢ : 7’7’/1/—§p _qu(evy)_X3X4X5Q (r797p7 rT’V,T,H),

where x3, x4 and x5 are defined by
)23(% 07 PV, Tlv 0/) = X3(T, 97 (P;a w;)(r7 07 J2 7"7"’% 71/7 9/))
)24(T7 0, P, T/a 9,) = X3(T,’ 9/’ (pér’ w;)(r, 0, Py Vv rr'y, ’f’,, 0/))

6 — ¢
v=(0.0") := .
X5(0,0") X5<2Cﬁl>

It is easy to see that ‘Dar is smooth on [k, 00) x R3¢ and CI’(‘)" = & on supp leig. Moreover by
Lemma 5.16, (5.39) and (5.40), we have

05050 (t,7,0, p,v,1",0")| < Cig
for all (r,0,p,v,7",0") € R3 h <t < h~! and |k + 3] > 2, where Cx3 > 0 may be taken
uniformly in h, ¢t and R. We also obtain

10 - _

02,08 = — (0 hjk> +O0(e1 + R{") on [hh7] x R
Since | det(h7*)| > 1, if Ry is large enough and ¢ is small enough,
|det 92, ¢ 2 1

on [h, h~'] x R3? uniformly with respect to R, h and t. Therefore the mapping

(:0’ V) = 8P7V¢6r(ta T, 97 PV, Tlv 9,)

is a diffeomorphism from R? to R%, and @g has a unique non-degenerate critical point (p.,v.) =
(pesve)(t,r, 1", 0,0"). Moreover, 8];85@3@,7“,9, Pes Ve, ', 0') are bounded uniformly with respect
to R and t if |k + ] > 2. We hence can apply the stationary phase theorem and obtain

’ (2rch) 4 / e%t&ﬁ(t))ﬁ[lgdpdu

(27rh)_d/e}itq)g(t)>zlflgdpdu
< CL

<

h_d|t/h|_d/2
|th| =2,

for h € (0,1] and h < t < h™!, where CZ, A > 0 does not depend on R > 0. We complete the
proof 0

1,AIK

1,AIK

Proof of Theorem 5.14. We set
_ithip2 *
Uie(t,h) = Uy (1), Ric(t,h) = I (b5)e thaDr it (ch) — Uy (t,h).

Clearly, they satisfy the assertion. When —h~! <t < 0, the proof is analogous. O

6. MICROLOCAL SMOOTHING PROPERTIES

Fix arbitrarily a coordinate chart kg : Vi, — Uy,. Let U’HO €Uy, J €(0,00)and -1 <o <1
be an in Definition 2.5. In this section we prove the following:

Theorem 6.1. Fiz arbitrarily t1 > 0 and let € > 0 be small enough. Then there exist dc ¢, > 0
and Let, > 0 such that for all (01)o<i<r., C (—1,1/2] satisfying (2.12), sufficiently large
Ry >0, all Ro > Ry > Ry, all symbols

aFf € Sec(TF(R1,Upg, J,€,0c11,1))  bF € Ssc(UF(R2, Ungs J, €, 0c1, 1)),
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and N >0, we have

(6.1) | 0Py 1 (@)™ Op,., 1 (b7) < Ongh™,

leqee
uniformly with respect to h € (0,1], Rot; < £t < h™! and Ry.

We prove Theorem 6.1 for the case t > 0, and the proof for case t < 0 is analogous. We need
the following Egorov theorem.

Theorem 6.2 (The Egorov theorem). For anyT > 0, N > 0 and symbol b € Sy(QF (Ra, Uy, J, 7)),
there exist symbols

N
b:’h(t) = Z hjb:’j(t) with b:j(t) € Ssc(ksx exp th(na*l suppb™)),
§=0
and a constant Cny 1 > 0, independent of Ra, such that

(6.2) < CnrhN Lt

e Op,, (b7)e™ =" Op, (b, (1))

L(L2(M))

uniformly with respect to 0 <t < RoT and h € (0,1]. Moreover, b:’j (t) is uniformly bounded in
Sse (ks exp tHy kg, supp b)) with respect to 0 <t < RoT.

Proof. This theorem is basically well known, and we hence give the sketch of the proof. By
(4.19), we can choose t; > 0, independent of Rj, such that the geodesic is contained one fixed
coordinate neighborhood if 0 <t < Raty. Define the map ¢(t) = (7(t),0(t), p(t),o(t)) by

(f(t%é(t)vﬁ(t)’@(t)) = FR2 oexptH, kg O F}%l(rv 9,,0,(4)),

where Fg, (1,0, p,w) = (r/Ra,0, p,w/Ry). By (4.4), we have for all (x, 6, p, v) € Fr,Qt(Ry, Uy, J, o),
0<t< RQtl and Y= (j7a7ka/3)a

07(7(t) — 2)| + 07 (B(t) — 0)| + |07 (5(t) — p)| +107(@(t) — v)| < Cy Ry,

and hence
107(04(t) — 1d)| < Cty < 1/2,

where © = r/R2, v = w/Ry and 97 = 8,285‘8/585. For all 0 < ¢t < Rot; and (r,0,p,w) €
@(t, Fr,QF (Ry, Uy, J,0)), $(t) thus has the inverse

p(t)7 = (FH L0 AT e,
and @(t)~! satisfies

07 (F(1) "t — 2)| +107(0(1) " - 0) < O Ry My,
0 (5L = p)| + 107 (@) - )| < Ry ey
After the rescaling (z,v) — (Rax, Raov), we see that

(r(®) 1, 0) ", p(t) T w(t)™h) = (exptHy, )T (r, 0, p,w)
exists for all (r,0, p,w) € exptH,, (2 (Ro, Uy, J,0)) and 0 < t < Rot;, and satisfies

63 187 (r(t) ™t = )] + 107 (W)t~ w)| < cjawRéfj*'ﬁ‘th
07(8(t) 71— 0)] + 107 (p(t) 1 — p)| < CjawsRy” Mt

We now define bj(t) inductively as follows. Put

by (t, 7,0, p,w) =b" o (exptH, KO)_l(r, 0,p,w) on exptHp, (supp bh),
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and bg (t,r,0,p,w) = 0 outside exp tH, ., (suppd®). By (6.3), (b (1))o<t<R,t, is bounded in
Ssc(exptHp, (suppb™)). Tt is well known that b (t) solves the first transport equation

obg

o T P b3} =0, B (0) =%,
where {-,-} is the Poisson bracket. Moreover, a standard semiclassical symbolic calculus yields

that
0 i 9n
O O (0 (1) 112 Py, O (B ()] = hOp, 17 (1),
where r{ (t) is supported in supp bg (t) modulo O(h*) on LQ(]/W\), i.e., for all n > 0, there exists

a symbol 7§ (t) € Ss(supp b (¢)) such that
10Dy 11 () ~ OBy (D)l oy < Cab™ B € (0.1]
for 0 <t < Rsty. Next, put

t
by (t,r,0,p,w)) = /0 7o (s, exp sHy, o (exptH, KD)_I(T,H,p,w))dS

on exptH,, (suppb™), and by (t,r,0,p,w)) = 0 otherwise. Again (6.3) implies (b] (t))o<t<Rot,
is bounded in Ssc(exptHy, (suppb™®)). b{ (t) is a solution to the second transport equation
b ~
aitl + {pﬁovbf} = 7“(—)’-7 58_(0) =0,
which implies
0 TN
57 OPro, (b3 (8) + BbT (£)) + (1% Py, OPyo (b (8) + BbT (£))] = h* Opyey (1" (1)),

where 7} (t) is supported in supp b§ (¢) modulo O(h*>°) on LQ(]\/4\ ). Iterating this procedure and

putting b () = Z;V:o hjbj(t), we have
0

7 ~
a Op/io,h(bit(t)) + E[h?Pfim Opng,h(bZ(t))] = O(hNJrl)v

and Op,, (b} (0)) = Op,, ,(b"). Integrating the above equation with respect to ¢ € [0, Rat1],
we obtain the assertion for ¢ € [0, Rot;]|. For general T' > 0, we divide the geodesics into a finite
number of small curves, as well as the proof of Corollary 4.3, so that each curve is contained
some fixed coordinate neighborhood. Applying the above argument on each chart, we have the
assertion by a partition of unity argument. O

The following tells us that the support of ¢~ ithP Opy, (bl+) is essentially away from the support
of Op,,(a;") if t = O(r), which is crucial to prove Theorem 6.1.

Proposition 6.3. There exists cg > 0 that for all 0 < € < 1/2 and t; > 0, if we choose
Oty < coe2(1/t1)™" and Loy, = 5;1511, then for all (o1)o<i<r.,, C (—1,1/2] satisfying (2.12) with

0 =0ct,, L=Lcy, and allt > Raty,

(6.4) exp tHykig Q (Ra, Uy, J, €, 0c 4y, 1) N kg Ty (R1, Ungs Jy €, 0241, 1) = 0.

Proof. Tt suffices to show that (6.4) holds with Q (Ra, Uy, J, €, e t,,1) replaced by
Qf (R1, Ry, Upy, J, €, 0211, 1),

since Qj(RQ,ﬁHO,J,E,(S&tl,l) C Qj(Rl,RQ,ﬁHO,J,E,(satl,l). We also note that, by Corollary
4.3, Qj(Rl, Ro, ﬁﬂo, J,€,0¢e,4,,1) is invariant with respect to p under the geodesic flow and coor-
dinate transformations. Therefore, by the definition of the intermediate regions and the energy
conservation law, it suffices to check that

pt) _ _p

V2E, ~ V2E,

+ 25€,t17 t > R2t17
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where Ey = pg,(r,0, p,w) and (7,6, p,w) belongs to

{Ry <7 < 4Ry, 0 € Uy, Ey € J, p/\/2Ey € [-1/2,/1 — £2/4]}.
Note that all Q7 (Ry, Ra, Uxy, J, €, 0:4,,1) are contained in the above region. By (4.1) and (4.3),
for sufficiently large » > R; and all t > 0,

) = sz (94(0(0)) = O(r() )y (Ohn() 2 (r+ e e /2B,

Since

Rata Rotq t
4 [t) 73r2dt > 2 > ,
/0 (r+ 1)) N T Rot, C A+t

we can find ¢y > 0 small enough such that

p(Rat1) p a_h p
> + 2¢pe > + 20¢.44,
V2E, ~ V2B, U 1+t~ V2R, M
which implies the assertion since p(t) is non-negative. O

Proof of Theorem 6.1. Since (4.5) implies

[V2Eo — p(t)] S Ra/(R2 + [t]), t=0,
it follows from (4.17) and (4.18) that there exists a constant Cy > 0 such that for any 0 < ¢ <
1/2, we can find T, > 0 such that

exp RoTeo Hy (ki Q5 (Ra, Uy, J, €, 0241, 1))

(65) C U H*_:LQ:(RQTéo/C(h COR2T807 ﬁlﬁ ']7 60)7

where U,, € U,,. Note that Cy and T, may be taken uniformly with respect to Ry. We fix such
a T, with T, > Cp. By Theorem 6.2, we obtain that for all N > 0,

ODysy (a7 )™ Opye, (0) = Oy, () Y Op (B, (1))e ™ + O t))

on L2(]\/4\ ) uniformly with respect to Re and 0 <t < RyT},, where
b‘;h(t) € Ssclkis exp tHy (kg QU (Ra, Uy, J, €, 021, 1))).

Suppose that Rot; <t < ReT.,. Since the support of a;r does not intersect with the support
of (koky 1)*6: ,(t) for any & with Vi, NV, # 0 by Proposition 6.3, The semiclassical symbolic

calculus (see subsection 2.2) implies that the above operator is bounded on L*(M) with the norm
dominated by CyhN*1(t), where the constant Cy > 0 may be taken uniformly with respect to
Ra,t and h. If RoT., > h™!, then we obtain (6.1). We thus assume RyT, <t < h~!. By (6.5)
and Theorem 6.2, there exist symbols b;h(RgTsO) € Sye(QF (RoTy, /Co, CoR2Tr,, Uy, J, €0)) such
that

e—ithP Opno (bl—&-) _ e—i(t—RzTaO)hPe—iRzTeo hP Opno (bl-l—)

— ¢ RT M ST Op, (b, (RoT.y))e TP L O(hY)

on LQ(]/\/[\). Put B=3", Opﬁ(b:’h(RgTEO)) and divide B as follows
B = 0 BPrg + (1 = @ro) Bbro + B(1 = i),
where @i, Pr, € COO(MOO) such that
SUPP @y C SUPP ¥ry C (2,00) X Vi,  @r, = 1 close to supp Py, -

Since supp(1 — ¢x, ) NSUPP P, = B, the second term is O(h™) on L? (]\//.7) The third term is also
O(h™) on L*(M) since suppb!, (RoT%,) Nsupp(l — @y,) = 0, which follows from the facts

r> Ry >2 on supp b;h(Rngo), 0<r<2 on supp(l— Qg,)-
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By invariance properties of the strongly outgoing region and h-PDO under coordinates trans-
formations, we can write

ProBPry = Opno (Ezo,h(RZTso)) + O(h™)

on L*(M) with some b, , (RoTs,) € Sse(2f (RoTx,/Co, CoRaT,, U,
Consider a splitting of the interval [RaT%,/Co, CoRoTg,]:

RoT.y/Co =Ry < Ry < Ry < --- < Ry, Rj = 2Ry, Ry_1 < CoRoTs, < Ry..
Clearly 2% < 2C2. Using a method of the partition of unity, we split IN):O’h(Rngo) as B:O’h(Rngo) =
S22t with bF € SSC(Q;"(Rj,U,QO,J, £0)). By Theorem 5.10, we can construct the

J=0 "ko,h,j K0,h.J i
Isozaki-Kitada parametrix of e ~#(t—Fa2Teo)hP Op,m(bJr ) for sufficiently large Ry > Rik, A > Ak

K0,h,J

J,€0)), where (7,20 € Uk,.

and small 0 < g9 < g1k, and we obtain

e—ithP OPHO (bl+)

ko
[\

RSII—%(c;j)e—i(t—Rszo)h%D%Iﬁ—{(d;’j)*ﬁo*e—iRgTaohP + Q(t, h, N, Rg),

<.
Il
o

where, for each j, Iji (¢} ;) and I (dyf ;) are FIO’s defined in Definition 5.6 with some phase

function S:Oj € C°(R%R), which satisfies the statement of Theorem 5.1 with R = Rj, and
some amplitudes

o € Sec( AW Ry, ARy, UL, J, Moe0),
dif ;€ See(T (VTR AR, UL, T Ae).

The remainder term Q(¢, h, N, R2) is uniformly bounded on L2(]\/4\ ) with the norm of order A"
with respect to Ry and RoT., < t < h~!. By the composition rule of FIO’s with PDO’s,
a; (r,0,hD,, hDg)IfIF{(c;’j) is also FIO’s (up to the smoothing term O(h*°) on L2(]\/4\)) with the
phase S;ro’ j and the amplitude supported in

X =A{(r,0,p,w) | af(r,0,875,;,j,895;7j)c}tj(r, 0, p,w) # 0}.

By the support property of a;r, we see that

aTS:O,]' < \/2(1 - 52/4)]9/40 (T7 0, 87«S+ 895+

K0,J? HO?j).

Since (7,0, p,w) € supp c;j C Qj()\_?)]j%j,)\?’]éj,ﬁm,(], Mep), by the above estimate and (5.1),

we have

0/ 200 (1,0, p,w) < /1 —2/4 — CI\3gg|? < /1 —€2/8.
On the other hand, choosing €9 > 0 small enough so that \3gy < &2 /8 (note that A > Ak is
fixed), the support property of c;’ ; implies

PIN2Dko (r, 0, p,0) > V1 = N2 > /1 —€?/8,
The above two inequalities show that X = () and hence a; (r, 0, hD,, hDp)I{i (c; ;) is O(h™) in

LQ(J\//.T). Since méeii(hR?TEO)h%DgI&(dzj)*ﬁo*e_"RQTEOhﬁ is uniformly bounded on LQ(]\/J\) with
respect to Ro, h and ¢, we obtain the assertion and conclude the proof. O

7. THE WKB PARAMETRIX

In the previous section we proved that Op, j, (ali)e_i““3 Opyy 1 (bli) are rapidly decaying with
respect to h € (0,1] if Rt; < +t < h~! with any ¢; > 0 and large R > 0. Therefore, it remains
to control the above operators for 0 < £t < Rty with suiﬁciently small tg. This section discuss
construction of the WKB parametrix of propagator e~ Op, (a®) for 0 < +t < Rt(, where a™
(resp. a™) is supported in an outgoing (resp. incoming) region. By (4.18), we can always work
on a fixed coordinate neighborhood U, and hence do not write the subscript x explicitly. Let
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UH € U, be as in Example 2.2 and fix open subsets U € Uy € U; € Uy € Un, open intervals
J e Jy€J €Jy € (0,00) and constants —1 < 0 < 09 < 01 < 03 < 1 arbitrarily.

7.1. Fourier integral operators for the WKB parametrix. We here study time dependent
FIO’s which will be used to construct the WKB parametrix. We first construct the phase
function.

Theorem 7.1. We can choose tqg > 0 small enough such that, for sufficiently large Re > 0 and
all Ry > Ry, there exist smooth and real-valued functions

Tt e C((0, Rity) x R??), WU~ € C°°((—Ryto,0) x R??),
satisfying the following Hamilton Jacobi equation on I'F(Ry, Uy, J1,01):
OUE + p(r,0,0,9F,90F) =0, 0< £t < Ryto,
{ UEmg=71p+ 0w,
such that we have the followings all 0 < £t < Ritp:
supp (\Ili(t,r,G, p,w)—1rp—0- w) C T (Ry, U, Jo, 02),

(7.1)

(7.2)

8,285‘8585 (\Ili(t,r, 0,p,w)—rp—10- w)‘ < Cjakg(ﬂ_j_‘ﬁ'\t\ on R*,
Moreover, for all (r,0, p,w) € TF(Ry, Uy, J1,01), we have
(7.3) 020504505 (W (t,1,0,p,w) —rp—0-w +1p(r,0,p,w)) | < Cjargr 1 t]to.
Proof. This theorem can be proved similarly to Theorem 5.1. We only prove the theorem for
the case t > 0, and the proof for the case ¢ < 0 is similar. Let Ry > R| > R1/2, Uy € U] € U,
J1 € J] € (0,00) and 01 < o} < 1. Let Fg, : (r,0,p,w) — (r/R1,0,p,w), and define g*(¢) and
g*(t) by
g+(t) = (T(t7 T7 07 p? w)’ 0(t7 r? 97 p7 w)? p7 w)?
g () = (F(t,,0,p,0),60(t,2,6,p,w), p,w)
= FRl © g+(t) © Fﬁll(% Oapvw)a
where (r(t,r,0,p,w),0(t,r,0,p,w)) is the Hamilton flow generated by p, and = = r/R;. By
Proposition 4.2, we have
1030505007 (t) — )| < CjarpRy ' [t] < Carsto,
0205 0,05(8(t) — 0)] < Cjanp Ry '|t] < Cjangto,
and
101 (t) —1d | < Ctg < 1/2,
for all (z,0,p,w) € Fp,IT'T (R}, U, Ji,01) and 0 < t < Ryt as long as typ > 0 is small enough.
Applying a same argument as that in the proof of Lemma 5.3 to g*(t), we see that g*(t) is
diffeomorphic from 't (R}, U], J|, o}) onto its range for all 0 < ¢t < Rytp, and satisfies

F+(R1,U1,J1,0'1) C gi(t)(f‘+( ll,U{,J{,O'/l)), 0 <+t < Ryitp.

Let [N (R, Uy, Ji,01) 3 (r,0,p,w) — (#1(t),07(t), p,w) be the inverse of g*(¢), and put
(rt(t,s),0%(t,s), pt(t,s),wt(t,s)) = (r,0,p,w)(s,71(t),0F(t),p,w) for 0 < s < t < Rytp.
Then, by a same argument as that in the proof of Lemma 5.4 and Lemma 5.5, we have

74 1029505 (7F (t) — )| + (0198950 (wT (8, t) — w)| < Cjangr I,
' 0005050507 (t) — )] + 0205085 (p™ (t,1) — p)| < Cranpr™ Pty
Define \i/+ S COO((O, th[)) X F+(R1, Ul, J1,0'1)) by

H(t):=rp+0-w+ /t L(rT(t,s),0%(t,s),pT(t,8),wT(t,s))ds,
0
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where L = (pd,p +w - Oup — p)(7, 0, p,w). By a standard Hamilton-Jacobi theory, it is easy to
see that UT(¢) solves (7.1) and satisfies
OU(t) = (p*(t,8),w™ (8,1), 7 (1), 6%(2)).
By (7.4) and the energy conservation law

p(r,0,0,0* (1), 80 (1)) = p(~* (8),67 (1), p, w),

we have

D105 050 (p(r,0,0,5 (1), 9y (1)) = p(r,0, p, @) ) | < Cranar™ .

Therefore,

01050500 (U (8) = rp = 0w + tp(r,0,p,0) )| < Canar™ tlte.
Choose x4+ € C®(R??) so that
0<x+ <1, x4=1 on TF(Ry,Ui,J1,01), suppxy C I (Ry, Uy, Jo,09),

and that
L0508 Ox+ (1,0, p,w)| < Cjapg(r) 71 on R

We now define U (t) := rp+6-w+x, (P (t) —rp+0-w). Clearly, U(t)* satisfies the statement
of theorem 7.1. O

Suppose (a™(t))o<+t<Rr,t, are bounded in Ss.(I'* (R, Uy, J1, 01)), respectively. We define the
FIO’s for the WKB parametrix I\j,EVKB(ai(t)) : $(RY) — §(R?) by
Faca (0 (8))u(r 6)
= (2771h)d /ei(wi(t’r’e’p’w)T/pel'“’)ai(t, .0, p,w)u(r’,0)dr' dd’ dpdw.
Proposition 7.2. I\TVKB(ai(t)) are bounded on L?(R%) uniformly with respect to 0 < +t < Ryty:
v (@ (0)ull 2y < Cllull 2 ggay-

Proof. For (1,0, p,w,r’,0') € R3 with 7,7/ > Ry and 0 < t < Rytg, define the map (p! ,wl) by

1
(P, wi)(t, 7,0, p,w,r",0) = / (Oro ¥ ) (t, 7" + s(r —1"),0 +s(0 — 0'), p,w)ds.
0
By (7.2), we have

sup (’@V(pfr - ,0)‘ + Rfl‘ﬁw(wi - w)’) <C,R7 _wto,

0<t<Rjtg
where 97 = W@g‘@g@g@i:@g‘,, with v = (4, o, k, 3, j',@’). By this estimate and a similar argument
as in the proof of Lemma 5.9, we obtain that, for all (r,0,7/,0) € R* with r,/ > Ry and
0 <t < Rytg, the map (p,w) — (pi,wi)(t, 0, p,w,r',0") is a diffeomorphism from R onto
itself provided that ¢ty > 0 is small enough. We also see that the corresponding inverse (p,w) —
(P2, wd)(t,7,0,p,w, 1", 0) satisfies
(7.5) sup (’87(/)%r —p)| + Rf1‘87(wi —w)|) < CyR{7 Al

0<t<Rjto
Using the change of variable (p,w) — (p2,w?), Lip(a™ () kg (at(t))* can be regarded as a
h-PDO with the amplitude

at(t,r,0, pi,wi)aJr(t, .0, p%,w? )| det 0p7w(pi,wi)\.

By (7.5), this amplitude and its all derivatives with respect to 97 are bounded on R34 uniformly
with respect to 0 <t < Ritg. The assertion then follows from the Calderén-Vaillancourt theorem
and the L?-functional calculus. When —Rqtg <t < 0, the proof is similar. O
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7.2. Construction of the parametrix. The main result in this section is the following.

Theorem 7.3. There exists Rwkp > 0 large enough and twkp > 0 small enough such that, for
all R > Ry > Ry > Rwkag, a® € Se(T*(R,U, J,0)) and N > 0, we can find

N
br(t) =D Wb (t)
j=0

with (b;'t(t))OS:ttSthWKB bounded in Ssc(T'*(Ro, Ug, Jo,00)) such that, for all h € (0,1] and
0 < £t < Ritwks,

||€_ithP Opn(ai) - H*I\ﬁ):VKB(bf(t))“H’L(L2(1’\4\)) < CNhN—HW
where Cy > 0 can be taken uniformly with respect to h, t and R;.

Remark 7.4. The essential point of Theorem 7.3 is to construct the parametrix on the time
interval 0 < |t| < Ritwkp which allow us to choose the constant 6 > 0 in Theorem 3.3 inde-
pendently with respect to R;. When |t| > 0 is small and independent of R;, such a parametrix
construction is basically well known (see [18] for the case of elliptic operators on the Euclidean
space, and [3] for the case of the Laplace-Beltrami operator on an asymptotically hyperbolic
manifold).

We prove the theorem for the case when t > 0. Put By (t) = Lixp(b) (t)). By the Duhamel
formula, we have

1D ] t ) D
€_ZthPH*B+(O)H* — Ii*BJr(t)I{* + }ZL/ €_Z(t_s)hpli*(hDs + h2PK)B+(S)Ii*dS,
0

where D, = i710,. Since the off-diagonal decay of the h-PDO implies

|0p,.(at) — k*a™ (r,0,hD,, hDg) k. < C,h",

ez
for all n > 0, it suffices to show that there exists b (¢) such that b} (0) = a™ and
(7.6) 1(hDs + h2B) B () r2(mey) < OnD™?

for h € (0, 1] and 0 < s < thWKB-
Define smooth tensors () and y™(t) by

(1) 1= 0pwpr(r, 0,0, 0T (£), 000" (1)), yT(t):= (p+p1)(r,0,0:,0)¥"(t).
Then, b;{(t) satisfying (7.6) can be constructed by solving the following transport equations.
Lemma 7.5. For sufficiently small tg > 0, there exist
(bj(t))ogthlto bounded in Ssc(T(Ro, Uy, Jo,00)), j=0,1,...,N,

such that bj(t) solve the transport equations:
iby (t) + 2 (t) - Orebg (t) + y" (t)bg (t) =
Qb (1) + 2 (t) - Db (t) +yT (1)b] (t) +iPebl_ (1) =

with the initial condition b (0) = a™, b;r(()) =0 forj=1,2,...,N.

(7.7)

Proof. We mimic Bouclet’s argument [3, Lemma 6.4]. Choose Rj, Ry > 0, U}, Ul € R4~ and
Jb, Jy € (0,00) so that

R0>R6>R6/>R1, UQ@Ué@Ué’@Ul,
JoeJyeJy €h, o9<oy<o;<oi.
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For 0 < s,t < Rytg and (1,0, p,w) € TH(R},UJ, JY,0(), we consider the flow generated by
xt(t), that is the solution to the ODE:
(O (t,5), 0,07 (t,8)) =2t (t,rT(t,5),07(t,s), p,w),
{ (r*(s,s),0%(s,s)) = (r,0).
Since 2t (t) = (9,9 *(t),r~2(h7* 4 a?*)9y U T (t)), by using (7.2), we have
|8t'r+(t, s)‘ < C(1+rT(t, s)_1|t|), ‘8t9+(t, s)‘ < Cort(t, s)_2|t|.

In particular,
0T (s,8)| < C, 007 (s,5)| < CRy™ty.

Therefore, a same argument as that in the proof of Lemma 5.13 implies that there exists tg > 0,
independent of Ry, such that (r*(t,s),07(t,s)) is well-defined on T'M (R, UY, JY, o) for all
0 <s,t < Ritg, and that

Pt (t,s) —r[ < CJtl, |07 (t.s) =0 <to on T (R Uy, Jg,00).
In particular, (r*(t,s),07(¢,s),p,w) € I'"(Ry,Uy, J1,01) for all 0 < s,t < Rytg. Moreover,
differentiating the integral equation

(rt(t,s),0%(t,s)) = (r,0) +/ o (u, T (u, 8), 07 (u, 8), p,w)du

with respect to 07 = 8;83‘8’;85, by using (7.2) and an induction on |y|, we have
(7.8) 07 (rF(t,s) — )] < CorI7Pt|, 107(07 (8, 5) — 0)| < Cyr =Py,
for all 0 < s,t < Ryt and (1,0, p,w) € TT(Ry, U, J},0f)). We put

Do (ts) = (r(1,5), 0% (1,5, ),
and define bj (t) by

b (1) 1= at (@4 (0, 1))l v (s (e,
t
bj(t) = —/ (Z'P,{bj_l)(s, ‘I>+(s,t))€fst y+(u,<I>+(u,t))dudS, j=1,..N.
0

We remark that if we choose ¢y small enough, then (7.8) implies
(I)+(t, S)(F+(R, U,J, 0')) C F+(R0, Uy, Jo, Uo),

@ (t, s) (T (Ro, Uy, Jo, 00)) C T (Ry, Up, Jo, 0p),

q)-l-(tv 8><F+(R67 Ué? ‘](,)7 J(,))) C F+(R6/7 U(Sla Jéla J(,)/) C F+(R17 Ula Jla Ul)a
forall 0 < s,t < Rytg. @ (s,t)is thus well-defined on 't (R}, U, J)), 0(), smooth on I'" ( Ry, Uy, Jo, 00),
and satisfies @, (s,t) = ®,(t,s)~1. Moreover, supp bj(t) C 't (Ry, Uy, Jy, 0¢) since suppa™t C
I'*(R,U, J,0). If we extend bj(t) on R?? so that b;“(t) = 0 outside Tt (Ry, Uy, Jo, 0¢), then
b;r(t) are still smooth with respect to (r,0, p,w). Furthermore, by (2.3), (7.2) and (7.8), we see

that (b;r(t))ogtStho is bounded in Ss.(I'*(Ro, Uy, Jo, 00)). Finally, a standard Hamilton-Jacobi
theory shows that b;r(t) solve (7.7) for 0 <t < Rity. O

Proof of Theorem 7.1. By the construction, B4 (0) = a™(r,0,hD,,hDy). ¥T solves (7.1) on
't (Ry, Uy, J1,01) which contains T'"(Rg, Uy, Jo, 09), and b;r satisfy (7.7) on the latter region.
Therefore, a direct computation yields

(hDs + h®P.) By (s) = hNT2iP.b (s).
Since (ﬁﬁbﬁ(s))ogsgmo is bounded in Ss.(T'*(Ro, Uy, Jo, 00)), (7.1) implies that I\TVKB(iﬁHbj(s))

is bounded on L2(Rd) uniformly with respect to h € (0,1] and 0 < s < Rty. We hence proved
(7.6). O
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7.3. Dispersive estimates. We here prove dispersive estimates for the WKB parametrix. Let
Ry > Rq > Rwkn and twkg > 0 be as in Theorem 7.3.

Theorem 7.6. For any (b (t))o<+i<Rr twis bounded in Ss.(QE(Ro, Uy, Jo,00)), we can write

T (0(1)) = Usype () + Riypeg (8 1),

where UT(t,h) satisfy

_d-1 _d-1 _
(7.9) Ir="2 Uyp (8, h)r ™2 | e(z1®ay, poomayy < ClEh| vz,
for all 0 < £t < min(Ritwks, h™ '), h € (0.1]. Moreover the remainder terms R\iNKB(t, h) are
rapidly decaying with respect to h: for any N >0,
(7.10) | R (1, W] g2y < CnhY, 0 <+t <min(Ritwks, h 1), h e (0.1].
Here constants C,Cn > 0 may be taken uniformly with respect to h and Ry.

Proof. Since the proof is similar as that of Theorem 5.14, we omit details and give the sketch of
the proof. We consider the outgoing case only. The distribution kernel of Iy (b7 (t)) is written
in the form

L+ (t,h) = (27rh)_d/eIiw+(t’r’0’p’“”ﬂ’9/)b+(t,r,G,p,w)dpdw,

where ¥ (¢, 7,0, p,w, ", 0') = U (t,7,0,p,w) —1"p—0"-w. Let x, € C(R), xuw € C(RYL) be
as in the proof of Theorem 5.14, and set

B+(t) = Xp(ap¢+)Xw(aw¢+)b+(t)-
We then have |0,¢"| < 1 and |8,,¢"| < 1 on supp BT. We denote the operator having the kernel
Ig+(t,h) by Ug+(t,h). By a same proof as that in Lemma 5.15, we obtain that R\J{VKB(t, h) =
Lixp (0T (1)) — Ug+(t, h) satisfies (7.10).

We next prove (7.9) for Ugp(t, h) := Up+(t,h). Assume Ry > 4 without loss of generality.
We first note that ' > R;/2 on supp BT; otherwise, there exists Cy > 0, independent of Ry,
such that

’8p1/1+‘ Z r— ’f'/ — COthWKB Z (1/2 — COtWKB)RO >1
if 0 < twkp < (4Cp)7", since r > Ry > Ry on suppb™(t) and 9,9 = r — ' + O(|t]) by (7.2).
This contradicts the support property of B*. We thus have
/4 <r' — 10,07 — CoRitwkn < r <1’ +19,0"| + CoRitwks < 41’
on the support of B*. It follows from (7.3) that ¢/ may be written in the form
¢+(t, T, 07 PV, Tla 0/) = (T - T,)p + (6 - 9/) W tp<r7 97 paw) + Q+(t7 T, 07 wa)
on supp BT, where the remainder Q7 satisfies

BIOgOrAEQ* (¢, 7,0, p,w)| < Cr 7 Pl|tjtwis on  supp BT.

Let x € C*(R*?) be such that 0 < x < 1, supp x C I'"(Ry, Uy, J1,01), x = 1L on ' (Ro, Up, Jo, 00),
and that 8]950%80x = O((r) 7 71!). We then define

wg (ta r, 07 P, W, 7J7 9/)
= —r)p+(0—0)-w—tp(r,0,p,w)+ x(r,0,p,w)QT(t,7,0,p,w).

Since 1 = 1" on [0, Ritwks] x supp BT, using the change of the variable w — rv, Ig+(t,h)

reads
Td_l

(2mh)d
where Bt (r,0,p,v,1',0") :== Bt (r,0, p,rv,r’,0') is compactly supported with respect to (p,v),
and all derivatives of B are bounded on R3?. Since (7.9) is obvious for 0 < t < h (note
that /4 < r < 4r'), we may assume that h < t < Rytwgkp. Set z/NJSF(t,r,G,p, v, 0') =

Ip+(t,h) =

/6,’;%’(twﬁ,p,ww’ﬁ’)g+(r’ 0, p,v,7,0")dpdv,
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t=Yd (t,r, 0, p,7v,77,0"). Choose x1 € C5°(R) so that x1 = 1 on (—1/2,1/2) and suppx1 C
(—=1,1), and set

Bf:m(r—”>g+ By= B B
Clt ) 9

with some large C7 > 0. Since OPLZNJJ = (r—r")/t—p—O(twks), if C1 > 0 is large enough, then
we have [0,1¢ | 2 1 on supp Bs. An integration by parts then implies that

1
(2mh)d
for h <t < Ritwks, where Ct,; is independent of R;. Since

) N 0
o (r;0:p7v) = (0 hik(9) + a?* (r, 0)

is bounded from above and below on R¢, we obtain

000U (8,10, p, 0,0, 0) < O for |k + 8] >2,

< CtWKB ’th|_d/2

/eZtig(tvrﬂ’/””ﬂ"l’el)éj(r, 0,p,v,r",0")dpdv

uniformly with respect to (7,6, p,w,r’,0") € R3* and 0 < t < Ritwkgs. Moreover, if tywkp > 0,
which can be taken uniformly with respect to R, is small enough, then we have

| det 3§,V1/~16"(t,r,¢9,p7 v, 0 =1, (r,0,p,w,7,0") € R3?, 0 <t < Ritwks.

By a same argument as that in Section 5, we can apply the stationary phase theorem, and have
the assertion since r'/4 < r < 47/ on the support of BT, O

8. PROOF OF THEOREM 3.3

We here prove Theorem 3.3. We only consider the case t > 0, and the proof for the case t <0
is similar. Recall that Ay =Y OpP (axs) is a sum of properly supported h-PDO’s. By (2.9),
(2.11) and their adjoint estimates with respect to Gdz, we have

a1 . _d—1 _a
[ AhHL(L2(]/\4\)7Loo(fV[\))+HAhr 2 HL(Ll(ﬂ),p(ﬂ)) <Ch™z2,

(8.1)

172" Anr 2 | g e iy + 7 Ak~ gy < ©
uniformly with respect to h € (0, 1].

Choose Ry > 0 and g > 0 so that Theorems 5.10, 5.14, 6.1, 7.3 and 7.6 hold for all R > Ry
and 0 < e <¢q, and let N > d.

We first prove (3.5). A standard symbolic calculus implies that Op,, (b )* can be replaced by
Op,.(b+) modulo a smoothing term O(hN*1) on L2(M), where b € See(QF (R, Uy, J,€)). More-
over, Op,.(al) —Op? (af) has the L (L2(M))-norm of order N1 by (2.7). Therefore, Theorems
5.10, 5.14 with R = Ry and (2.11) with (¢, s) = (00, (d—1)/2) imply that Op,,ﬂ(aj)e*““3 Op,.(bH)*
can be brought to the form

US(t,h, N) + RN TIRY (¢, h, N),
where U (t,h, N) and Rf(t,h, N) satisfy

_d=1 _d-1 _d
||T 2 U:(ta h,N)’l“ 2 ||L(L1(]/\Z)7Loo(]/\2)) < CN|th‘ 2,
HR:(tvh’ N)HL(L2(]\’/])) < Cu,

uniformly with respect to h € (0,1] and 0 < 4+t < h~!. By using (8.1), we obtain (3.5) since
1< |th|=% for 0 <t <h~L.

Next, let Ry > Rp and Ry > 0 so that 2R; > Rs > R;. Then, there exists twkg > 0,
independent of Ry, such that Theorems 7.3 and 7.6 with R = Ry hold for 0 < t < Ratwkp/2.
By a same argument as above, we obtain (3.4) with ¢y = twkp/2.

For any t; > 0, a same argument as above and Theorem 6.1 imply

1| Op,.(a; e Op,.(b") < ONINHL

*”Lm(ﬂ))
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for h € (0,1] and Rot; < t < h~!. Combining this estimate with (8.1), we obtain (3.6). We
complete the proof. O

APPENDIX A. PROOF OF THEOREM 1.2

We here give the sketch of the proof of Theorem 1.2. It is sufficient to prove that, for any
K e M, xg € C§°(M) with xx = 1 on K and admissible pair (p,q), the following estimate
holds under the nontrapping condition:

(A1) Ixre™ " uoll ooy, zacary) < Clluollz(ar-

We mimic the Bouclet-Tzvetkov argument [4, Section 5 and 6].

Proposition A.1. Let ¢ € C§°((0,00)). Then there exist ty > 0 and C' > 0 such that for all
h € (0,1] and admissible pair (p,q),

(A.2) ||XK90(h2P)€_itP“0|\Lp([woh];LQ(M)) < Clluoll 2(ar-

Proof. Let {x : Vi — Ux}x be a finite atlas on K and {¢x}. C C5°(M) be a partition of unity
subordinate to {V,}. Let ¢, € C5°(M) so that 1, = 1 on a neighborhood of supp. For a
symbol a € C3°(U,, x RY), we define Op,,(a)u = £*(a(z, hD,)k«(¢xu)). Since a has a compact
support with respect z and &, the Schur lemma implies that for 1 < ¢ <r < oo and h € (0, 1],
(A.3) lla(z R e(pagrey ey < O,

By a same argument as that in [6, Section 2] which studied the case of compact manifolds
without boundaries (see also [1]), there exist symbols a, , € C§°(Uy X p,;*(supp ¢)) such that
we can approximate xx@(h?P) by >, Op,(as) up to O(hY) on L2(M) for any N > 0. In
particular if we obtain the following estimate:

(A4) 110D,(8) Op(@e ol oo gonzoany < Clluol oy € (0,11,

for any a,b € C§°(Uy, x p,;t(supp¢)), then a same argument as that in Section 3 implies (A.2).
(A.4) follows from (A.3), the TT*-argument and the WKB parametric approximation of the
propagator e~ Op, (a) for 0 < t < t; with sufficiently small ¢ty > 0. The construction of the
WKB parametrix is basically well known and its proof is similar as that in the case of elliptic
operators on the Euclidean space. We refer to [18] for details. Dispersive estimates can be
proved similarly to the case of compact manifolds without boundaries [6]. O

Proof of (A.1). The Duhamel formula implies
p(B*P)xre " Pug = e " o(h* P)xrug — i /O P (2 P) P, xicJe P ugds.
By Theorem 1.1, Proposition A.1 and a same argument as that in [4, Section 5 and 6], we obtain
H‘P(h2P)XKe_itPUO‘|Lp([0,1];Lf1(M))
S B P)xacuol |2y + 02 (W P)xace™ Puol | 2o 11220
+h'2 (W P)IP, xle™*Puoll 2o 1y;2(a))
S H‘P(hQP)UOHH(M) + h1/2HU0HL2(M) + |’XKSO(hZP)efitPUO"L?([0,1};H1/2(M))v
where H'/2(M) is the Sobolev space with the norm ||(1 4 P)/4. |L2(ar)- In the last line we
used inequalities
’|[<P(h2p)7XKH|L(L2(M)) < hy |llp(h?P), [P, XK]]||L(L2(M)) S
1P, xk]X k(B2 P)|| a2 any, =172y S 1
where xx € C3°(M) is a cut-off function so that Xx =1 on supp xx. These inequalities follow

from the pseudodifferential approximations of x @ (h?P) and (1 — xx)@(h?P) such as Lemma
2.4 (see also [1]) and the symbolic calculus.
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We now use the nontrapping condition on the metric. Under the nontrapping condition,
Cardoso-Vodev [7] proved that for sufficiently large A > 0,

Xk (P = A £i0) " Xrellporzany S (N2

By the abstract Kato smooth perturbation theory, this resolvent estimate implies the local
smoothing effect:

Ixre™

Using this estimate, we obtain

Puoll 2o, 13:m172ary) S ol p2gary-

"SD(hZP)XKefitPUOI|Lp([0,1];Lq(M)) S H‘P(th)UOHLZ(M) + h1/2‘|u0||L2(M)

uniformly with respect to h € (0,1]. Applying the Littlewood-Paley decomposition proved by
[2], we obtain (A.1) and conclude the proof. O
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