Formation of a unusually short hydrogen bond in photoactive yellow protein

Keisuke Saito ${ }^{1,2}$ and Hiroshi Ishikita ${ }^{1,2 *}$

1) 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
2) Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 3320012, Japan

Running Title: Short H bonds in photoactive yellow protein
CORRESPONDING AUTHOR: Ishikita, 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 6068501, Japan, Tel. +81-75-753-9286, Fax. +81-75-753-9286, E-mail: hiro@cp.kyoto-u.ac.jp

Abbreviations:

$\delta_{\mathrm{H}},{ }^{1} \mathrm{H}$ NMR chemical shift $\left(\delta_{\mathrm{H}}\right)$;
FTIR spectroscopy, Fourier transform infrared spectroscopy;
LBHB, low-barrier hydrogen bond;
$p \mathrm{CA}, p$-coumaric acid;
PYP, Photoactive yellow protein;
QM/MM, quantum mechanical/molecular mechanical;

Abstract

The photoactive chromophore of photoactive yellow protein (PYP) is p-coumaric acid ($p \mathrm{CA}$). In the ground state, the $p \mathrm{CA}$ chromophore exists as a phenolate anion, which is H -bonded by protonated Glu46 $\left(\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}=\sim 2.6 \AA\right)$ and protonated Tyr42. On the other hand, the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$-bond was unusually short ($\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}=2.47 \AA$) in the intermediate pR CW state observed in time-resolved Laue diffraction studies. To understand how the existence of the unusually short H -bond is energetically possible, we analyzed the H -bond energetics adopting a quantum mechanical/molecular mechanical (QM/MM) approach based on the atomic coordinates of the PYP crystal structures. In QM/MM calculations, the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond is $2.60 \AA$ in the ground state, where Tyr42 donates a H -bond to $p \mathrm{CA}$. In contrast, when the hydroxyl group of Tyr42 is flipped away from $p \mathrm{CA}$, the H -bond was significantly shortened to $2.49 \AA$ in the ground state. The same H -bond pattern reproduced the unusually short H bond in the $\mathrm{pR}_{\mathrm{CW}}$ structure $\left(\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}=2.49 \AA\right.$). Intriguingly, the potential-energy profile resembles that of a single-well H -bond, suggesting that the $\mathrm{p} K_{\mathrm{a}}$ values of the donor (Glu46) and acceptor ($p \mathrm{CA}$) moieties are nearly equal. The present results indicate that the "equal $\mathrm{p} K_{\mathrm{a}}$ " requirement for formation of single-well or low-barrier H-bond (LBHB) is satisfied only when Tyr42 does not donate a H-bond to $p \mathrm{CA}$, and argue against the possibility that the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond is an LBHB in the ground state, where Tyr42 donates a H -bond to $p \mathrm{CA}$.

Keywords: low-barrier hydrogen bond, proton transfer, photoactive yellow protein, Laue diffraction crystallography, ${ }^{1} \mathrm{H}-\mathrm{NMR}$

1. INTRODUCTION

Photoactive yellow protein (PYP) serves as a bacterial photoreceptor, in particular, as a sensor for negative phototaxis to blue light [1]. The photoactive chromophore of PYP is p-coumaric acid ($p \mathrm{CA}$), which is covalently attached to Cys69 [2]. In the PYP ground state, the $p \mathrm{CA}$ chromophore exists as a phenolate anion [3-5]. The PYP crystal structure revealed that $p \mathrm{CA}$ is H-bonded by protonated Tyr42 and protonated Glu46 (Figure 1). Tyr42 is further H-bonded by Thr50. Structural analysis suggested that Glu46 is protonated and $p \mathrm{CA}$ is ionized in the PYP ground state, $\mathrm{pG}[6,7] . \mathrm{H}$ atom positions of PYP were assigned in neutron diffraction analysis [8]. According to neutron diffraction analysis, in the case of the Glu $46-p$ CA pair, an H atom was at a distance of $1.21 \AA$ from Glu46 and $1.37 \AA$ from $p \mathrm{CA}$, almost at the midpoint of the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond (2.57 \AA) (Figure 1). From this unusual H atom position, the H bond between Glu46 and $p \mathrm{CA}$ was interpreted as a low-barrier H bond [8].

An low-barrier hydrogen bond (LBHB) is a non-standard H bond, which was originally proposed to possess covalent bond-like characteristics, thus significantly stabilizing the transition state and facilitating enzymatic reactions [9, 10]. In original reports by Frey et al. [10] and Cleland and Kreevoy [9], it was stated that an LBHB (including a single-well H-bond) can form when the $\mathrm{p} K_{\mathrm{a}}$ difference between donor and acceptor moieties is nearly zero (Figure 1). If this is the case, the identification of an LBHB with a single minimum potential can be valid only if the minimum is at the center of the $\mathrm{O}_{\text {Glu46- }}$ $\mathrm{O}_{p \mathrm{CA}}$ bond (i.e., the $\mathrm{p} K_{\mathrm{a}}$ values of the two moieties are nearly equal) as suggested by Schutz and Warshel [11]. It has been suggested that a stronger H bond results in a more downfield ${ }^{1} \mathrm{H}$ NMR chemical shift. According to the classification of H bonds by Jeffrey [12] and Frey [13], "single-well H bonds" are very short, typically with $\mathrm{O}-\mathrm{O}$ distances of 2.4 to $2.5 \AA$, and display ${ }^{1} \mathrm{H}$ NMR chemical shifts $\left(\delta_{\mathrm{H}}\right)$ of 20 to 22 ppm [13]. "LBHBs" are longer, 2.5 to $2.6 \AA$, with a δ_{H} of 17 to 19 ppm [13]. "Weak H-bonds" are even longer, with a δ_{H} of 10 to 12 ppm [13].

Upon exposure to blue light, PYP undergoes the following photocycle; pG (ground state) $\rightarrow \mathrm{P}^{*}$ -(trans-cis isomerization) $\rightarrow \mathrm{I}_{0} \rightarrow \mathrm{I}_{0}^{\ddagger} \rightarrow \mathrm{pR}-($ proton transfer and large conformational change) $\rightarrow \mathrm{pB} \rightarrow$ pG [14-16]. The pR to pB transition has been suggested to involve protonation of $p \mathrm{CA}$ (i.e., proton
transfer) and a large structural change of the protein [14, 15]. Although time-resolved Laue diffraction studies proposed structural models of the intermediates [17], the relevance of the proposed pB structure (PDB: 1TS0) as an intermediate of the photocycle is a matter of debate. In Laue diffraction studies, the pB intermediate has a H -bond between $\operatorname{Arg} 52$ and $p \mathrm{CA}$ [17], whereas solution structures of the pB state argue a high degree of disorder in residues 42-56 [18] (discussed in Ref. [19]).

On the other hand, time-resolved Laue diffraction studies identified the $\mathrm{pR}_{\mathrm{CW}}$ intermediate [17]. The $\mathrm{pR}_{\mathrm{CW}}$ intermediate structure [17] was proposed to correspond to the pR species [14-16] observed in spectroscopic studies. The pR state decays to the pB state as a result of PT from Glu46 to $p \mathrm{CA}$ with the rate coefficient of $250 \mu \mathrm{~s}$ [14, 15], which is consistent with that of $333 \mu \mathrm{~s}$ for the $\mathrm{pR}_{\mathrm{Cw}}$ decay [17]. To our best knowledge solution structures of the pR state have not been reported.

Interestingly, the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond is unusually short, $2.47 \AA$ in the $\mathrm{pR} \mathrm{CW}_{\mathrm{CW}}$ structure $(1.60-\AA$ resolution) [17], which may argue against the presence of an LBHB in the ground state proposed in Ref. [8]. In general, a H -bond donor-acceptor distance can be the shortest when the $\mathrm{p} K_{\mathrm{a}}$ difference between donor and acceptor moieties is nearly zero. This is why LBHB and single-well H-bonds are shorter than standard (asymmetric double-well) H-bonds (Figure 1) [11, 20-22]. If the presence of the shorter $\mathrm{O}_{\text {Glu46- }}$ $\mathrm{O}_{p \mathrm{CA}}$ bond in the $\mathrm{pR} \mathrm{R}_{\mathrm{CW}}$ state relative to the ground state is plausible, this will suggest that "matching $\mathrm{p} K_{\mathrm{a}} "$ between the H -bond donor and acceptor moieties is not satisfied in the ground state (at least, less likely than in the $\mathrm{pR}_{\mathrm{CW}}$ state).

To understand energetics of the unusually short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond in the pR CW structure, the influence of Tyr42 (i.e, another H-bond partner of $p \mathrm{CA}$) on the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$-bond is to be clarified. The LBHB $\mathrm{O}_{\text {Glu46 }}-\mathrm{O}_{p \text { CA }}$ bond was originally proposed to stabilize "the isolated negative charge" originating from ionized $p \mathrm{CA}$ in the protein inner core [8]. However, the presence of the polar residue Tyr42 that donates an H bond to $p \mathrm{CA}\left(\mathrm{O}_{\mathrm{Tyr42}}-\mathrm{O}_{p \mathrm{CA}}=2.50 \AA[23]\right.$ to $\left.2.52 \AA[8]\right)$ in the ground state appeared to play a role in stabilizing the ionized chromophore (Figure 1) and is possibly an implication that the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond does not necessarily require characteristics of an LBHB to exist in the protein environment.

On the other hand, in the pR state the presence of the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond has been confirmed in spectroscopic studies (e.g., the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond is stronger in pR relative to pG [4]), while the presence of the $\mathrm{O}_{\mathrm{Tyr} 42}-\mathrm{O}_{p \mathrm{CA}}$ is unclear. If the $\mathrm{O}_{\mathrm{Tyr} 42}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$-bond is absent in the pR (WW state, $\mathrm{p} K_{\mathrm{a}}(p \mathrm{CA})$ relative to $\mathrm{p} K_{\mathrm{a}}$ (Glu46) is expected to be significantly different from that in the ground state, which can affect the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond length. Indeed, the $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$ bond is significantly short $(2.51 \AA)$ in the Y42F crystal structure [24] relative to the native PYP ($2.57 \AA[8,23]$). Fourier transform infrared (FTIR) spectroscopic studies also have suggested that the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond is stronger in the Y 42 F mutant than in the native PYP [25].

To evaluate how formation of a unusually short H -bond is energetically possible in PYP, we analyzed the H -bond energetics adopting a quantum mechanical/molecular mechanical (QM/MM) approach based on the atomic coordinates of the PYP crystal structures including the $\mathrm{pR}_{\mathrm{CW}}$ [17] and Y42F [24] structures.

2. COMPUTATIONAL PROCEDURES

QM/MM calculations. The atomic coordinates were taken from the X-ray structures of the native (PDB ID codes 1OT9 or 1OTB) [23] and Y42F (1F9I) [24], PYP proteins and the Laue crystal structure of the $\mathrm{pR}_{\mathrm{CW}}$ (1TS7) intermediate [17]. To gain better understanding of the electronic structure of the chromophore $p \mathrm{CA}$, and the residues in the H-bond network, namely Tyr42, Glu46, Thr50, and Cys69, we performed large-scale QM/MM calculations for the entire PYP protein. Note that the calculated $\mathrm{O}_{\text {Glu }} \mathrm{T}_{6}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$-bond length remained unchanged even when Cys69 was involved in the MM region. We employed the so-called electrostatic embedding QM/MM scheme [26] and used the Qsite [27] program code as performed in previous studies [28]. The detailed geometry of QM region was optimized under the influence of MM electrostatic/steric field (see PYP_SI.pdb in SI for geometry). We employed the restricted DFT method with the B3LYP functional and LACVP**+ basis sets. For the QM/MM calculations, we added additional counter ions to neutralize the whole system.

H-bond potential-energy. For following the proton transfer (PT) pathways, we employed an iterative (constrained) $\mathrm{QM} / \mathrm{MM}$ geometry optimizations with fixing the selected reaction coordinate. First, we prepared for the $\mathrm{QM} / \mathrm{MM}$ optimized geometry without constraints, and we used the resulting geometry as the initial geometry. Next, the reaction coordinate was defined as a linear combination of two PT distances $\left(\mathrm{O}_{\text {donor }}-\mathrm{H}\right.$ and $\left.\mathrm{H}-\mathrm{O}_{\text {acceptor }}\right)$. Then, we moved the H atom from the H -bond donor atom $\left(\mathrm{O}_{\text {donor }}\right)$ to the acceptor atom $\left(\mathrm{O}_{\text {acceptor }}\right)$ by $0.05 \AA$, optimized the geometry by constraining the $\mathrm{O}_{\text {donor }}-\mathrm{H}$ and $\mathrm{H}-$ $\mathrm{O}_{\text {acceptor }}$ distances such that the sum of the two distances remained constant in order to really follow the proton motion, and calculated the energy of the resulting geometry at each PT coordinate. This procedure was repeated until the H atom reached the $\mathrm{O}_{\text {acceptor }}$ atom. Except for the atoms directly involved in the PT reaction coordinate (i.e., $\mathrm{O}_{\text {donor }}$, a transferring H , and $\mathrm{O}_{\text {acceptor }}$ atoms), all of the atomic coordinates in the QM region were fully relaxed (i.e., not fixed) in the generation of the scans.
${ }^{1}$ H-NMR chemical shift. The NMR chemical shift was calculated by using the GIAOs method [29] implemented in the Qsite [27] and JAGUAR [30] programs. The absolute shielding constant of ${ }^{1} \mathrm{H}$ of tetramethylsilane (TMS) was calculated to be 31.6 ppm on the basis of the atomic coordinates in Ref. [31] and used as the TMS reference for δ_{H}. We evaluated the accuracy of the quantumchemically calculated δ_{H} [32]. First, we calculated δ_{H} for malaete and compounds which are also supposed to contain a strong H bond or an LBHB [33]. The calculated δ_{H} values are considerably close to the experimentally measured values, with discrepancies of $\sim 1 \mathrm{ppm}$ or less [32]. The discrepancy between the measured values (solution) and the calculated values (solid state) is mainly due to inadequate accounting for the multiconfiguration of the molecular geometry, the proton dynamics, and the rovibrational corrections to the nuclear shielding in the calculations. This indicates, however, that the contributions of these features to the values are obviously negligible, which does not practically affect any conclusions from the present study. Hence, the calculated δ_{H} values should be considered at this level of accuracy [32].
${ }^{1}$ H-NMR chemical shift validation. The calculated OHO-bond geometries and the NMR chemical shifts can also be evaluated by the correlation proposed by Limbach et al. [34]. The geometric
correlation of the $\mathrm{O}_{\text {acceptor }} \cdots \mathrm{H}-\mathrm{O}_{\text {donor }}$ bond between the acceptor \cdots hydrogen $\left(\mathrm{O}_{\text {acceptor }} \cdots \mathrm{H}\right)$ distance r_{1} and the donor-hydrogen $\left(\mathrm{O}_{\text {donor }}-\mathrm{H}\right)$ distance r_{2} can be obtained by

$$
\begin{align*}
& q_{2}=2 r^{0}+2 q_{1}+2 b \ln \left[1+\exp \left(-2 q_{1} / b\right)\right] \\
& b=\left[2 q_{2 \min }-2 r_{0}\right] / 2 \ln 2, \\
& q_{1}=\left(r_{1}-r_{2}\right) / 2 \\
& q_{2}=r_{1}+r_{2}, \tag{eq.1}
\end{align*}
$$

where $q_{2 \text { min }}$ represents a minimum value corresponding to the minimum $\mathrm{O}_{\text {acceptor }} \cdots \mathrm{O}_{\text {donor }}$ distance in the case of a linear H bond, and r^{0} is the equilibrium distance in the fictive free diatomic unit OH [34]. The correlation between the OHO-bond geometry and the ${ }^{1} \mathrm{H}$ NMR chemical shift δ_{H} can be obtained by

$$
\begin{align*}
& \delta_{\mathrm{H}}=\delta_{\mathrm{OH}}^{0}+\Delta_{\mathrm{H}}\left(4 p_{1} p_{2}\right)^{m}, \\
& p_{1}=\exp \left[-\left(q_{1}+q_{2} / 2-r^{0}\right) / b\right], \\
& p_{2}=\exp \left[-\left(-q_{1}+q_{2} / 2-r^{0}\right) / b\right], \tag{eq.2}
\end{align*}
$$

where $\delta_{\mathrm{OH}}{ }^{0}$ and Δ_{H} represent the limiting chemical shifts of the separate fictive groups OH and the excess chemical shift of the quasi-symmetric complex, respectively, and m is an empirical parameter. q_{2} is given in eq. 1. Using eqs. (1) and (2), the δ_{H} can also be obtained, regarding q_{2} as the donor-acceptor $\left(\mathrm{O}_{\text {donor }}-\mathrm{O}_{\text {acceptor }}\right)$ distance. We used the same parameters as used in Ref. [34], i.e., $r^{0}=0.93, q_{2 \min }=2.36$, $\delta_{\mathrm{OH}}{ }^{0}=7.9, \Delta_{\mathrm{H}}=13$, and $m=1.1$, as done in a previous study [32].

3. RESULTS

Influence of Tyr42 on the $\mathrm{O}_{\mathrm{Glu46}}-\mathbf{O}_{p \mathrm{CA}}$ bond properties. In the $\mathrm{QM} / \mathrm{MM}$ geometry, the $\mathrm{O}_{\text {Glu }}-\mathrm{O}_{p \mathrm{CA}}$ bond of $2.51 \AA$ in the Y42F mutant is shorter than the bond of $2.57 \AA$ in the native PYP, in agreement with the crystal structure [24] (Table 2). The calculated δ_{H} value for the $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \text { CA }}$ bond in the Y 42 F mutant was 16.8 ppm (Table 2), in agreement with a δ_{H} of 16.7 ppm measured in solution NMR studies [35]. Using the correlation proposed by Limbach et al. [34], an O-O distance of $2.51 \AA$ also predicts a
δ_{H} of 16.4 ppm , suggesting that the larger δ_{H} in the Y 42 F mutant is predominantly due to the decreased $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ length.

The decrease in the $\mathrm{O}_{\text {Glu46 }}-\mathrm{O}_{p \mathrm{CA}}$ length upon mutation of Y 42 F can also be understood from the decrease in the energy near the p CA moiety relative to the Glu46 moiety in the potential energy profile (Figure 3), which corresponds to the decrease in the $\mathrm{p} K_{\mathrm{a}}$ difference between Glu46 and $p \mathrm{CA}$. Thus, the shorter $\mathrm{O}_{\text {Glu46 }}-\mathrm{O}_{p \mathrm{CA}}$ length in the Y 42 F mutant with respect to the native PYP is due to pronounced "matching $\mathrm{p} K_{\mathrm{a}}$ " between the H -bond donor and acceptor moieties, i.e. the H -bond potential energy shape becomes more symmetric. Similar relationship between the $\mathrm{p} K_{\mathrm{a}}$ differences and the H -bond donor-acceptor distances has also been demonstrated for H -bonds in other proteins (e.g., counter ions in bacteriorhodopsin and Anabaena sensory rhodopsin [36] and redox active tyrosine D1-Tyr161 in photosystem II [37]).

Such a decrease in the $\mathrm{p} K_{\mathrm{a}}$ difference leads to a more symmetrical H bond characteristic of the $\mathrm{O}_{\mathrm{Glu} 46}{ }^{-}$ $\mathrm{O}_{p \mathrm{CA}}$ bond. According to Frey [13], an essential requirement for a symmetrical H bond is that the proton lies inline with the donor and acceptor atoms; this feature is pronounced in the essentially linear H bond of $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}$ in the Y42F mutant $\left(172.0^{\circ}\right)$ relative to the that in the native PYP $\left(168.2^{\circ}\right)($ Table 2$)$. All these features are consistent with previous proposals by Frey et al. [10, 13], Cleland and Kreevoy [9], Schutz and Warshel [11], and Limbach et al. [34]. Note that the resulting properties of the potentialenergy curve and δ_{H} calculated for the present crystal structure of the native PYP (PDB ID code 1OT9, 110 K) are consistent with those previously reported for the other crystal structure (PDB ID code 2 ZOH , 295 K) $[28,32]$.

In summarizing the results, the H -bond donation of $\operatorname{Tyr} 42$ to $p \mathrm{CA}$ contributes to the increase in the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ length of the native PYP $(2.57 \AA$) relative to the Y42F mutant ($2.51 \AA$). It should also be noted that the longer $\mathrm{O}_{\text {Glu46 }}-\mathrm{O}_{p \mathrm{CA}}$ bond in the native PYP does not suggest that the native PYP is energetically unstable relative to the Y42F mutant.

Influence of Tyr42 on the $\mathbf{O}_{\text {Glu46 }}-\mathbf{O}_{p \mathrm{CA}}$ length in the native PYP. In contrast to the Y42F mutant, it is obvious that Tyr42 donates an H-bond to $p \mathrm{CA}$ in the ground state of the native PYP [8, 28, 32]. To
investigate the influence of Tyr 42 as an H -bond donor to $p \mathrm{CA}$ on the H -bond network, we performed QM/MM calculations by flipping the hydroxyl group of Tyr42 (i.e., without removing Tyr42). Note that Thr50 is at a H-bond distance with Tyr42 (2.85 \AA) in the crystal structure [23] (Table 1).

We found that, if Tyr 42 provides an H bond to $\operatorname{Thr} 50$, not to pCA , the H -bond geometry resulted in an unusually short $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$ bond of $2.46 \AA$ ([short $\left.\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}\right]$ bond pattern, Figure 2) with a δ_{H} of 18.9 ppm , typical values for symmetrical H bonds [13] (Table 1). The potential-energy curve of [short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$] resembles that of a single-well H bond as shown in Ref. [20] (Figure 4). The number of H bonds in the chromophore of the [short $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$] geometry is identical to the [standard] H-bond geometry where Tyr42 provides an H bond to $p \mathrm{CA}$ (Figure 2). These results demonstrate that Tyr42 in the native PYP is the residue that prevent Glu46 and $p \mathrm{CA}$ from possessing equal $\mathrm{p} K_{\mathrm{a}}$. A symmetrical H bond is unlikely to form between Glu46 and $p \mathrm{CA}$ as long as Tyr42 provides an H bond to $p \mathrm{CA}$.

Notably, the neutron diffraction geometry (in the ground state) confirmed the presence of an H bond donation from Tyr42 to $p \mathrm{CA}$ [8], which strongly suggests that in the ground state, $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \text { CA }}$ is chemically impossible to form a symmetrical H bond due to the obvious $\mathrm{p} K_{\mathrm{a}}$ difference between Glu46 and $p \mathrm{CA}$ induced by Tyr42. If formation of an LBHB were strongly advantageous, then the hydrogen bond pattern would rearrange to allow formation of an LBHB in the ground state. Hence, to flip the Tyr42 H bond and to form a single-well H bond, a large energy is required (Figure 4), which may be possible only upon photo excitation (discussed later).

Energetics of a single-well H bond. One might consider that the [short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$] bond of $2.46 \AA$ with a δ_{H} of 18.9 ppm is a strong H bond. However, the potential-energy curve of the [short $\mathrm{O}_{\text {Glu46- }}$ $\left.\mathrm{O}_{p \mathrm{CA}}\right]$ bond ($\mathrm{QM} / \mathrm{MM}$ energy, corresponding to represent not only the energy of the QM region but also contain that of the remaining protein environment) was significantly, energetically high relative to that of the [standard $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$] bond geometry (Figure 4). The observed chromophore destabilization was mainly due to the loss of $\mathrm{O}_{\mathrm{Tyr} 42}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond. The short $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$ bond of $2.46 \AA$ is $\sim 4 \mathrm{kcal} / \mathrm{mol}$ more stabilized than the [standard $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$] bond of $2.57 \AA$. However, complete loss of the $\mathrm{O}_{\mathrm{Tyr42}}-$ $\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond is much more energetically disadvantageous. In addition, it also induces repulsion between
$\mathrm{O}_{\text {Tyr42 }}$ and $\mathrm{O}_{p \mathrm{CA}}(\sim 6 \mathrm{kcal} / \mathrm{mol})$, destabilizing the chromophore region. (Note; that the corresponding repulsion is absent in the Y42F mutant due to the absence of $\mathrm{O}_{\mathrm{Tyr} 42}$. Thus, $\mathrm{p} K_{\mathrm{a}}(p \mathrm{CA})$ is slightly lower than $\mathrm{p} K_{\mathrm{a}}$ (Glu46) in the Y42F mutant (Figure 3) in contrast to the [short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$] geometry (Figure 4) or the $\mathrm{pR}_{\mathrm{CW}}$ structure (Figure 5).)

One advantage of the catalytic site of the protein over bulk water is the availability of the preorganized dipoles in the protein environment to stabilize the transition state electrostatically [11, 21]. For enzymes to utilize the protein dipoles effectively in stabilizing the transition state, a larger polarity between the transition state and the protein is energetically advantageous. In the case of PYP, Tyr42 obviously plays a role in providing the corresponding large polarity to the stability of the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond, which energetically suppresses formation of an LBHB in $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \text { CA }}$. Hence, formation of a short H bond does not necessarily lower the total energy of the protein, as previously reported in other studies [11, 21, 22].

Influence of the H-bond between the carbonyl group of $p \mathrm{CA}$ and the backbone amide of Cys69 on the $\mathbf{O}_{\text {Glu46 }}-\mathbf{O}_{p \mathrm{CA}}$ length. The [short $\mathrm{O}_{\text {Glu46 }}-\mathrm{O}_{p \mathrm{CA}}$] geometry and the $\mathrm{p} \mathrm{R}_{\mathrm{CW}}$ structure have the same the H-bond patterns of Glu46, pCA, and Tyr42, where the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ and $\mathrm{O}_{\mathrm{Tyr} 42}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$-bonds are present and absent, respectively (discussed later).

On the other hand, the H -bond between the carbonyl group of $p \mathrm{CA}$ and the amide group of Cys69, which is present in the the [short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$] geometry but absent in the $\mathrm{pR} \mathrm{R}_{\mathrm{CW}}$ structure [17]. Irrespective of the difference in the H -bond pattern of Cys69, the $\mathrm{O}_{\mathrm{Glu}} 46-\mathrm{O}_{p \mathrm{CA}}$ bond lengths are similarly, unusually short in the two structures (Tables 1 and 3). Hence, the presence/absence of the H -bond of Cys69 on the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ length appears to be much less crucial to the $\mathrm{O}_{\mathrm{Gl} \mathrm{I}_{46}-\mathrm{O}_{p \mathrm{CA}} \text { bond length than }}$ that of Tyr42.

4. DISCUSSION

Presence of a single-well H bond in the $p R_{C w}$ intermediate structure in time-resolved Laue crystallography. The $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond is unusually short, $2.47 \AA$ in the $\mathrm{pR}_{\mathrm{CW}}$ structure (Table 3).

However, the H atom positions and thus far H -bond pattern are yet not known from the crystal structure. The $\mathrm{QM} / \mathrm{MM}$ calculations reproduced the unusually short H -bond distance $(2.49 \AA$) on the basis of the $\mathrm{pR}_{\mathrm{CW}}$ structure only when the [short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$] H-bond geometry (Figure 2) was assumed (Table 3). The standard $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$-bond geometry (i.e., Tyr42 donates an H bond to $p \mathrm{CA}$) yielded the bond length of $2.60 \AA$ even in $\mathrm{QM} / \mathrm{MM}$ calculations of the $\mathrm{pR}_{\mathrm{CW}}$ structure. These results confirm that the actual H-bond pattern in the $\mathrm{pR}_{\mathrm{CW}}$ crystal structure is the [short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$] H -bond geometry, where Tyr42 is flipped away from $p \mathrm{CA}$, rather than the [standard $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$] H-bond geometry, where Tyr donates an H bond to $p \mathrm{CA}$.

The existence of the unusually short H -bond appears to be plausible not only in the $\mathrm{pR}_{\mathrm{CW}}$ structure [17], but also in the pR species [14-16] observed in spectroscopic studies. FTIR studies have suggested that the H bond between Glu46 and $p \mathrm{CA}$ becomes stronger in pR relative to pG as suggested by the downshift in the $\mathrm{C}=\mathrm{O}$ stretching frequency of protonated Glu46 [4]. Because shortening a H -bond donor and acceptor distance leads to migration of the H atom toward the acceptor moiety (e.g., Ref. [32, 36]), the observed downshift in the $\mathrm{C}=\mathrm{O}$ stretching frequency of Glu46 is consistent with the presence of the unusually short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond in the $\mathrm{pR}_{\mathrm{CW}}$ structure. Significance of the H -bond pattern of Tyr 42 and $p \mathrm{CA}$ in the $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$ length can also be seen in studies of the Y42F mutant; (i) the Y42F crystal structure [24] has a shorter $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$ bond than the native PYP (Table 2) and (ii) the $\mathrm{C}=\mathrm{O}$ stretching frequency of protonated Glu46 in the Y42F mutant is downshifted relative to the wild type PYP in FTIR studies [25].

Interestingly, the potential-energy curve of the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond (2.49 \AA) in the pR CW crystal structure resembles that of a typical single-well H bond; the barrierless potential for the PT is an indication of the $\mathrm{pR}_{\mathrm{CW}}$ intermediate being ready for the PT (Figure 5). In FTIR studies, the $\mathrm{C}=\mathrm{O}$ stretching frequency for protonated Glu46 is downshifted to $1732 \mathrm{~cm}^{-1}$ in pR relative to $1740 \mathrm{~cm}^{-1}$ in pG, suggesting that the H atom in the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond (i) remains in the Glu46 moiety (i.e. can interact with Glu46) but simultaneously (ii) significantly migrated toward the p CA moiety [4]; this is exactly the case for a single-well H bond. Indeed, in FTIR studies the existence of a single-well H-bond
has been already proposed [4]; a stronger H -bond in pR relative to pG lowers the energy barrier for proton transfer from Glu 46 to $p \mathrm{CA}$ (see also Figure 4 in Ref. [4]). The present study confirms this, by demonstrating that the unusually short H -bond in the $\mathrm{pR}_{\mathrm{CW}}$ crystal structure [17] is reproducible on the basis of quantum chemistry. Note that the $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond is absent in the pB state [4] and solution structures of the pB state [18].

If the short $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond could be a very strong bond, the pR CW intermediate would be very stable and the proceeding pB state would never form in such a time scale. It should also be noted that a lifetime of hundreds $\mu \mathrm{s}$ for the $\mathrm{pR}_{\mathrm{CW}}$ state is due to the large structural change rather than the PT from Glu46 to $p \mathrm{CA}$. In addition, in a single-well H -bond, movement of a proton between the donor and acceptor moieties is not directly associated with breakage of the H -bond. (note, the potential energy profile of a single-well H-bond only suggests that movement of a proton is easier than in a standard H bond due to the absence of the energy barrier.) Breakage of the short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond can occur as a result of the large structural change, which is driven by the photon energy stored in the system [38]. Hence, the pR intermediate can lower the energy to proceed the pB state by abolishing the unusually short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}} \mathrm{H}$ bond of $<2.5 \AA$.

Here, one may also rediscover the so-called "principle of frustration", where in the folding process, proteins (may not completely eliminate but at least) need to minimize frustration [39]. In terms of the "local" H-bond network of $p \mathrm{CA}$, formation of the unusually short H -bond is energetically allowed (or favored) at the stage of the pR intermediate. However, this is not the energetically lowest state of the "entire" protein, which can also be understood by pR being followed by pB .

5. CONCLUDING REMARKS

The presence of the shorter $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond (2.47 \AA) in the $\mathrm{pR} \mathrm{CW}_{\mathrm{CW}}$ crystal structure [17] relative to the ground state structure $(2.57 \AA)$ indicates that the "equal $\mathrm{p} K_{\mathrm{a}}$ " requirement for formation of a singlewell H -bond is satisfied in the $\mathrm{pR}_{\mathrm{CW}}$ intermediate, but not in the ground state. If matching $\mathrm{p} K_{\mathrm{a}}$ were satisfied in the ground state, the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond $(\sim 2.6 \AA[8,23])$ could neither be further shorten to
$\sim 2.5 \AA$ in the $\mathrm{pR}_{\mathrm{CW}}$ structure [17] nor become stronger in pR as observed in FTIR studies [4]. An LBHB or a single-well H -bond is less likely to form between Glu46 and pCA as long as Tyr42 provides an H bond to $p \mathrm{CA}$ in the native PYP.

The present case clearly shows that the formation of a short symmetrical H bond does not necessarily help to decrease the total energy of the active site. Comparison of the energetics of the two possible H bond patterns in the same protein unambiguously enabled us to realize that merely focusing on a short H bond might lead to neglect of the total energy.

6. ACKNOWLEDGMENT

This research was supported by the JST PRESTO program (K.S. and H.I), Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (22740276 to K.S.), Special Coordination Fund for Promoting Science and Technology of MEXT (H.I), Takeda Science Foundation (H.I.), Kyoto University Step-up Grant-in-Aid for young scientists (H.I.), and Grant for Basic Science Research Projects from The Sumitomo Foundation (H.I.).

7. REFERENCES

[1] W.W. Sprenger, W.D. Hoff, J.P. Armitage and K.J. Hellingwerf, The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein, J Bacteriol 175 (1993) 3096-104.
[2] M. Baca, G.E. Borgstahl, M. Boissinot, P.M. Burke, D.R. Williams, K.A. Slater and E.D. Getzoff, Complete chemical structure of photoactive yellow protein: novel thioester-linked 4hydroxycinnamyl chromophore and photocycle chemistry, Biochemistry 33 (1994) 14369-14377.
[3] M. Kim, R.A. Mathies, W.D. Hoff and K.J. Hellingwerf, Resonance Raman evidence that the thioester-linked 4-hydroxycinnamyl chromophore of photoactive yellow protein is deprotonated, Biochemistry 34 (1995) 12669-12672.
A. Xie, W.D. Hoff, A.R. Kroon and K.J. Hellingwerf, Glu46 donates a proton to the 4hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein, Biochemistry 35 (1996) 14671-14678.
[5] E. Demchuk, U.K. Genick, T.T. Woo, E.D. Getzoff and D. Bashford, Protonation states and pH titration in the photocycle of photoactive yellow protein, Biochemistry 39 (2000) 1100-13.
[6] G.E. Borgstahl, D.R. Williams and E.D. Getzoff, $1.4 \AA$ structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore, Biochemistry 34 (1995) 6278-6287.
W.W. Cleland and M.M. Kreevoy, Low-barrier hydrogen bonds and enzymic catalysis, Science 264 (1994) 1887-1890.
[10] P.A. Frey, S.A. Whitt and J.B. Tobin, A low-barrier hydrogen bond in the catalytic triad of serine proteases, Science 264 (1994) 1927-30.
[11] C.N. Schutz and A. Warshel, The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases, Proteins 55 (2004) 711-723.
[12] G.A. Jeffrey, An Introduction to Hydrogen Bonding (1997) Oxford University Press, Oxford.
[13] P.A. Frey, in Isotope Effects in Chemistry and Biology (Kohen, A. and Limbach, H.-H., Eds.) (2006) pp 975-993, CRC press, Boca Raton, FL.
[14] W.D. Hoff, I.H. van Stokkum, H.J. van Ramesdonk, M.E. van Brederode, A.M. Brouwer, J.C. Fitch, T.E. Meyer, R. van Grondelle and K.J. Hellingwerf, Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila, Biophys J 67 (1994) 1691-705.
L. Ujj, S. Devanathan, T.E. Meyer, M.A. Cusanovich, G. Tollin and G.H. Atkinson, New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy, Biophys J 75 (1998) 406-12.
[16] M. Unno, M. Kumauchi, N. Hamada, F. Tokunaga and S. Yamauchi, Resonance Raman evidence for two conformations involved in the L intermediate of photoactive yellow protein, J Biol Chem 279 (2004) 23855-8.
[17] H. Ihee, S. Rajagopal, V. Srajer, R. Pahl, S. Anderson, M. Schmidt, F. Schotte, P.A. Anfinrud, M. Wulff and K. Moffat, Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds, Proc Natl Acad Sci U S A 102 (2005) 7145-50.
[18] C. Bernard, K. Houben, N.M. Derix, D. Marks, M.A. van der Horst, K.J. Hellingwerf, R. Boelens, R. Kaptein and N.A. van Nuland, The solution structure of a transient photoreceptor intermediate: Delta25 photoactive yellow protein, Structure 13 (2005) 953-62.
[19] E.C. Carroll, S.H. Song, M. Kumauchi, I.H. van Stokkum, A. Jailaubekov, W.D. Hoff and D.S. Larsen, Subpicosecond Excited-State Proton Transfer Preceding Isomerization During the Photorecovery of Photoactive Yellow Protein, J Phys Chem Lett 1 (2010) 2793-2799.
[20] C.L. Perrin and J.B. Nielson, "Strong" hydrogen bonds in chemistry and biology, Annu Rev Phys Chem 48 (1997) 511-544.
[21] A. Warshel, A. Papazyan and P.A. Kollman, On low-barrier hydrogen bonds and enzyme catalysis, Science 269 (1995) 102-106.
[22] C.L. Perrin, Are short, low-barrier hydrogen bonds unusually strong?, Acc Chem Res 43 (2010) 1550-1557.
[23] S. Anderson, S. Crosson and K. Moffat, Short hydrogen bonds in photoactive yellow protein, Acta Crystallogr D Biol Crystallogr 60 (2004) 1008-1016.
[24] R. Brudler, T.E. Meyer, U.K. Genick, S. Devanathan, T.T. Woo, D.P. Millar, K. Gerwert, M.A. Cusanovich, G. Tollin and E.D. Getzoff, Coupling of hydrogen bonding to chromophore conformation and function in photoactive yellow protein, Biochemistry 39 (2000) 13478-86.
C.P. Joshi, H. Otto, D. Hoersch, T.E. Meyer, M.A. Cusanovich and M.P. Heyn, Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein, Biochemistry 48 (2009) 9980-93.
F. Hibbert and J. Emsley, Hydrogen bonding and chemical reactivity, Adv. Phys. Org. Chem. 26 (1990) 255-379.

[34]

H.-H. Limbach, P.M. Tolstoy, N. Pérez-Hernández, J. Guo, I.G. Shenderovich and G.S. Denisov, OHO hydrogen bond geometries and NMR chemical shifts: from equilibrium structures to geometric H/D isotope effects, with applications for water, protonated water, and compressed ice, Isr J Chem 49 (2009) 199-216.
[36] K. Saito, H. Kandori and H. Ishikita, Factors that differentiate the H-bond strengths of water near the Schiff bases in bacteriorhodopsin and Anabaena sensory rhodopsin, J Biol Chem (2012) 34009-18.
K. Saito, J.-R. Shen, T. Ishida and H. Ishikita, Short hydrogen-bond between redox-active tyrosine Y_{Z} and D1-His190 in the photosystem II crystal structure, Biochemistry 50 (2011) 9836-9844.
M.E. van Brederode, T. Gensch, W.D. Hoff, K.J. Hellingwerf and S.E. Braslavsky, Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila, Biophys J 68 (1995) 1101-9.
H. Nymeyer, A.E. Garcia and J.N. Onuchic, Folding funnels and frustration in off-lattice minimalist protein landscapes, Proc Natl Acad Sci U S A 95 (1998) 5921-8.
T. Matsui, T. Baba, K. Kamiya and Y. Shigeta, An accurate density functional theory based estimation of $\mathrm{pK}(\mathrm{a})$ values of polar residues combined with experimental data: from amino acids to minimal proteins, Phys Chem Chem Phys 14 (2012) 4181-7.
S. Hammes-Schiffer, Theoretical perspectives on proton-coupled electron transfer reactions, Acc Chem Res 34 (2001) 273-81.

FIGURE CAPTIONS

Figure 1. (a) Overview of typical potential-energy profiles: (top) standard H-bonds (asymmetric double-well), typically with an $\mathrm{O}_{\text {donor }}-\mathrm{O}_{\text {acceptor }}$ distance $>\sim 2.6 \AA$; (middle) low barrier H-bond (LBHB), typically with an $\mathrm{O}_{\text {donor }}-\mathrm{O}_{\text {acceptor }}$ distance of 2.5-2.6 \AA; (bottom) single-well (ionic) H-bonds, typically with an $\mathrm{O}_{\text {donor }}-\mathrm{O}_{\text {acceptor }}$ distance of $<\sim 2.5 \AA[20]$.
(b) H atom positions of the $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$ bond (left) in the neutron diffraction analysis (green sphere, PDB ID code 2ZOI) [8]. (right) QM/MM optimized structure based on the X-ray crystal structure (cyan sphere, PDB ID code 1OT9) [23].

Figure 2. Possible H-bond patterns in the native PYP. QM/MM optimized geometries of (left) the [standard] and (right) [short $\left.\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}\right] \mathrm{H}$-bond patterns.

Figure 3. Energy profiles along the proton transfer coordinate for the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond in the native PYP (black curve) and the Y42F mutant (red curve). Changes of the properties induced by the Y42F mutation are indicated by open arrows. For comparison, the energy minimum was set to zero for both the native PYP and the Y42F mutant. Although $\mathrm{p} K_{\mathrm{a}}$ should refer to free energy rather than energy, it can be practically assumed to result in the same tendency [40], in particular for the case with short H bonds where the proton motion is considerably restricted due to the presence of the donor and acceptor moieties in the protein environment. Note that $\mathrm{p} K_{\mathrm{a}}$ is not for a proton release from the $\mathrm{O}_{\text {donor }}-$ $\mathrm{H} . . . \mathrm{O}_{\text {acceptor }}$ bond (i.e., $\mathrm{p} K_{\mathrm{a}}\left(\left[\mathrm{O}_{\text {donor }}-\mathrm{H} \ldots \mathrm{O}_{\text {acceptor }}\right] /\left[\mathrm{O}_{\text {donor }} \ldots \mathrm{O}_{\text {acceptor }}\right]^{-}\right)$, but $\mathrm{p} K_{\mathrm{a}}\left(\left[\mathrm{O}_{\text {donor }}-\mathrm{H}\right] /\left[\mathrm{O}_{\text {donor }}\right]^{-}\right)$and $\mathrm{p} K_{\mathrm{a}}\left(\left[\mathrm{O}_{\text {acceptor }}-\mathrm{H}\right] /\left[\mathrm{O}_{\text {acceptor }}\right]^{-}\right)$for each diabatic potential curve of the donor/acceptor moiety [41].

Figure 4. Energy profiles along the proton transfer coordinate for the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond in the [standard] H-bond geometry (black curve) and the short $\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$ bond geometry (blue) in the native PYP. The two H-bond patterns differ predominantly at the H atom (red) orientation of Tyr42. The open arrows indicate a reorientation of the hydroxyl H atom of Tyr 42 , which separates the two H -bond geometries energetically. Note that the atomic coordinates of Tyr42 were fully relaxed (not fixed) in each $\mathrm{QM} / \mathrm{MM}$ calculation. The energy minimum of the [standard] H-bond geometry was set to zero.

The two energy profiles describe the total QM/MM energy of the entire system, including both QM and MM regions.

Figure 5. Energy profiles along the proton transfer coordinate for the $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$ bond in the pRcw intermediate (PDB ID code 1TS7).

(a)
(b)

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Table 1. (i) Experimental and calculated geometries (in angstrom for distance and degree for angle) and (ii) δ_{H} (in ppm) of the native PYP. For the complete atomic coordinates of the QM/MM geometries, see PYP_SI.pdb in SI. n.d.; not determined. The error in O-O distance in the crystal was estimated to be $0.01-0.02 \AA$ Å [23].
(i)

Native			
	10T9	calc.	calc.
[geometry]		standard	short $\mathrm{O}_{\text {Glu46 }}-\mathrm{O}_{p \mathrm{CA}}$
$\mathrm{O}_{\mathrm{Glu46}}-\mathrm{O}_{p \mathrm{CA}}$	2.59	2.57	2.46
$\mathrm{O}_{\text {Glu46 }}-\mathrm{H}$	n.d.	1.02	1.07
$\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}$	n.d.	1.56	1.39
$\left(\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}\right)$	n.d.	168.2	169.9
$\mathrm{O}_{\text {Tyr42- }} \mathrm{O}_{p \mathrm{CA}}$	2.50	2.48	2.70
$\mathrm{O}_{\text {Tyr42 }}-\mathrm{H}$	n.d.	1.02	0.97
$\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}$	n.d.	1.47	3.20
$\left(\mathrm{O}_{\left.\text {Tyr } 42-\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}\right)}\right.$	n.d.	170.9	51.1
$\mathrm{O}_{\text {Thr50 }}-\mathrm{O}_{\text {Tyr42 }}$	2.85	2.79	2.86
$\mathrm{O}_{\text {Thr50 }}-\mathrm{O}_{\mathrm{C}=0,46}$	3.13	3.08	2.81
$\mathrm{O}_{\text {Thr } 50}-\mathrm{O}_{p \text { CA }}$	4.02	4.01	4.09

${ }^{\bar{a}}$ See Ref. [35].
(ii)

		standard short $\mathbf{O}_{\text {Glu46 }}-\mathbf{O}_{p \text { CA }}$	
Slu46	solution	calc.	calc.
Tyr42	15.2^{a}	14.8	18.8

Table 2. (i) Experimental and calculated geometries (in angstrom for distance and degree for angle) and (ii) δ_{H} (in ppm) of the mutant PYP proteins. Values for the native PYP with the [standard] H-bond pattern are also shown for comparison. For the complete atomic coordinates of the $\mathrm{QM} / \mathrm{MM}$ geometries, see PYP_SI.pdb in SI. n.d.; not determined.
(i)

	native		Y42F	
	crystal (10T9)	calc.	crystal (1F9I)	calc.
$\overline{\mathrm{O}_{\text {Glu46- }}-\mathrm{O}_{p \mathrm{CA}}}$	2.59	2.57	2.51	2.50
$\mathrm{O}_{\text {Glu46 }}-\mathrm{H}$	n.d.	1.02	n.d.	1.04
$\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}$	n.d.	1.56	n.d.	1.47
$\xrightarrow[\left(\mathrm{O}_{p \mathrm{CA}}\right)]{\left(\mathrm{O}_{\mathrm{Gl} 46}-\mathrm{H}-\right.}$	n.d.	168.2	n.d.	172.0
$\mathrm{O}_{\text {Tyr42- }}-\mathrm{O}_{p \mathrm{CA}}$	2.50	2.48	n.d.	n.d.
$\mathrm{O}_{\text {Tyr42- }}$	n.d.	1.02	n.d.	n.d.
$\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}$	n.d.	1.47	n.d.	n.d.
$\begin{aligned} & \left(\mathrm{O}_{\mathrm{Tyr} 42}-\mathrm{H}-\right. \\ & \left.\mathrm{O}_{p \mathrm{CA}}\right) \end{aligned}$	n.d.	170.9	n.d.	n.d.
$\mathrm{O}_{\text {Thr50-O }} \mathrm{O}_{\text {Tyr42 }}$	2.85	2.79	n.d.	n.d.
$\mathrm{O}_{\text {Thr50 }}-\mathrm{O}_{\mathrm{C}=0,46}$	3.13	3.08	3.23	3.22
$\mathrm{O}_{\text {Thr50- }} \mathrm{O}_{p \mathrm{CA}}$	4.02	4.01	2.79	2.76

${ }^{\text {a }}$ See Ref. [35].
(ii)

	native	Y42F		
	solution	calc.	solution	calc.
Glu46	15.2^{a}	14.8	16.7^{a}	16.8
Tyr42	13.7^{a}	14.9	n.d.	n.d.

[^0]Table 3. Experimental and calculated geometries (in angstrom for distance and degree for angle) of the pRCW intermediate identified in time-resolved Laue crystallography [17]. Values for the native PYP with the [standard] H-bond pattern are also shown for comparison. For the complete atomic coordinates of the QM/MM geometries, see PYP_SI.pdb in SI. n.d.; not determined.

	Dark		pR CW		
	10TB	calc.	1TS7	calc.	calc.
[geometry]		standard		short $\mathrm{O}_{\mathrm{Glu} 46}-\mathrm{O}_{p \mathrm{CA}}$	standard
$\overline{\mathrm{O}_{\text {Glu46 }}-\mathrm{O}_{p \mathrm{CA}}}$	2.58	2.60	2.47	2.49	2.60
$\mathrm{O}_{\text {Glu46- }}$	n.d.	1.02	n.d.	1.06	1.02
$\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}$	n.d.	1.59	n.d.	1.43	1.59
$\begin{gathered} \left(\mathrm{O}_{\mathrm{Glu46}}-\mathrm{H}-\right. \\ \left.\mathrm{O}_{p \mathrm{CA}}\right) \end{gathered}$	n.d.	170.1	n.d.	172.7	171.2
$\mathrm{O}_{\text {Tyr42- }}-\mathrm{O}_{p \mathrm{CA}}$	2.51	2.51	2.83	2.98	2.55
$\mathrm{O}_{\text {Tyr42-H }}$	n.d.	1.02	n.d.	0.97	1.02
$\mathrm{H}-\mathrm{O}_{p \mathrm{CA}}$	n.d.	1.50	n.d.	n.d.	1.53
$\begin{aligned} & \left(\mathrm{O}_{\mathrm{Tyr} 42}-\mathrm{H}-\right. \\ & \left.\mathrm{O}_{p \mathrm{CA}}\right) \end{aligned}$	n.d.	170.3	n.d.	n.d.	174.9
$\mathrm{O}_{\text {Thr50-}}-\mathrm{O}_{\text {Tyr42 }}$	2.89	2.84	2.83	2.83	2.89
$\mathrm{O}_{\text {Thr50 }}-\mathrm{O}_{\mathrm{C}=0,46}$	3.17	3.05	3.38	2.74	3.24

[^1]TITLE SUPPORTING INFOMATION FOR:
TITLE 2 FORMATION OF A UNUSUALLY SHORT HYDROGEN BOND IN PHOTOACTIVE YELLOW PROTEIN
TITLE 3
TITLE 4 K.SAITO,H.ISHIKITA
REMARK 400
REMARK 400 TABLE OF CONTENTS
REMARK 400 GEOMETREIS OF QM REGION IN TABLE 1(MODEL 1-2)
REMARK 400 GEOMETREIS OF QM REGION IN TABLE 2(MODEL 3)
REMARK 400 GEOMETREIS OF QM REGION IN TABLE 3(MODEL 4-6)
REMARK 400
REMARK 400
REMARK 400 TABLE 1
REMARK 400 MODEL 1:NATIVE(1OT9)/STANDARD
REMARK 400 MODEL 2:NATIVE(1OT9)/SHORT O_GLU46-O_PCA
REMARK 400
REMARK 400 TABLE 2
REMARK 400 MODEL $3: Y 42 F(1 F 9 I)$
REMARK 400
REMARK 400 TABLE 3
REMARK 400 MODEL 4:NATIVE(1OTB)/STANDARD
REMARK 400 MODEL 5:PRCW(1TS7)/SHORT O_GLU46-O_PCA
REMARK 400 MODEL 6:PRCW(1TS7)/STANDARD
REMARK 400
MODEL 1
ATOM 1 CB TYR A 42
ATOM 2 CG TYR A 42
ATOM 3 CD1 TYR A 42
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM ATOM

2HB TYR A 42
HD1 TYR A 42
ATOM 12 HD2 TYR A 42
ATOM 13 HE1 TYR A 42
ATOM 14 HE2 TYR A 42
ATOM 15 HH TYR A 42
ATOM 16 CB GLU A 46
ATOM 17 CG GLU A 46
ATOM 18 CD GLU A 46
ATOM 19 OE1 GLU A 46
ATOM 20 OE2 GLU A 46
ATOM 21 1HB GLU A 46
ATOM 22 2HB GLU A 46
ATOM 231 HG GLU A 46
ATOM 24 2HG GLU A 46
ATOM 25 HE2 GLU A 46
ATOM 26 CB THR A 50
ATOM 27 OG1 THR A 50
ATOM 28 CG2 THR A 50
ATOM 29 HB THR A 50
ATOM 30 HG1 THR A 50
ATOM 31 1HG2 THR A 50
ATOM 32 2HG2 THR A 50
ATOM 33 3HG2 THR A 50
ATOM 34 SG CYS A 69
TER 35 CYS A 69
HETATM 36 C1 PCA 169
HETATM 37 O1 PCA 169
HETATM 38 C2 PCA 169

$15.209-19.515$	5.290	1.00	6.58	ACHN C
$14.475-18.203$	5.419	1.00	5.70	ACHN C
$15.165-16.984$	5.469	1.00	6.28	ACHN C
$13.084-18.171$	5.562	1.00	5.86	ACHN C
$14.509-15.774$	5.671	1.00	6.24	ACHN C
$12.403-16.967$	5.742	1.00	5.54	ACHN C
$13.117-15.763$	5.792	1.00	5.87	ACHN C
$12.462-14.570$	5.928	1.00	6.38	ACHN O
$16.057-19.557$	5.981	1.00	0.00	ACHN H
$14.526-20.315$	5.575	1.00	0.00	ACHN H
$16.237-16.990$	5.326	1.00	0.00	ACHN H
$12.519-19.098$	5.536	1.00	0.00	ACHN H
$15.062-14.843$	5.714	1.00	0.00	ACHN H
$11.322-16.951$	5.824	1.00	0.00	ACHN H
$11.518-14.700$	5.560	1.00	0.00	ACHN H
$14.163-14.908$	1.908	1.00	5.29	ACHN C
$12.774-14.903$	2.565	1.00	5.41	ACHN C
$11.661-14.222$	1.784	1.00	5.62	ACHN C
$11.830-13.668$	0.707	1.00	7.37	ACHN O
$10.449-14.222$	2.337	1.00	6.10	ACHN O
$14.850-15.492$	2.526	1.00	0.00	ACHN H
$14.107-15.409$	0.939	1.00	0.00	ACHN H
$12.798-14.439$	3.555	1.00	0.00	ACHN H
$12.474-15.935$	2.762	1.00	0.00	ACHN H
$10.422-14.580$	3.289	1.00	0.00	ACHN H
$11.521-10.954$	5.479	1.00	6.77	ACHN C
$12.574-11.784$	5.963	1.00	6.60	ACHN O
$10.888-11.404$	4.161	1.00	7.11	ACHN C
$10.699-10.961$	6.219	1.00	0.00	ACHN H
$12.524-12.714$	5.672	1.00	0.00	ACHN H
$11.585-11.450$	3.322	1.00	0.00	ACHN H
$10.062-10.734$	3.896	1.00	0.00	ACHN H
$10.464-12.398$	4.282	1.00	0.00	ACHN H
$2.114-11.220$	6.330	1.00	6.37	ACHN S
$3.506-11.789$	7.322	1.00	6.48	COFA C
$3.446-12.037$	8.523	1.00	7.12	COFA O
$4.701-11.982$	6.533	1.00	6.31	COFA C
10				

HETATM ENDMDL MODEL ATOM ATOM
ATOM ATOM ATOM TER 35
HETATM 36 C1 PCA 169
HETATM 37 O1 PCA 169
HETATM 38 C2 PCA 169
HETATM 39 C3 PCA 169
HETATM 40 C1P PCA 169
HETATM 41 C2P PCA 169
HETATM 42 C3P PCA 169
HETATM 43 C4P PCA 169
HETATM 44 C5P PCA 169
HETATM 45 C6P PCA 169
HETATM 46 O4P PCA 169
HETATM 47 H2 PCA 169

$5.870-12.315$	7.148	1.00	6.56
$7.027-12.886$	6.531	1.00	5.76
$8.164-13.207$	7.301	1.00	6.08
$9.250-13.861$	6.751	1.00	6.45
$9.241-14.239$	5.379	1.00	5.49
$8.079-13.951$	4.615	1.00	5.80
$7.011-13.301$	5.180	1.00	5.89
$10.254-14.843$	4.822	1.00	5.95
$4.598-12.001$	5.458	1.00	0.00
$5.895-12.224$	8.233	1.00	0.00
$8.155-12.965$	8.360	1.00	0.00
$10.117-14.119$	7.352	1.00	0.00
$8.059-14.273$	3.580	1.00	0.00
$6.125-13.133$	4.583	1.00	0.00

COFA C
COFA O1-
COFA H
COFA H
COFA H COFA H
COFA H
COFA H

$15.191-19.501$	5.277	1.00	6.58	ACHN C
$14.455-18.187$	5.400	1.00	5.70	ACHN C
$15.140-16.966$	5.441	1.00	6.28	ACHN C
$13.063-18.158$	5.570	1.00	5.86	ACHN C
$14.484-15.766$	5.704	1.00	6.24	ACHN C
$12.382-16.965$	5.804	1.00	5.54	ACHN C
$13.100-15.770$	5.901	1.00	5.87	ACHN C
$12.382-14.649$	6.205	1.00	6.38	ACHN O
$16.030-19.541$	5.980	1.00	0.00	ACHN H
$14.503-20.299$	5.559	1.00	0.00	ACHN H
$16.208-16.960$	5.271	1.00	0.00	ACHN H
$12.499-19.086$	5.526	1.00	0.00	ACHN H
$15.053-14.843$	5.774	1.00	0.00	ACHN H
$11.304-16.926$	5.899	1.00	0.00	ACHN H
$12.864-13.823$	6.052	1.00	0.00	ACHN H
$14.133-14.895$	1.909	1.00	5.29	ACHN C
$12.731-14.876$	2.548	1.00	5.41	ACHN C
$11.624-14.157$	1.777	1.00	5.62	ACHN C
$11.831-13.543$	0.731	1.00	7.37	ACHN O
$10.415-14.196$	2.298	1.00	6.10	ACHN O
$14.806-15.492$	2.530	1.00	0.00	ACHN H
$14.079-15.392$	0.939	1.00	0.00	ACHN H
$12.735-14.451$	3.557	1.00	0.00	ACHN H
$12.413-15.908$	2.715	1.00	0.00	ACHN H
$10.332-14.593$	3.291	1.00	0.00	ACHN H
$11.579-10.973$	5.447	1.00	6.77	ACHN C
$12.704-11.842$	5.735	1.00	6.60	ACHN O
$10.828-11.392$	4.187	1.00	7.11	ACHN C
$10.893-11.108$	6.287	1.00	0.00	ACHN H
$13.243-11.909$	4.921	1.00	0.00	ACHN H
$11.433-11.342$	3.277	1.00	0.00	ACHN H
$9.940-10.768$	4.048	1.00	0.00	ACHN H
$10.500-12.422$	4.297	1.00	0.00	ACHN H
$2.132-11.228$	6.347	1.00	6.37	ACHN S
$3.535-11.795$	7.344	1.00	6.48	COFA C
$3.462-12.054$	8.544	1.00	7.12	COFA O
$4.730-11.965$	6.558	1.00	6.31	COFA C
$5.912-12.323$	7.151	1.00	6.56	COFA C
$7.048-12.891$	6.503	1.00	5.76	COFA C
$8.219-13.238$	7.222	1.00	6.08	COFA C
$9.277-13.900$	6.630	1.00	6.45	COFA C
$9.223-14.269$	5.243	1.00	5.49	COFA C
$8.021-13.948$	4.537	1.00	5.80	COFA C
$6.983-13.298$	5.147	1.00	5.89	COFA C
$10.188-14.876$	4.648	1.00	5.95	COFA O1-
$4.622-11.954$	5.483	1.00	0.00	COFA H
1.00	-100			

HETATM HETATM HETATM HETATM HETATM ENDMDL MODEL ATOM ATOM
ATOM ATOM ATOM ATOM ATOM ATOM
ATOM ATOM ATOM
ATOM ATOM TER 34 HETATM HETATM HETATM
HETATM
HETATM
ENDMDL
MODEL ATOM
ATOM
ATOM

48 H3 PCA 169 49 H2P PCA 169
50 H3P PCA 169
51 H5P PCA 169
52 H6P PCA 169

3

1 CB PHE
2 CG PHE A 42
3 CD1 PHE A 42
4 CD2 PHE A 42
5 CE1 PHE A 42
6 CE2 PHE A 42
CZ PHE A 42
8 1HB PHE A 42 9 2HB PHE A 42
10 HD1 PHE A 42
11 HD2 PHE A 42
12 HE1 PHE A 42
13 HE2 PHE A 42
14 HZ PHE A 42
15 CB GLU A 46
16 CG GLU A 46
17 CD GLU A 46
18 OE1 GLU A 46
19 OE2 GLU A 46
20 1HB GLU A 46
21 2HB GLU A 46
22 1HG GLU A 46
23 2HG GLU A 46
4 HE2 GLU A 46
25 CB THR A 50
26 OG1 THR A 50
7 CG2 THR A 50
HB THR A 50
29 HG1 THR A 50
30 1HG2 THR A 50
31 2HG2 THR A 50
32 3HG2 THR A 50
33 SG CYS A 69
CYS A 69
35 C1 PCA 169
36 O1 PCA 169
37 C2 PCA 169
38 C3 PCA 169
39 C1P PCA 169
40 C2P PCA 169
41 C3P PCA 169
42 C4P PCA 169 43 C5P PCA 169 44 C6P PCA 169 45 O4P PCA 169 46 H2 PCA 169 47 H3 PCA 169 48 H2P PCA 169 49 H3P PCA 169 50 H5P PCA 169 51 H6P PCA 169

$5.956-12.248$	8.237	1.00	0.00
$8.254-13.002$	8.284	1.00	0.00
$10.166-14.178$	7.186	1.00	0.00
$7.950-14.273$	3.504	1.00	0.00
$6.072-13.127$	4.589	1.00	0.00

$24.203-3.384-17.498 \quad 1.008 .99$ $22.704-3.528-17.641 \quad 1.00 \quad 8.71$
$22.092-4.784-17.7431 .009 .89$
$21.903-2.382-17.7631 .0010 .09$
$20.528-2.493-17.971 \quad 1.0011 .22$
$20.726-4.902-17.9821 .0011 .92$
$19.941-3.754-18.089 \quad 1.0011 .89$
$24.717-4.045-18.205 \quad 1.00 \quad 0.00$
$24.473-2.361-17.764 \quad 1.00 \quad 0.00$
$22.695-5.676-17.6271 .00 \quad 0.00$
$22.363-1.399-17.703 \quad 1.00 \quad 0.00$
$19.903-1.607-18.027 \quad 1.00 \quad 0.00$
$20.283-5.889-18.068 \quad 1.00 \quad 0.00$
$18.867-3.817-18.2021 .000 .00$
$19.851-4.871-14.120 \quad 1.007 .73$
$19.106-3.745-14.8531 .007 .73$
$17.974-3.112-14.0631 .008 .06$
$17.771-3.369-12.886 \quad 1.0010 .86$
$17.191-2.257-14.7051 .009 .41$
$20.707-5.191-14.719 \quad 1.00 \quad 0.00$
$20.244-4.489-13.177 \quad 1.00 \quad 0.00$
$18.711-4.055-15.8221 .000 .00$
$19.820-2.960-15.109 \quad 1.00 \quad 0.00$
$17.369-2.256-15.727 \quad 1.00 \quad 0.00$
$14.683-4.407-17.4131 .008 .56$
$\begin{array}{llll}16.053 & -4.634 & -17.735 & 1.00 \\ 8.92\end{array}$
$14.473-3.644-16.101 \quad 1.0010 .24$
$14.217-3.799-18.211 \quad 1.00 \quad 0.00$
$\begin{array}{llll}16.583 & -3.834-17.508 & 1.00 & 0.00\end{array}$
$15.076-4.057-15.2871 .00 \quad 0.00$
$13.416-3.670-15.811 \quad 1.00 \quad 0.00$
$14.760-2.599-16.217 \quad 1.00 \quad 0.00$
$10.744 \quad 3.716-18.418 \quad 1.00 \quad 8.13$
$\begin{array}{llll}11.886 & 2.788-19.454 & 1.00 & 8.11\end{array}$
$12.004 \quad 2.963-20.6631 .008 .50$
$12.6871 .844-18.7121 .008 .26$
$\begin{array}{lllll}13.510 & 0.986 & -19.377 & 1.00 & 9.14\end{array}$
$14.563 \quad 0.203-18.815 \quad 1.008 .12$
$15.295-0.685-19.6321 .009 .31$
$\begin{array}{lllll}16.298 & -1.473 & -19.107 & 1.00 & 9.03\end{array}$
$16.611-1.431-17.720 \quad 1.008 .71$
$15.966-0.433-16.931 \quad 1.008 .24$
$\begin{array}{lllll}14.968 & 0.344 & -17.468 & 1.00 & 8.31\end{array}$
$17.422-2.302-17.196 \quad 1.00 \quad 9.42$
$12.711 \quad 1.929-17.6381 .00 \quad 0.00$
$\begin{array}{lllll}13.396 & 0.935 & -20.459 & 1.00 & 0.00\end{array}$
$15.065-0.723-20.6941 .00 \quad 0.00$
$16.868-2.163-19.7161 .00 \quad 0.00$
$\begin{array}{llll}16.250 & -0.328 & -15.891 & 1.00\end{array} 0.00$
$14.485 \quad 1.083-16.842 \quad 1.00 \quad 0.00$

11.886	$2.788-19.454$	1.00	8.11	
12.004	2.963	-20.663	1.00	8.50
12.687	1.844	-18.712	1.00	8.26
13.510	0.986	-19.377	1.00	9.14
14.563	0.203	-18.815	1.00	8.12
15.295	$-0.685-19.632$	1.00	9.31	
16.298	$-1.473-19.107$	1.00	9.03	
16.611	-1.431	-17.720	1.00	8.71
15.966	$-0.433-16.931$	1.00	8.24	
14.968	$0.344-17.468$	1.00	8.31	
17.422	-2.302	-17.196	1.00	9.42
12.711	1.929	-17.638	1.00	0.00
13.396	0.935	-20.459	1.00	0.00
15.065	-0.723	-20.694	1.00	0.00
16.868	$-2.163-19.716$	1.00	0.00	
16.250	-0.328	-15.891	1.00	0.00
14.485	$1.083-16.842$	1.00	0.00	

COFA H
COFA H COFA H
COFA H
COFA H

ACHN C
ACHN H
ACHN C
ACHN C
ACHN C
ACHN 0
ACHN O
ACHN H
ACHN H
ACHN H
ACHN H
ACHN H
ACHN C
ACHN O
ACHN C
ACHN H
ACHN H
ACHN H
ACHN H
ACHN H
ACHN S
COFA C
COFA O
COFA C
COFA C
COFA C COFA C
COFA C
COFA C
COFA C
COFA C
COFA O1-
COFA H
COFA H COFA H COFA H
COFA H
COFA H

15.319	-19.629	5.318	1.00	10.33	ACHN C
14.621	-18.293	5.452	1.00	9.08	ACHN C
$15.327-17.085$	5.546	1.00	10.50	ACHN C	

ATOM	42	6		ACHN C
	5 CE1 TYR A 42	14.682-15.866	5.7451 .0010 .98	ACHN C
TOM	6 CE2 TYR A 42	12.558-17.025	5.7401 .009 .70	CHN C
ATOM	7 CZ TYR A 42	13.287-15.832	5.8271 .0010 .01	ACHN C
ATOM	8 OH TYR A 42	12.646-14.630	5.9631 .0011 .26	ACHN O
ATOM	91 HB TYR A 42	16.163-19.696	$6.0131 .00 \quad 0.00$	H
ATOM	10 2HB TYR A 42	14.609-20.407	$5.6011 .00 \quad 0.00$	CHN H
TOM	11 HD1 TYR A 42	16.406-17.097	$7 \begin{array}{llll}5.443 & 1.00 & 0.00\end{array}$	CHN H
ATOM	12 HD2 TYR A 42	12.647-19.153	$5.5091 .00 \quad 0.00$	A
M	13 HE1 TYR A 42	15.250-14.945	5.8161 .000 .00	ACHN H
ATOM	14 HE2 TYR A 42	11.475-16.996	5.7951 .000 .00	
TOM	15 HH TYR A 42	11.698-14.740	$5.6081 .00 \quad 0.00$	+
,	16 C ALA A 45	16.733-12.602	0.4821 .0010 .31	ACHN C
M	17 O ALA A 45	16.212-11.463	0.6041 .0011 .94	ACHN O
ATOM	18 N GLU A 46	16.134-13.727	0.9411 .009 .34	ACHN N
TOM	19 CA GLU A 46	14.893-13.645	1.6871 .009 .44	ACHN C
M	20 C GLU A 46	15.072-12.893	3.0021 .009 .65	CHN C
M	21 O GLU A 46	14.170-12.120	3.3601 .0011 .07	N
TOM	22 CB GLU A 46	14.271-15.028	1.9301 .009 .25	ACHN C
M	23 CG GLU A 46	12.908-14.942	2.6151 .009 .03	ACHN C
ATOM	24 CD GLU A 46	11.832-14.235	1.8091 .009 .88	ACHN C
ATOM	25 OE1 GLU A 46	12.032-13.731	0.7141 .0013 .31	N 0
M	26 OE2 GLU A 46	10.620-14.173	$\begin{array}{lllllllllll} & 2.361 & 1.00 & 10.58\end{array}$	-
M	27 HN GLU A 46	16.602-14.627	0.8451 .000 .00	N H
TOM	28 HA GLU A 46	14.192-13.034	1.1191 .000 .00	H
M	29 1HB GLU A 46	14.940-15.638	$\begin{array}{llllllllll}2.545 & 1.00 & 0.00\end{array}$	H
TOM	30 2HB GLU A 46	14.166-15.540	0.9701 .000 .00	ACHN H
M	31 1HG GLU A 46	12.988-14.422	3.5731 .000 .00	ACHN H
M	32 2HG GLU A 46	12.559-15.947	72.8651 .000 .00	C
M	33 HE2 GLU A 46	10.580-14.531	$3.3131 .00 \quad 0.00$	N H
M	34 N GLY A 47	16.214-13.119	3.7011 .0010 .10	CHN N
TOM	35 HN GLY A 47	16.956-13.713	$3.3461 .00 \quad 0.00$	CHN H
M	36 C ILE A 49	$13.007-8.4393$	3.4741 .0012 .34	C
ATOM	37 O ILE A 49	$12.340-7.423$	3.6891 .0016 .54	ACHN O
ATOM	38 N THR A 50	$13.125-9.461$	4.3581 .0010 .55	CHN N
M	39 CA THR A 50	$12.209-9.554$	5.4761 .0010 .97	N C
	40 C THR A 50	$12.793-9.186$	6.8371 .0010 .87	CHN C
M	41 O THR A 50	$12.026-9.028$	7.8051 .0012 .74	CHN O
	42 CB THR A 50	11.632-10.979	5.5711 .0011 .86	ACHN C
M	43 OG1 THR A 50	12.715-11.788	886.0231 .0012 .02	N
	44 CG2 THR A 50	11.011-11.427	$\begin{array}{llllllllll}7.255 & 1.00 & 14.25\end{array}$	N C
M	45 HN THR A 50	13.641-10.299	$4.080 \quad 1.00 \quad 0.00$	CHN H
M	46 HA THR A 50	$11.402-8.840$	$5.3001 .00 \quad 0.00$	CHN H
M	47 HB THR A 50	10.842-10.957	$6.3351 .00 \quad 0.00$	CHN H
M	48 HG1 THR A 50	12.677-12.715	$\begin{array}{lllll}5.728 & 1.00 & 0.00\end{array}$	ACHN H
M	49 1HG2 THR A 50	11.753-11.503	$\begin{array}{llll}3 & 3.461 & 1.00 & 0.00\end{array}$	CHN H
TOM	50 2HG2 THR A 50	10.232-10.717	$\begin{array}{llll}7 & 3.956 & 1.00 & 0.00\end{array}$	
	51 3HG2 THR A 50	10.537-12.398	84.3711 .000 .00	
M	52 N GLY A 51	$14.130-9.088$	6.9231 .0011 .03	N
OM	53 HN GLY A 51	$14.759-9.316$	$6.1491 .00 \quad 0.00$	
M	54 C PRO A 68	0.297-14.380	9.5701 .009 .11	CHN C
	55 O PRO A 68	-0.862-14.722	9.3531 .009 .91	CHN O
	56 N CYS A 69	0.847-13.281	8.9791 .009 .11	CHN N
TOM	57 CA CYS A 69	0.114-12.583	7.9501 .008 .97	ACHN C
OM	58 C CYS A 69	-0.200-13.438	6.7141 .009 .19	CHN C
ATOM	59 O CYS A 69	-1.042-12.984	5.9381 .0011 .39	ACHN O
OM	60 CB CYS A 69	0.792-11.264	7.5371 .0010 .53	ACHN C
ATOM	61 SG CYS A 69	2.149-11.403	6.3121 .0010 .26	ACHN S
ATOM	62 HN CYS A 69	1.826-13.046	9.1181 .000 .00	CHN H
ATOM	63 HA CYS A 69	-0.876-12.325	8.3421 .000 .00	ACHN H
ATOM	64 1HB CYS A 69	1.172-10.724	$8.4041 .00 \quad 0.00$	ACHN H
ATOM	65 2HB CYS A 69	0.076-10.606	$7.0451 .00 \quad 0.00$	ACHN H
ATOM	66 N THR A 70	0.494-14.600	6.5391 .008 .79	ACHN N

ATOM 67 HN THR A 70 TER 68 THR A 70
HETATM 69 C1 PCA 126
HETATM 70 O1 PCA 126
HETATM 71 C2 PCA 126
HETATM 72 C3 PCA 126
HETATM 73 C1PPCA 126
HETATM 74 C2P PCA 126
HETATM 75 C3P PCA 126
HETATM 76 C4P PCA 126
HETATM 77 C5P PCA 126
HETATM 78 C6P PCA 126
HETATM 79 O4P PCA 126
HETATM 80 H2 PCA 126
HETATM 81 H3 PCA 126
HETATM 82 H2P PCA 126
HETATM 83 H3P PCA 126
HETATM 84 H5P PCA 126
HETATM 85 H6P PCA 126

ENDMDL

MODEL
ATOM

5
1 CB TYR A 42
2 CG TYR A 42
3 CD1 TYR A 42
4 CD2 TYR A 42
CE1 TYR A 42
CE2 TYR A 42
CZ TYR A 42
OH TYR A 42 9 1HB TYR A 42 10 2HB TYR A 42
11 HD1 TYR A 42
12 HD2 TYR A 42
13 HE1 TYR A 42 HE2 TYR A 42 HH TYRA 42 C ALA A 45 7 O ALA A 45 18 N GLU A 46 19 CA GLU A 46
20 C GLU A 46
21 O GLU A 46
22 CB GLU A 46
23 CG GLU A 46
24 CD GLU A 46
25 OE1 GLU A 46
26 OE2 GLU A 46
27 HN GLU A 46
28 HA GLU A 46
29 1HB GLU A 46
30 2HB GLU A 46
31 1HG GLU A 46
32 2HG GLU A 46
33 HE2 GLU A 46
34 N GLY A 47
35 HN GLY A 47
36 C ILE A 49
37 O ILE A 49
38 N THR A 50
39 CA THR A 50
40 C THR A 50
41 O THR A 50
42 CB THR A 50
$\begin{array}{lllll}1.127-14.952 & 7.254 & 1.00 & 0.00\end{array}$

$3.519-11.964$	7.312	1.00	9.67
$3.397-12.198$	8.520	1.00	10.80
$4.746-12.162$	6.571	1.00	9.61
$5.912-12.488$	7.197	1.00	9.76
$7.091-13.030$	6.584	1.00	9.21
$8.238-13.321$	7.355	1.00	10.62
$9.348-13.934$	6.802	1.00	10.75
$9.363-14.300$	5.425	1.00	9.39
$8.192-14.041$	4.662	1.00	9.61
$7.100-13.429$	5.227	1.00	9.49
$10.404-14.849$	4.858	1.00	11.14
$4.670-12.167$	5.491	1.00	0.00
$5.928-12.407$	8.283	1.00	0.00
$8.228-13.078$	8.414	1.00	0.00
$10.222-14.158$	7.407	1.00	0.00
$8.186-14.348$	3.622	1.00	0.00
$6.217-13.275$	4.621	1.00	0.00

ACHN H
COFA C
COFA O
COFA C
COFA C
COFA C COFA C COFA C
COFA C
COFA C
COFA C COFA O1-
COFA H
COFA H
COFA H COFA H
COFA H
COFA H

$15.260-19.581$	5.240	1.00	10.05	ACHN C
$14.569-18.245$	5.381	1.00	10.58	ACHN C
15.281	-17.048	5.526	1.00	11.49
$13.173-18.195$	5.517	1.00	10.50	ACHN C
$14.638-15.852$	5.851	1.00	8.34	ACHN C
$12.510-17.010$	5.815	1.00	9.92	ACHN C
$13.249-15.840$	6.006	1.00	8.85	ACHN C
$12.540-14.732$	6.370	1.00	14.96	ACHN O
$16.121-19.639$	5.915	1.00	0.00	ACHN H
$14.559-20.357$	5.556	1.00	0.00	ACHN H
$16.359-17.056$	5.406	1.00	0.00	ACHN H
$12.600-19.112$	5.434	1.00	0.00	ACHN H
$15.220-14.951$	6.017	1.00	0.00	ACHN H
$11.432-16.957$	5.899	1.00	0.00	ACHN H
$13.017-13.894$	6.262	1.00	0.00	ACHN H
$16.650-12.566$	0.502	1.00	10.39	ACHN C
$16.112-11.465$	0.655	1.00	13.81	ACHN O
$16.037-13.706$	0.936	1.00	10.16	ACHN N
$14.783-13.637$	1.683	1.00	11.15	ACHN C
$14.970-12.958$	3.034	1.00	10.71	ACHN C
$14.055-12.232$	3.493	1.00	11.19	ACHN O
$14.148-15.030$	1.900	1.00	11.13	ACHN C
$12.782-14.990$	2.598	1.00	7.80	ACHN C
11.706	-14.248	1.816	1.00	10.18
11.960	-13.703	0.746	1.00	17.11

ATOM TER 68

HETAT

 HETATM HETATMHETATM HETATM HETATM
HETATM
HETATM HETATM
HETATM
HETATM
HETATM
HETATM
HETATM
HETATM

ENDMDL
MODEL
ATOM

HETATM 84 H5P PCA 169
HETATM 85 H6P PCA 169
43 OG1 THR A 50 44 CG2 THR A 50 45 HN THR A 50
46 HA THR A 50 47 HB THR A 50 48 HG1 THR A 50 49 1HG2 THR A 50 50 2HG2 THR A 50 51 3HG2 THR A 50
52 N GLY A 51
53 HN GLY A 51
54 C PRO A 68
55 O PRO A 68 56 N CYS A 69 57 CA CYS A 69 58 C CYS A 69 59 O CYS A 69 60 CB CYS A 69 61 SG CYS A 69 62 HN CYS A 69 63 HA CYS A 69 64 1HB CYS A 69 65 2HB CYS A 69 66 N THR A 70 67 HN THR A 70 68 THR A 70 $\begin{array}{lll}69 & \text { C1 PCA } & 169 \\ 70 & \text { O1 PCA } & 169 \\ 71 & \text { C2 PCA } & 169 \\ 72 & \text { C3 PCA } & 169 \\ 73 & \text { C1P PCA } & 169 \\ 74 & \text { C2P PCA } & 169 \\ 75 & \text { C3P PCA } & 169 \\ 76 & \text { C4P PCA } & 169 \\ 77 & \text { C5P PCA } & 169 \\ 78 & \text { C6P PCA } & 169 \\ 79 & \text { O4P PCA } & 169 \\ 80 & \text { H2 PCA } & 169 \\ 81 & \text { H3 PCA } & 169 \\ 82 & \text { H2P PCA } & 169 \\ 83 & \text { H3P PCA } & 169 \\ 84 & \text { H5P PCA } & 169 \\ 85 & \text { H6P PCA } & 169\end{array}$ 6

$12.908-11.956$	5.963	1.00	16.50	ACHN O	
$10.910-11.628$	4.550	1.00	9.91	ACHN C	
$13.528-10.300$	4.254	1.00	0.00	ACHN H	
$11.184-9.097$	5.533	1.00	0.00	ACHN H	
$11.077-11.348$	6.641	1.00	0.00	ACHN H	
$13.361-12.100$	5.097	1.00	0.00	ACHN H	
$11.423-11.412$	3.615	1.00	0.00	ACHN H	
$9.936-11.131$	4.550	1.00	0.00	ACHN H	
$10.739-12.700$	4.594	1.00	0.00	ACHN H	
13.994	-9.104	7.107	1.00	12.26	ACHN N
$14.585-9.352$	6.316	1.00	0.00	ACHN H	
$0.470-14.478$	9.346	1.00	8.81	ACHN C	
$-0.704-14.795$	9.156	1.00	10.22	ACHN O	
$1.053-13.403$	8.710	1.00	10.41	ACHN N	
$0.406-12.694$	7.628	1.00	12.79	ACHN C	
$-0.200-13.648$	6.600	1.00	11.30	ACHN C	
$-1.238-13.320$	6.041	1.00	15.51	ACHN O	
$1.365-11.803$	6.775	1.00	12.83	ACHN C	
$2.772-11.079$	7.644	1.00	15.87	ACHN S	
$2.005-13.154$	8.949	1.00	0.00	ACHN H	
$-0.422-12.089$	8.004	1.00	0.00	ACHN H	
$0.786-10.980$	6.350	1.00	0.00	ACHN H	
$1.820-12.389$	5.970	1.00	0.00	ACHN H	
$0.571-14.744$	6.321	1.00	9.30	ACHN N	
$1.357-14.962$	6.927	1.00	0.00	ACHN H	
$4.213-11.814$	6.779	1.00	9.26	COFA C	
$4.084-12.570$	5.825	1.00	13.20	COFA O	
$5.414-11.352$	7.438	1.00	5.57	COFA C	
$6.685-11.869$	7.513	1.00	6.49	COFA C	
$7.418-12.861$	6.805	1.00	12.80	COFA C	
$8.650-13.290$	7.372	1.00	10.20	COFA C	
$9.522-14.115$	6.703	1.00	12.07	COFA C	
$9.249-14.504$	5.347	1.00	9.86	COFA C	
$7.957-14.172$	4.830	1.00	11.85	COFA C	
$7.073-13.380$	5.528	1.00	9.66	COFA C	
$10.149-15.081$	4.628	1.00	20.99	COFA O1-	
$5.240-10.522$	8.107	1.00	0.00	COFA H	
$7.276-11.396$	8.301	1.00	0.00	COFA H	
$8.889-12.948$	8.377	1.00	0.00	COFA H	
$10.470-14.421$	7.128	1.00	0.00	COFA H	
$7.715-14.522$	3.832	1.00	0.00	COFA H	
$6.116-13.115$	5.096	1.00	0.00	COFA H	

$15.288-19.590$	5.256	1.00	10.05	ACHN C
$14.572-18.268$	5.397	1.00	10.58	ACHN C
15.253	-17.047	5.513	1.00	11.49
13.178	-18.250	5.525	1.00	10.50
ACHN C				
$14.572-15.849$	5.736	1.00	8.34	ACHN C
$12.480-17.065$	5.740	1.00	9.92	ACHN C
$13.178-15.854$	5.827	1.00	8.85	ACHN C
$12.492-14.674$	5.968	1.00	14.96	ACHN O
$16.164-19.628$	5.912	1.00	0.00	ACHN H
$14.609-20.378$	5.591	1.00	0.00	ACHN H
$16.333-17.031$	5.414	1.00	0.00	ACHN H
$12.630-19.186$	5.496	1.00	0.00	ACHN H
$15.114-14.915$	5.819	1.00	0.00	ACHN H
$11.400-17.066$	5.829	1.00	0.00	ACHN H
$11.566-14.828$	5.573	1.00	0.00	ACHN H
$16.650-12.566$	0.502	1.00	10.39	ACHN C
$16.112-11.465$	0.655	1.00	13.81	ACHN O
$16.039-13.708$	0.923	1.00	10.16	ACHN N

ATOM Атом ATOM ATOM Атом Атом ATOM ATOM TER 6
HETATM 69 C1 PCA 169
HETATM 7001 PCA 169
HETATM 71 C2 PCA 169
HETATM 72 C3 PCA 169
HETATM 73 C1PPCA 169
HETATM 74 C2P PCA 169
HETATM 75 C3P PCA 169
HETATM 76 C4P PCA 169
HETATM 77 C5P PCA 169
HETATM 78 C6PPCA 169
HETATM 79 O4P PCA 169
HETATM 80 H2 PCA 169
HETATM 81 H3 PCA 169

14.788-13.641	1.672	1.0011 .15	ACHN C
14.968-12.943	3.021	1.0010 .71	ACHN C
14.067-12.202	3.450	1.0011 .19	ACHN 0
14.154-15.030	1.879	1.0011 .13	ACHN C
12.810-14.969	2.610	1.007 .80	ACHN C
11.717-14.239	1.853	1.0010 .18	ACHN C
11.905-13.722	0.762	1.0017 .11	ACHN O
10.517-14.164	2.428	1.0013 .93	ACHN O
16.508-14.608	0.816	1.000 .00	ACHN H
14.091-13.009	1.123	1.000 .00	ACHN H
14.834-15.667	2.452	1.000 .00	ACHN H
14.015-15.504	0.906	1.000 .00	ACHN H
12.917-14.481	3.582	1.000 .00	ACHN H
12.467-15.982	2.836	1.000 .00	ACHN H
10.448-14.586	3.348	1.000 .00	ACHN H
16.137-13.189	3.659	1.006 .92	ACHN N
16.846-13.794	3.253	1.000 .00	ACHN H
$12.843-8.477$ 3.7	3.7481 .00	. 0014.28	ACHN C
$12.183-7.464$ 3	3.9621 .0	. 0020.93	ACHN 0
$12.943-9.514$	4.6121	1.0011 .91	ACHN N
$12.035-9.582$	5.734	1.0011 .47	ACHN C
$12.651-9.120$	7.049	1.0013 .16	ACHN C
$11.920-8.814$	8.007	1.0010 .61	ACHN 0
11.477-11.009	5.872	1.0010 .53	ACHN C
12.575-11.809	6.298	1.0016 .50	ACHN 0
10.828-11.477	4.577	1.009 .91	ACHN C
13.446-10.357	4.324	$1.00 \quad 0.00$	ACHN H
$11.211-8.891$	5.544	1.000 .00	ACHN H
10.704-10.974	6.653	1.000 .00	ACHN H
12.545-12.737	5.993	1.000 .00	ACHN H
11.564-11.620	03.785	1.000 .00	ACHN H
10.087-10.738	84.255	1.000 .00	ACHN H
10.303-12.416	64.732	1.000 .00	ACHN H
$13.994-9.104$	7.1071	1.0012 .26	ACHN N
$14.572-9.388$	6.318	1.000 .00	ACHN H
0.470-14.478	9.346	1.008 .81	ACHN C
-0.704-14.795	9.156	1.0010 .22	ACHN O
1.051-13.404	8.707	1.0010 .41	ACHN N
0.392-12.699	7.629	1.0012 .79	ACHN C
-0.209-13.658	6.604	1.0011 .30	ACHN C
-1.249-13.337	6.046	1.0015 .51	ACHN 0
1.335-11.802	6.766	1.0012 .83	ACHN C
2.739-11.060	7.623	1.0015 .87	ACHN S
2.001-13.149	8.946	1.000 .00	ACHN H
-0.439-12.102	8.011	1.000 .00	ACHN H
0.746-10.986	6.344	1.000 .00	ACHN H
1.788-12.386	5.959	1.000 .00	ACHN H
0.571-14.744	6.321	1.009 .30	ACHN N
1.354-14.963	6.930	1.000 .00	ACHN H
4.175-11.803	6.781	1.009 .26	COFA C
4.073-12.578	5.842	1.0013 .20	COFA O
5.370-11.312	7.442	1.005 .57	COFA C
6.634-11.814	7.558	1.006 .49	COFA C
7.388-12.829	96.891	1.0012 .80	COFA C
8.579-13.257	77.525	1.0010 .20	COFA C
9.485-14.080	06.896	1.0012 .07	COFA C
9.275-14.464	4.538	1.009 .86	COFA C
$8.024-14.136$	64.946	1.0011 .85	COFA C
7.106-13.340	05.600	1.009 .66	COFA C
10.228-15.042	42485	61.0020 .99	COFA 01-
5.180-10.463	8.080	1.000 .00	COFA H
7.212-11.310	8.335	1.000 .00	COFA H

HETATM HETATM HETATM 82 H2P PCA 169 83 H3P PCA 169 84 H5P PCA 169 85 H6P PCA 169
$\begin{array}{llll}8.768-12.919 & 8.539 & 1.00 & 0.00\end{array}$
COFA H $\begin{array}{llll}10.402 & -14.384 & 7.389 & 1.00\end{array} \quad 0.00$ $\begin{array}{lllll}7.838 & -14.474 & 3.932 & 1.00 & 0.00\end{array}$ $6.177-13.065 \quad 5.1141 .00 \quad 0.00$

COFA H COFA H COFA H ENDMDL END

[^0]: ${ }^{\text {a }}$ See Ref. [35].

[^1]: ${ }^{\bar{a}}$ See Ref. [35].

