Cationic state distribution over the chlorophyll d containing $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair in photosystem II

Keisuke Saito ${ }^{1}$, Jian-Ren Shen ${ }^{2}$, and Hiroshi Ishikita ${ }^{1,3^{*}}$

1) 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
2) Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan.
3) Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 3320012, Japan

CORRESPONDING AUTHOR: Hiroshi Ishikita, 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan, Tel. +81-75-753-9286, Fax. +81-75-753-9286, E-mail: hiro@cp.kyoto-u.ac.jp

Abbreviations:

A. marina, Acaryochloris marina; Chl, chlorophyll; OEC, oxygen-evolving cluster; PSII, photosystem II; QM/MM approach, quantum mechanical/molecular mechanical approach; T. elongatus, Thermosynechococcus elongatus; T. vulcanus, Thermosynechococcus vulcanus

Abstract

Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chl a molecules are also present. To evaluate the possibility that Chl a may participate in the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2} \mathrm{Ch} 1$ pair in PSII from A. marina, the $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ charge ratio was investigated using the PSII crystal structure analyzed at $1.9-\AA$ resolution, while considering all possibilities for the $\mathrm{Ch} d$ containing $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair, i.e., $\mathrm{Chl} d / \mathrm{Chl} d$, $\mathrm{Chl} a / \mathrm{Chl} d$, and $\mathrm{Chl} d / \mathrm{Ch} 1 a$ pairs. $\mathrm{Chl} d / \mathrm{Chl} d$ and $\mathrm{Chl} a / \mathrm{Chl} d$ pairs resulted in a large $\mathrm{P}_{\mathrm{D} 1}^{\bullet+}$ population relative to $\mathrm{P}_{\mathrm{D} 2}^{\bullet+}$, as identified in $\mathrm{Chl} a / \mathrm{Chl} a$ homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a $\mathrm{P}_{\mathrm{D} 1}^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio of approximately $50 / 50$, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the $\mathrm{Chl} / \mathrm{C} / \mathrm{Chl} a$ pair serves as $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ in A. marina PSII.

Keywords: Photosystem II, chlorophyll d, spin density distribution, Acaryochloris marina, redox potential, P680

1. INTRODUCTION

The reaction center of photosystem II (PSII) is composed of a D1/D2 heterodimer, harboring the chlorophyll $a(\mathrm{Ch} 1 a)$ pair $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$, the accessory $\mathrm{Ch} 1 a \mathrm{Chl}_{\mathrm{D} 1} / \mathrm{Chl}_{\mathrm{D} 2}$, two pheophytin $a \mathrm{Pheo}_{\mathrm{D} 1} / \mathrm{Pheo}_{\mathrm{D} 2}$, two quinones, and two additional $\mathrm{Ch} 1 a \mathrm{Chl}_{\mathrm{Z}(\mathrm{D} 1)} / \mathrm{Chl}_{\mathrm{Z}(\mathrm{D} 2)}$ molecules as redox active cofactors. P680, which absorbs light at a wavelength of 680 nm , is formed among these Chla molecules. Excitation of P680 leads to the formation of the $\mathrm{Chl}_{\mathrm{D} 1}{ }^{\bullet+} \mathrm{Pheo}_{\mathrm{D} 1}{ }^{\bullet-}$ state [1-3], followed by the $\left[\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}\right]^{\bullet+} \mathrm{Pheo}_{\mathrm{D} 1}{ }^{\bullet-}$ state. The resulting $\left[\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}\right]^{\bullet+}$ state serves as an electron abstractor for the oxygen-evolving complex (OEC). Thus, water oxidation is ultimately achieved by the high redox potential for one-electron oxidation $\left(E_{\mathrm{m}}\right)$ of P 680 . To date, the $E_{\mathrm{m}}(\mathrm{P} 680)$ value has not been directly measured in experimental studies. Instead, the $E_{\mathrm{m}}(\mathrm{P} 680)$ value has been estimated mainly from measured E_{m} values of other cofactors. The $E_{\mathrm{m}}(\mathrm{P} 680)$ value was first estimated to be 1.1 V by Klimov et al. in 1979 on the basis of the E_{m} value of pheophytin, measured as -0.61 V at pH 11 [4]. Subsequently, Rutherford et al. supported this claim, also estimating that the $E_{\mathrm{m}}(\mathrm{P} 680)$ value was 1.1 V [5]. In contrast, very low $E_{\mathrm{m}}(\mathrm{P} 680)$ values, between 0.8 and 0.9 V , were reported by Watanabe, Kobayashi, and colleagues [6-8]. After the PSII crystal structure from Thermosynechococcus elongatus was reported with 3.8- \AA resolution [9], Rappaport et al. estimated that the $E_{\mathrm{m}}(\mathrm{P} 680)$ was 1.26 V [10], based on measurement of the $E_{\mathrm{m}}\left(\mathrm{Q}_{\mathrm{A}}\right)$ (approximated to be -30 mV by Rutherford, Krieger, and colleagues [11, 12]) in PSII from Synechocystis PCC 6803 [10]. This measurement was higher than previously reported [4, 5]. In 2005, Grabolle and Dau reported a similar value of 1.25 V [13]. On the basis of the PSII crystal structure at 3.0- \AA resolution [14], Ishikita et al. reported $E_{\mathrm{m}}\left(\mathrm{P}_{\mathrm{D} 1}\right)$ and $E_{\mathrm{m}}\left(\mathrm{P}_{\mathrm{D} 2}\right)$, i.e., E_{m} for the Chla monomer, to be $1.1-1.2 \mathrm{~V}$ by solving the linearized Poisson-Boltzmann equation and considering the protonation states of all titratable sites [15]. Recently, Kato et al. reported that the $E_{\mathrm{m}}(\mathrm{P} 680)$ was $1.17-1.21 \mathrm{~V}$, extrapolated from an $E_{\mathrm{m}}\left(\mathrm{Pheo}_{\mathrm{D} 1}\right)$ value of $-0.5 \mathrm{~V}[16]$ measured at physiological $\mathrm{pH}(6.5)$ in PSII from T. elongatus. From these studies, it appears that the $E_{\mathrm{m}}(\mathrm{P} 680)$ value reaches $1.1-1.2 \mathrm{~V}$ (reviewed in Refs. [17-20]), a value significantly higher than the E_{m} of monomeric Chla in organic solvents.

Following initial charge separation in the reaction center of PSII, the positive charge is distributed over $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$, resulting in a $\mathrm{P}_{\mathrm{D} 1}^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ state. The $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio (or the corresponding spin density distribution) was reported to be $82 / 18$ from ENDOR studies of spinach PSII [21] or 80/20 from flashinduced spectroscopic studies of Synechocystis PCC 6803 PSII [22], suggesting a preferential localization of the cationic state on $\mathrm{P}_{\mathrm{D} 1}$ over $\mathrm{P}_{\mathrm{D} 2}$, irrespective of the high similarity in D 1 and D 2 protein sequences [23]. The cause of the asymmetric distribution of the cationic state has been attributed mainly to the electrostatic asymmetry of the D1/D2 residue pairs due to the presence of the OEC and associated functions in the D 1 protein subunit side (secondary to the geometrical asymmetry of $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ chlorophylls) [24]; this is in contrast to the cationic state distribution of the corresponding Chl pair in PSI [25].

Chld is the major Chl pigment in Acaryochloris marina (making up more than 95% of the Chl pigments), although some Chla (less than 5\%) is also present [26-29]. In A. marina grown under high iron conditions, the pigment content per 2 pheophytin a (i.e., $\mathrm{Pheo}_{\mathrm{D} 1}$ and $\mathrm{Pheo}_{\mathrm{D} 2}$) was estimated to be 1.4 Chla [29]. Recent studies have suggested that the pigment stoichiometry of 2 pheophytin a in the A. marina PSII comprises 29.6 \pm 1.2 Chld and 1.9 ± 0.1 Chla molecules [30]. Although the majority of the Chl is $\mathrm{Chl} d$, characteristic for the A. marina PSII, the origin of the minor $\mathrm{Chl}(\mathrm{Chl} a)$ is a serious question. Chld and Chla differ geometrically in their chemical group at the $\mathrm{C}^{1}{ }^{1}$ atom position; Chld possesses a formyl group at this position, whereas Chla possesses a vinyl group (Figure 1).

There is no direct evidence demonstrating that $\mathrm{Chl} a$ is actually located in the reaction center of the A. marina PSII (see statements in Ref. [31]). However, observation of the accumulation of the cationic state on a single Chl a molecule (i.e., bleaching at 435 nm and increase in absorption at 820 nm) in A. marina PSII by Schlodder et al. [31] should be considered, particularly in terms of the fact that prior studies have shown the accumulation of a cationic state specifically at $\mathrm{P}_{\mathrm{D} 1}$ in PSII from spinach [21], Synechocystis PCC 6803 [22], and T. elongatus [32, 33] (note that although no clear statement was
made describing a large population specifically consisting of $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+}$ in Refs. [32, 33], it was reasonable to assume the presence of this population from Ref. [24]). Thus, Schlodder et al. proposed that $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ is a Chla/Chld heterodimer [31, 34]. In addition, Cser et al. [35] concluded that the measured $E_{\mathrm{m}}\left(\mathrm{Pheo}_{\mathrm{D} 1}\right)$ value in the A. marina PSII was the same as that in Chla type PSII and proposed that Chla was involved in the primary donor of the A. marina PSII. To unambiguously confirm this, however, one must clarify how the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ moiety of the A. marina PSII is able to discriminate between the minor species Chla and the major species Chld and specifically uptake a Chl a molecule at the $\mathrm{P}_{\mathrm{D} 1}$ position.

On the other hand, Tomo et al. proposed that $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ is a Chld/Chld homodimer [36, 37]. An advantage of the Chld/Chld homodimer model is that Ch / d is the major species in the A. marina PSII, and thus, this model does not have to rationalize the specificity of $\mathrm{Chl} a$ at $\mathrm{P}_{\mathrm{D} 1}$. In contrast to the results by Cser et al. [35], Tomo et al. [36] or Allakhverdiev et al. [38] observed that $E_{\mathrm{m}}\left(\mathrm{Pheo}_{\mathrm{D} 1}\right)$ in the A. marina PSII was by $\sim 80 \mathrm{mV}$ higher than in the Synechocystis PCC 6803 PSII. Interestingly, the experimentally measured E_{m} value for Chl in DMF is $\sim 70 \mathrm{mV}$ higher than that of $\mathrm{Chl} a$ [39]. The essentially same shift as observed in the $E_{\mathrm{m}}\left(\mathrm{Pheo}_{\mathrm{D} 1}\right)$ difference between the two PSII proteins suggests the energetic conservation of light-induced charge separation and water oxidation among PSII species including the Chld-containing $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair, preferring the $\mathrm{Ch} 1 d / \mathrm{Chl} d$ homodimer model over the Chla/Chld heterodimer model [38]. To support the Chld/Chld homodimer model, the researchers also presented light-induced Fourier transform infrared (FTIR) spectra of both the A. marina PSII and the Synechocystis PCC 6803 PSII [36]. The $1100-1800 \mathrm{~cm}^{-1}$ region of the A. marina PSII clearly indicates that approximately 80% of the cationic state was localized on a single Chl. Based on the high similarity of the D1/D2 protein sequences between the A. marina PSII and, for instance, the T. elongatus PSII (Figure S 1 , supporting information), the cationic state is likely to be more populated on $\mathrm{P}_{\mathrm{D} 1}$ than $\mathrm{P}_{\mathrm{D} 2}$. Thus, one can conclude that the $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio is approximately $80 / 20$ for the A. marina PSII, as observed in PSII from spinach [21], Synechocystis PCC 6803 [22], and T. elongatus [32, 33]. Because the CH stretching vibration of a formyl group corresponds to a peak at approximately $2700 \mathrm{~cm}^{-1}$ (See

Refs. [36, 40, 41] and Refs. therein), it would be helpful to investigate this region to distinguish between $\mathrm{Ch} 1 a$ and $\mathrm{Ch} 1 d$ in $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$. However, the absorbance in this region is approximately 10 times weaker than that of the $1100-1800 \mathrm{~cm}^{-1}$ region of the A. marina PSII [36] (and also in the A. marina PSI [40, 41]), making it difficult to assess and adding to the debate on $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2} \mathrm{Chl}$ models in the A. marina PSII.

All of these debates ultimately arise from the lack of structural information for the A. marina PSII. The exact molecular geometry surrounding the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2} \mathrm{Chl}$ in the A. marina PSII remains unknown due to the lack of a crystal structure. Since the A. marina PSII possesses a high degree of D1 and D2 protein sequence similarity to the T. vulcanus PSII or the T. elongatus PSII (Figure S1, supporting information), we investigated the relationship between a possible Chl pair at the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ position (i.e., $\mathrm{Chl} d / \mathrm{Chl} d$, $\mathrm{Ch} 1 a / \mathrm{Ch} l d$, and $\mathrm{Chl} d / \mathrm{Ch} 1 a$) and the cationic state charge distribution over the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair, using the T. vulcanus PSII crystal structure analyzed at a 1.9-Å resolution [42]. To calculate the $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio for the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2} \mathrm{Chl}$ dimer, we used a large-scale quantum mechanical/molecular mechanical ($\mathrm{QM} / \mathrm{MM}$) approach, with the explicit treatment of the complete PSII atomic coordinates, defining the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ dimer as the QM region and the remaining protein subunits-cofactors as the MM region. Thus, the entire $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ molecule is considered quantumchemically in the presence of the PSII electrostatic protein environment.

To avoid an uncertain prediction of the protein structure, we used the original protein atomic coordinates of the T. vulcanus PSII crystal structure [42], without performing homology modeling for the A. marina PSII. The present results should be interpreted within this limiting condition. Nevertheless, the present procedure is currently the best option for investigating this phenomenon in the absence of high-resolution crystal structures of the A. marina PSII. Although the identity of the amino acid sequence of the D 1 protein, e.g., the region at 191 to 210 near the axial ligand of $\mathrm{P}_{\mathrm{D} 1}$ (i.e., D1His198) is 80%, not specifically high, there is essentially no significant difference in their electrostatic characters (e.g., no [charged residue]/[uncharged residue] difference at the corresponding position in the two D 1 proteins), which will not affect the $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ energetics. Indeed, it has been suggested that the
structure of the PSII reaction center is similar to the PSII in Chla organisms (See Ref. [31] and Refs. therein). In the A. marina PSII, delayed fluorescence from Chl a was observed as a result of charge recombination $[36,43]$, which may suggest that $\mathrm{Chl}_{\mathrm{D} 1}$ should be also investigated together with $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ (i.e., in terms of $\mathrm{Chl}_{\mathrm{D} 1}$ as an initial donor in PSII [1-3]). Due to the large system size, we did not include $\mathrm{Chl}_{\mathrm{D} 1}$ and $\mathrm{Chl}_{\mathrm{D} 2}$ in the QM region. Nevertheless, to the best of our knowledge, this is the first study that clearly demonstrates the cationic charge distribution and spin density distribution over all possible combinations of Chl d and/or Chl a pairs at the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ position in the PSII protein environment.

2. METHODS

As demonstrated in the previous article [24,25], we employed the following systematic modeling procedure: We constructed a realistic molecular model of the whole PSII complex using the resent highresolution crystal structure. To obtain deeper insight into the electronic structure of $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2} \mathrm{Chl}$ dimer, which is the key molecule of the photosystem II reaction center, we performed large-scale $\mathrm{QM} / \mathrm{MM}$ calculations for the entire PSII complex. Technical details of each modeling procedure are identical to those used in previous studies on PSII [24] and PSI [25] and summarized as follows.
2.1. Coordinates. The atomic coordinates of PSII were taken from the X-ray structure of the PSII complexes from T. vulcanus at $1.9 \AA$ resolution (PDB ID: 3ARC) [42]. Hydrogen atoms were generated and energetically optimized with CHARMM [44], whereas the positions of all non-hydrogen atoms were fixed, and all titratable groups were kept in their standard protonation states, i.e., acidic groups were ionized and basic groups were protonated. For the QM/MM calculations, we added additional counter ions to neutralize the whole system. To avoid unnecessary artifacts of the protein side chain geometry, we used the original protein atomic coordinates of the T. vulcanus PSII crystal structure [42], without performing homology modeling of the A. marina PSII. Accordingly, atomic coordinates of the cofactors expect for the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ Chl pair were kept as in the original T. vulcanus PSII crystal structure.
2.2. Atomic partial charges. Atomic partial charges of the amino acids were adopted from the allatom CHARMM22 [45] parameter set. The charges of the protonated acidic O atoms were increased symmetrically by +0.5 unit charges to implicitly account for the presence of a proton. Similarly, instead of removing a proton in the deprotonated state, the charges of all of the protons of the basic groups of Arg and Lys were diminished symmetrically by a total unit charge. For residues for which the protonation states were not available in the CHARMM22 parameter set, appropriate charges were computed [46]. For the cofactors (e.g., the OEC cluster, Chla, Pheoa, and quinones), the same atomic charges as in previous computations of PSII [24] were used.
2.3. OEC models. In the S_{1}-state, the valences of the 4 Mn atoms are most probably (III, III, IV, IV). The exact valences of the individual Mn atoms are unclear; however, we found that changing the charge distribution of each Mn atom from the above distribution did not affect our calculation results significantly [24]. The protonation states of the O atoms (and thus the net charge of the OEC atoms) in the OEC cluster remain unclear. Although $\mathrm{O} 1, \mathrm{O} 2$, and O 3 are likely to be unprotonated O^{2-} based on observations of the OEC geometry, the protonation states of O 4 linking Mn 4 and Mn 3 in the $\mathrm{Mn}_{3} \mathrm{CaO}_{4}{ }^{-}$ cubane, and O5 in one of the corners of the cubane linking Mn4 and the cubane, necessitate more deep investigation as they might be O^{2-}, protonated OH^{-}, or even $\mathrm{H}_{2} \mathrm{O}$. Due to the uncertainty, we evaluated all possible combinations of the O 4 and O 5 protonation states and we tentatively used the $\mathrm{O}_{4} \mathrm{H}^{-} \mathrm{O}_{5} \mathrm{H}^{-}$ model (see Ref. [24] for further details).

Except for a few examples [47], the spin coupling of the Mn ions has not been considered in a number of studies where the PSII protein environment was explicitly modeled (e.g., recent QM/MM studies on the S1-state model of OEC by Batista, Brudvig, and coworkers [48]). In particular, (i) our focus is not on the OEC cluster, (ii) the OEC cluster was included in the MM region (see below [24]), and (iii) the atomic charges of OEC do not differ significantly among the different spin structures [47]. Thus, the spin coupling was not considered in the present study.
2.4. $\mathbf{Q M} / \mathbf{M M}$ calculations. In all $\mathrm{QM} / \mathrm{MM}$ calculations reported here, we employed the so-called electrostatic embedding $\mathrm{QM} / \mathrm{MM}$ scheme. In all $\mathrm{QM} / \mathrm{MM}$ calculations, we used the Qsite [49] program code. Electrostatic as well as steric effects created by complex PSII architecture were explicitly considered in all present calculations. Due to the large system size of PSII, the QM region was limited to the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2} \mathrm{Chl}$ dimer for simplicity, while other protein units and all co-factors were approximated by the MM force field. Since we have optimized the atomic partial charges for the OEC cluster, Chla, Pheoa, and quinones, the present $\mathrm{QM} / \mathrm{MM}$ partition was accurate enough to describe the electronic structure of the $\left[\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}\right]^{\bullet+} \mathrm{Chl}$ dimer. To reliably determine the cationic character of $\left[\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}\right]^{\bullet+} \mathrm{Chl}$ dimer, we employed the unrestricted DFT method with the B3LYP functional and LACVP* basis sets. The detailed geometry of $\left[\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}\right]^{\bullet+} \mathrm{Chl}$ dimer was refined by the constrained $\mathrm{QM} / \mathrm{MM}$ optimizations; the surrounding protein environment was considered as the MM whose atomistic coordinates were exactly fixed with the original X-ray coordinates. After obtaining the stable geometry of QM fragment, we then determined the ESP charges for the cationic state of $\left[\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}\right]{ }^{\bullet+}$ Chl dimer in the presence of the entire PSII atomic coordinates. (Table S1, Supporting Information).

3. RESULTS AND DISCUSSION

3.1. Orientation of the formyl group in Chld. Chld molecules at the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ position were modeled by replacing the vinyl group of Chla in the T. vulcanus PSII crystal structure with a formyl group. The position of this newly-introduced formyl group of Chld was refined by the constrained QM/MM optimizations in the PSII protein environment as described above. Two orientations of the formyl group were energetically stable; one with the carbonyl O atom being oriented to the C 5 H atom (Figure 2a) and another one with the formyl group flipped along the $\mathrm{C} 3-\mathrm{C} 3{ }^{1}$ axis (Figure 2b).

The former orientation was slightly (by $\sim 3 \mathrm{kcal} / \mathrm{mol}$) more stable than the latter the monomeric form of Chld in vacuum. In contrast, in the PSII protein environment, the latter orientation was always slightly (by $\sim 3 \mathrm{kcal} / \mathrm{mol}$) more stable than the former in all cases investigated, i.e., the dimeric form
(Chla/Chld, Chld/Chla, and Chl $d / \mathrm{Chl} d)$. Hence, the conformer in Figure 2 a is advantageous in terms of intramolecular interaction energy (i.e., monomeric Chl itself) because the negative charge of the formyl O atom can be more stabilized by the proximity of the positive charge of the C 5 H atom. On the other hand, in the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair, the conformer in Figure 2 b appears to be slightly advantageous in terms of the intermolecular energy (i.e., interaction with another Chl. We will not focus on elucidation of further details in the present study.). Thus, we focused on the latter orientation of the Chld formyl group (Figure 2a) to investigate the cationic state distribution over the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair in the PSII protein environment.

The formyl groups of $\mathrm{P}_{\mathrm{D} 1}$ and $\mathrm{P}_{\mathrm{D} 2}$ were located at a van der Waals distance ($\sim 3.5 \AA$) from D1-Met183/D2-Leu182 and D1-Phe206/D2-Leu206 in the geometry of the T. vulcanus PSII (Table S1, supporting information). These residue pairs correspond to Met/Leu and Leu/Leu in the D1/D2 protein sequences of the A. marina PSII, respectively (Figure S1, supporting information). Although it has been reported that the presence of an H bond partner for Chl affects the distribution of the cationic (spin) state over the Chl pair (e.g., in PSI [25, 50]), the present analysis suggests that the formyl groups will not possess H -bond partners in the A. marina PSII.
3.2. $\mathbf{P}_{\mathbf{D} 1}{ }^{\bullet+} / \mathbf{P}_{\mathbf{D} 2}{ }^{\bullet+}$ ratio. Tomo et al. proposed that the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair in the A. Marina PSII was composed of a Chld/Chld pair [36]. The corresponding calculated $\mathrm{P}_{\mathrm{D} 1}^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio for the $\mathrm{Ch} 1 d / \mathrm{Ch} 1 d$ pair was $76.5 / 23.5$ in the whole PSII (Table 1), which is essentially the same as that of the $\mathrm{Chl} a / \mathrm{Chl} a$ pair previously reported for the T. vulcanus PSII (76.9/23.1 [24]). The Chla/Chld pair, which was proposed by Schlodder et al. as the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair in the A. Marina PSII [31], also resulted in a similar $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio of 85.1/14.9 (Table 1).

On the other hand, the $\mathrm{Chl} d / \mathrm{Chl} a$ pair resulted in a $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio of approximately $50 / 50$ (Table 1). Such a ratio was not proposed by Tomo et al. [36] or Schlodder et al. [31]. Because the cationic state distribution over the Chl pair is associated with the redox potentials for the E_{m} of the 2 Chl monomers $[24,25,51,52]$, similar amounts for the $\mathrm{P}_{\mathrm{D} 1}^{\bullet+}$ and $\mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ populations imply that the E_{m} values of the 2
monomeric $\mathrm{P}_{\mathrm{D} 1}(\mathrm{Ch} l d)$ and $\mathrm{P}_{\mathrm{D} 2}(\mathrm{Ch} l a) \mathrm{Chls}$ are also similar. The experimentally measured E_{m} value for Chld in DMF is approximately 70 mV higher than that of $\mathrm{Chl} a$ [39]. This E_{m} difference between Chld and Chla is almost in the same range as the E_{m} difference between $\mathrm{P}_{\mathrm{D} 1}$ and $\mathrm{P}_{\mathrm{D} 2}$, previously measured as $70-100 \mathrm{mV}$ in the T. vulcanus PSII [24]. Thus, a Chld/Chla pair should yield isoenergetic E_{m} values for the 2 monomeric Chls. Thus, we can conclude that the $\mathrm{Chl} / \mathrm{Chl} a$ pair is unlikely to represent the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair in the A. marina PSII .

Hence, it appears that both the Chld/Chld pair [36] and the Chla/Chld pair [31] are still possible candidates for the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair in the A. Marina PSII. The reported localization of approximately $70 \%-$ 80% of the cationic state on $\mathrm{P}_{\mathrm{D} 1}$ in FTIR studies by Tomo et al. [36, 37] is in accordance with the calculated $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}^{\bullet+}$ ratio for the $\mathrm{Ch} d / \mathrm{Ch} l d$ pair in the present study (Table 1). However, the observed cationic state localization on a single Chla that was attributed to $\mathrm{P}_{\mathrm{D} 1}$ in studies by Schlodder et al. [31] also agrees with our calculated $\mathrm{P}_{\mathrm{D} 1}^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}^{\bullet+}$ ratio for the Chla/Chld pair (Table 1). These subtle differences in the $\mathrm{P}_{\mathrm{D} 1}^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratios between the $\mathrm{Ch} 1 d / \mathrm{Ch} l d$ pair and the $\mathrm{Ch} 1 a / \mathrm{Ch} 1 d$ pair still make it difficult to determine the configuration of the relevant Chl pair in the A. marina PSII.

4. CONCLUSIONS

$\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratios for the Chld/Chld pair or the Chla/Chld pair in the T. vulcanus PSII environment were calculated to be $76.5 / 23.5$ or $85.1 / 14.9$, respectively, rendering a large $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+}$ population relative to the $\mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ population. On the other hand, the Chld/Chla pair resulted in a symmetrically charged population over the two $\mathrm{P}_{\mathrm{D} 1}$ and $\mathrm{P}_{\mathrm{D} 2}$ monomers (56.7/43.3). The present results strongly suggest that the Chld/Chla pair is unlikely to serve as $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ in A. marina PSII. Further detailed studies, preferably on crystal structures of the A. marina PSII are required to unambiguously confirm the $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair to be either Chld/Chld or Chla/Chld.

5. ACKNOWLEDGMENT

This research was supported by the JST PRESTO program (H.I), Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (21770163
to H.I. and 22740276 to K.S.), Special Coordination Fund (H.I) for Promoting Science and Technology of MEXT, Takeda Science Foundation (H.I.), Kyoto University Step-up Grant-in-Aid for young scientists (H. I.), and Grant for Basic Science Research Projects from The Sumitomo Foundation (H. I.).

6. REFERENCES

[1] V.I. Prokhorenko and A.R. Holzwarth, Primary process and structure of the photosystem II reaction center: a photon echo study, J. Phys. Chem. B 104 (2000) 11563-11578.
[2] B.A. Diner and F. Rappaport, Structure dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis, Annu. Rev. Plant Biol. 53 (2002) 551-580.
[3] G. Renger and T. Renger, Photosystem II: The machinery of photosynthetic water splitting, Photosynth Res 98 (2008) 53-80.
[4] V.V. Klimov, S.I. Allakhverdiev, S. Demeter and A.A. Krasnovskii, Photoreduction of pheophytin in the photosystem 2 of chloroplasts with respect to the redox potential of the medium, Dokl Akad Nauk SSSR 249 (1979) 227-230.
[5] A.W. Rutherford, J.E. Mullet and A.R. Crofts, Measurement of the midpoint potential of the pheophytin acceptor of photosystem II, FEBS Lett. 123 (1981) 235-237.
[6] T. Watanabe and M. Kobayashi, Electrochemistry of chlorophylls, in Chlorophylls (Scheer, H., Ed.) (1991) pp 287-303, CRC Press, Boca Raton, FL.
[7] S. Ohashi, T. Iemura, H. Miyashita, T. Watanabe and M. Kobayashi, New scheme for O_{2} evolution in PSII, Photomed Photobiol 30 (2008) 13-18.
[8] M. Kobayashi, S. Ohashi, S. Fukuyo, M. Kasahara and T. Watanabe, The oxidation potential of $\mathrm{Chl} a$ is the lowest : a new scheme for O_{2} evolution in PSII, in Photosynthesis: Energy from the Sun, ed. by Allen J. F., Gantt, E., Golbeck, J. H., Osmond, B., Springer (2008) 113-116.
[9] A. Zouni, H.T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger and P. Orth, Crystal structure of photosystem II from Synechococcus elongatus at $3.8 \AA$ resolution, Nature 409 (2001) 739-743.
[10] F. Rappaport, M. Guergova-Kuras, P.J. Nixon, B.A. Diner and J. Lavergne, Kinetics and pathways of charge recombination in photosystem II, Biochemistry 41 (2002) 8518-8527.
A. Krieger, A.W. Rutherford and G.N. Johnson, On the determination of redox midpoint potential of the primary quinone electron transfer acceptor, Q_{A}, in photosystem II, Biochim. Biophys. Acta 1229 (1995) 193-201.
[12] G.N. Johnson, A.W. Rutherford and A. Krieger, A change in the midpoint potential of the quinone Q_{A} in Photosystem II associated with photoactivation of oxygen evolution, Biochim. Biophys. Acta 1229 (1995) 202-207.
M. Grabolle and H. Dau, Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements, Biochim. Biophys. Acta 1708 (2005) 209-218.
B. Loll, J. Kern, W. Saenger, A. Zouni and J. Biesiadka, Towards complete cofactor arrangement in the $3.0 \AA$ resolution structure of photosystem II, Nature 438 (2005) 1040-1044. H. Ishikita, W. Saenger, J. Biesiadka, B. Loll and E.-W. Knapp, How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700 and P870, Proc. Natl. Acad. Sci. USA 103 (2006) 9855-9860.
[16] Y. Kato, M. Sugiura, A. Oda and T. Watanabe, Spectroelectrochemical determination of the redox potential of pheophytin a, the primary electron acceptor in photosystem II, Proc Natl Acad Sci U S A 106 (2009) 17365-17370.
[17] G. Renger and A.R. Holzwarth, Plastoquinone Oxido-Reductase in Photosynthesis, in Photosystem II (eds Wydrqynski, T., Satoh, K.) Springer, Dordrecht, The Netherlands (2005) 139-175.
[18] G. Renger, in Primary Processes of Photosynthesis: Principles and Apparatus, Part II (ed Renger G) Royal Society Chemistry, Cambridge, UK (2008) 237-290.
[19] H. Dau and M. Haumann, The manganese complex of photosystem II in its reaction cycle? Basic framework and possible realization at the atomic level, Coord. Chem. Rev. 252 (2008) 273-295.
F. Rappaport and B.A. Diner, Primary photochemistry and energetics leading to the oxidation of the $\mathrm{Mn}_{4} \mathrm{Ca}$ cluster and to the evolution of molecular oxygen in photosystem II, Coord. Chem. Rev. 252 (2008) 259-272.
S.E.J. Rigby, J.H.A. Nugent and P.J. O'Malley, ENDOR and special triple resonance studies of chlorophyll cation radicals in photosystem 2, Biochemistry 33 (1994) 10043-10050.
B.A. Diner, E. Schlodder, P.J. Nixon, W.J. Coleman, F. Rappaport, J. Lavergne, W.F.J. Vermaas and D.A. Chisholm, Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization, Biochemistry 40 (2001) 9265-9281.
H. Michel and J. Deisenhofer, Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II, Biochemistry 27 (1988) 1-7.
K. Saito, T. Ishida, M. Sugiura, K. Kawakami, Y. Umena, N. Kamiya, J.-R. Shen and H. Ishikita, Distribution of the cationic state over the chlorophyll pair of photosystem II reaction center, J. Am. Chem. Soc. 133 (2011) 14379-14388.
[25] K. Saito and H. Ishikita, Cationic state distribution over the P700 chlorophyll pair in Photosystem I, Biophys. J. 101 (2011) 2018-2025.
[26] M. Akiyama, H. Miyashita, H. Kise, T. Watanabe, M. Mimuro, S. Miyachi and M. Kobayashi, Quest for minor but key chlorophyll molecules in photosynthetic reaction centers - unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina, Photosynth Res 74 (2002) 97-107.
[27] M. Mimuro, S. Akimoto, T. Gotoh, M. Yokono, M. Akiyama, T. Tsuchiya, H. Miyashita, M. Kobayashi and I. Yamazaki, Identification of the primary electron donor in PS II of the $\mathrm{Chl} d$ dominated cyanobacterium Acaryochloris marina, FEBS Lett 556 (2004) 95-8.
[28]
M. Chen, A. Telfer, S. Lin, A. Pascal, A.W. Larkum, J. Barber and R.E. Blankenship, The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina, Photochem Photobiol Sci 4 (2005) 1060-4.
[29] W.D. Swingley, M.F. Hohmann-Marriott, T. Le Olson and R.E. Blankenship, Effect of iron on growth and ultrastructure of Acaryochloris marina, Appl Environ Microbiol 71 (2005) 8606-10.
S.I. Allakhverdiev, T. Tomo, Y. Shimada, H. Kindo, R. Nagao, V.V. Klimov and M. Mimuro, Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls, Proc Natl Acad Sci U S A 107 (2010) 3924-9.
E. Schlodder, M. Cetin, H.J. Eckert, F.J. Schmitt, J. Barber and A. Telfer, Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina, Biochim Biophys Acta 1767 (2007) 589-95.
M. Sugiura, F. Rappaport, K. Brettel, T. Noguchi, A.W. Rutherford and A. Boussac, Sitedirected mutagenesis of Thermosynechococcus elongatus photosystem II: the O_{2}-evolving enzyme lacking the redox-active tyrosine D, Biochemistry 43 (2004) 13549-13563.
T. Okubo, T. Tomo, M. Sugiura and T. Noguchi, Perturbation of the structure of P680 and the charge distribution on its radical cation in isolated reaction center complexes of photosystem II as revealed by fourier transform infrared spectroscopy, Biochemistry 46 (2007) 4390-4397.
T. Renger and E. Schlodder, The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer, J Phys Chem B 112 (2008) 7351-4.
K. Cser, Z. Deak, A. Telfer, J. Barber and I. Vass, Energetics of Photosystem II charge recombination in Acaryochloris marina studied by thermoluminescence and flash-induced chlorophyll fluorescence measurements, Photosynth Res 98 (2008) 131-40.
[36] T. Tomo, T. Okubo, S. Akimoto, M. Yokono, H. Miyashita, T. Tsuchiya, T. Noguchi and M. Mimuro, Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium, Proc Natl Acad Sci U S A 104 (2007) 7283-8.
M. Mimuro, S. Akimoto, I.I. Yamazaki, H. Miyashita and S. Miyachi, Fluorescence properties of chlorophyll d-dominating prokaryotic alga, acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells, Biochim Biophys Acta 1412 (1999) 37-46.
B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M. Karplus, CHARMM: a program for macromolecular energy minimization and dynamics calculations, J. Comput. Chem. 4 (1983) 187-217.
A.D. MacKerell, Jr., D. Bashford, R.L. Bellott, R.L. Dunbrack, Jr., J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, III, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102 (1998) 3586-3616.
[46] B. Rabenstein, G.M. Ullmann and E.-W. Knapp, Calculation of protonation patterns in proteins with structural relaxation and molecular ensembles - application to the photosynthetic reaction center, Eur. Biophys. J. 27 (1998) 626-637.
K. Kanda, S. Yamanaka, T. Saito, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, M. Okumura, H. Nakamura and K. Yamaguchi, Labile electronic and spin states of the $\mathrm{CaMn}_{4} \mathrm{O}_{5}$ cluster in the PSII system refined to the $1.9 \AA$ X-ray resolution. UB3LYP computational results, Chem. Phys. Lett. 506 (2011) 98-103.
S. Luber, I. Rivalta, Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, G.W. Brudvig and V.S. Batista, S_{1}-state model of the O_{2}-evolving complex of photosystem II, Biochemistry 50 (2011) 6308-6311.
[49] QSite, version 5.6, Schrödinger, LLC, New York, NY, 2010.
[50] Y. Li, M.-G. Lucas, T. Konovalova, B. Abbott, F. MacMillan, A. Petrenko, V. Sivakumar, R. Wang, G. Hastings, F. Gu, J. van Tol, L.-C. Brunel, R. Timkovich, F. Rappaport and K. Redding, Mutation of the putative hydrogen-bond donor to P_{700} of photosystem I, Biochemistry 43 (2004) 12634-12647.
[51]
F. Muh, F. Lendzian, M. Roy, J.C. Williams, J.P. Allen and W. Lubitz, Pigment-protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor, J. Phys. Chem. B 106 (2002) 3226-3236.
[52] H. Witt, E. Schlodder, C. Teutloff, J. Niklas, E. Bordignon, D. Carbonera, S. Kohler, A. Labahn and W. Lubitz, Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii, Biochemistry 41 (2002) 8557-8569.

FIGURE CAPTIONS

FIGURE 1: Structure of (a) Chld and (b) Chla using the IUPAC numbering scheme ($\mathrm{R}=$ phytol chain).

FIGURE 2: Possible orientations of the formyl group in Chld; (a) one with the carbonyl O atom being oriented to the C 5 H atom and (b) another one with the formyl group flipped along the $\mathrm{C} 3-\mathrm{C} 3{ }^{1}$ axis.
(a)

(b)

FIGURE 1

(a)

(b)

FIGURE 2

TABLE 1. Calculated values (\%) for the $\mathrm{P}_{\mathrm{D} 1}{ }^{\bullet+} / \mathrm{P}_{\mathrm{D} 2}{ }^{\bullet+}$ ratio and spin density distribution in the $\mathrm{D} 1 / \mathrm{D} 2$ subunit of the Thermosynechococcus vulcanus PSII [42].

	charge		spin	
	$\mathbf{P}_{\mathbf{D} 1}{ }^{\bullet+}$	$\mathbf{P}_{\mathbf{D} 2}{ }^{\bullet+}$	$\mathbf{P}_{\mathbf{D} 1}$	$\mathbf{P}_{\mathbf{D} 2}$
[whole PSII]				
Chl $a /$ Chl $a\left(\right.$ T. vulcanus ${ }^{\text {a }}$)	76.9	23.1	80.1	19.9
Chl $d /$ Chl d (Tomo et al. ${ }^{\text {b }}$)	76.5	23.5	85.1	14.9
Chl $a /$ Chl d (Schlodder et al. ${ }^{\text {c }}$)	85.1	14.9	95.2	4.8
Chl $d /$ Chl a	56.7	43.3	55.8	44.2
${ }^{\text {a }} a$				

${ }^{\text {a }}$ See Ref. [24].
${ }^{\mathrm{b}}$ See Refs. [36, 37].
${ }^{c}$ See Ref. [31].

Cationic state distribution over the chlorophyll d -containing $\mathrm{P}_{\mathrm{D} 1} / \mathrm{P}_{\mathrm{D} 2}$ pair in photosystem II

Keisuke Saito, Jian-Ren Shen, and Hiroshi Ishikita

Table S1. Atomic charges (ESP: unrestricted DFT) summarized in Table 1 in the main text and atomic coordinates.
(a) $\operatorname{Chl} a / \mathrm{Chl} a$ (T. vulcanus)

atom	\mathbf{x}	\mathbf{y}	\mathbf{z}		charge
PD1 MG	-19.914	-45.136	189.572	1.5528	
PD1 CHA	-23.352	-44.836	188.885	-0.1854	
PD1 CHB	-19.556	-46.569	186.476	-0.497	
PD1 HHB	-19.428	-47.128	185.559	0.1628	
PD1 CHC	-16.545	-44.432	189.617	-0.4855	
PD1 HHC	-15.478	-44.254	189.665	0.1941	
PD1 CHD	-20.349	-42.887	192.209	-0.5775	
PD1 HHD	-20.478	-42.246	193.076	0.2548	
PD1 NA	-21.283	-45.601	187.915	-0.5933	
PD1 C1A	-22.65	-45.406	187.854	0.1961	
PD1 C2A	-23.201	-45.815	186.503	0.0071	
PD1 H2A	-24.15	-46.348	186.614	0.0652	
PD1 C3A	-22.073	-46.733	185.991	0.0761	
PD1 H3A	-21.883	-46.589	184.922	0.0253	
PD1 C4A	-20.882	-46.272	186.824	0.433	
PD1 CMA	-22.35	-48.216	186.273	-0.3975	
PD1 HMA1	-23.241	-48.561	185.738	0.0977	
PD1 HMA2	-22.508	-48.382	187.344	0.1247	
PD1 HMA3	-21.498	-48.822	185.957	0.1074	
PD1 CAA	-23.421	-44.569	185.606	0.2187	
PD1 HAA1	-22.443	-44.148	185.355	-0.011	
PD1 HAA2	-23.963	-43.802	186.166	0.021	
PD1 CBA	-24.185	-44.844	184.31	-0.6022	
PD1 HBA1	-23.743	-45.663	183.73	0.131	
PD1 HBA2	-24.137	-43.961	183.661	0.173	
PD1 CGA	-25.652	-45.156	184.538	0.7933	
PD1 O1A	-26.229	-45.085	185.603	-0.4926	
PD1 O2A	-26.251	-45.522	183.387	-0.3732	
PD1 NB	-18.327	-45.45	188.28	-0.8152	
PD1 C1B	-18.379	-46.161	187.108	0.3582	

PD1 C2B	-17.035	-46.376	186.589	0.1782
PD1 C3B	-16.175	-45.721	187.446	-0.2492
PD1 C4B	-17.013	-45.169	188.517	0.5507
PD1 CMB	-16.7	-47.185	185.385	-0.4232
PD1 HMB1	-17.547	-47.781	185.038	0.1085
PD1 HMB2	-15.886	-47.877	185.619	0.148
PD1 HMB3	-16.369	-46.554	184.552	0.1357
PD1 CAB	-14.738	-45.517	187.374	0.0241
PD1 HAB	-14.286	-45.054	188.245	0.0778
PD1 CBB	-13.918	-45.781	186.344	-0.3733
PD1 HBB1	-12.865	-45.536	186.408	0.1549
PD1 HBB2	-14.27	-46.173	185.4	0.1455
PD1 NC	-18.661	-43.935	190.761	-0.8154
PD1 C1C	-17.298	-43.835	190.626	0.4223
PD1 C2C	-16.749	-42.961	191.654	0.0627
PD1 C3C	-17.809	-42.527	192.406	-0.2599
PD1 C4C	-19.007	-43.147	191.82	0.6294
PD1 CMC	-15.301	-42.627	191.827	-0.1977
PD1 HMC1	-14.837	-42.345	190.877	0.0167
PD1 HMC2	-14.744	-43.469	192.238	0.0816
PD1 HMC3	-15.159	-41.803	192.524	0.1185
PD1 CAC	-17.715	-41.622	193.598	0.0318
PD1 HAC1	-17.066	-42.12	194.329	0.0802
PD1 HAC2	-18.694	-41.534	194.068	0.0414
PD1 CBC	-17.158	-40.207	193.341	-0.1367
PD1 HBC1	-16.245	-40.215	192.743	0.0112
PD1 HBC2	-16.912	-39.738	194.296	0.0895
PD1 HBC3	-17.871	-39.562	192.825	0.0476
PD1 ND	-21.467	-44.114	190.415	-0.9155
PD1 C1D	-21.501	-43.294	191.539	0.5764
PD1 C2D	-22.897	-42.907	191.822	0.0489
PD1 C3D	-23.637	-43.51	190.829	-0.2908
PD1 C4D	-22.731	-44.239	190.011	0.5059
PD1 CMD	-23.374	-42.105	192.97	-0.4552
PD1 HMD1	-22.53	-41.85	193.602	0.1331
PD1 HMD2	-24.094	-42.672	193.568	0.1947

PD1 HMD3	-23.885	-41.187	192.66	0.1751
PD1 CAD	-24.972	-43.554	190.231	0.6954
PD1 OBD	-25.979	-42.96	190.547	-0.459
PD1 CBD	-24.829	-44.466	188.933	-0.6753
PD1 HBD1	-25.157	-43.882	188.068	0.1997
PD1 CGD	-25.848	-45.557	189.042	0.8822
PD1 O1D	-25.66	-46.646	189.54	-0.5914
PD1 O2D	-27.022	-45.099	188.608	-0.3265
PD1 CED	-28.158	-45.94	188.828	-0.154
PD1 HED1	-28.053	-46.468	189.775	0.1097
PD1 HED2	-28.244	-46.665	188.015	0.1201
PD1 HED3	-29.017	-45.269	188.85	0.124
PD1 C1	-27.644	-45.876	183.518	-0.1068
PD1 H1	-27.763	-46.629	184.292	0.1241
PD1 H2	-27.933	-46.264	182.54	0.0986
PD1 H3	-28.233	-44.99	183.765	0.0932
PD2 MG	-13.534	-42.66	185.027	1.3137
PD2 CHA	-10.514	-44.017	183.826	0.0966
PD2 CHB	-15.145	-44.492	182.583	-0.4322
PD2 HHB	-15.684	-44.965	181.767	0.1497
PD2 CHC	-16.483	-42.158	186.638	-0.186
PD2 HHC	-17.434	-41.882	187.078	0.1463
PD2 CHD	-11.836	-41.675	187.893	-0.5191
PD2 HHD	-11.296	-41.27	188.743	0.2203
PD2 NA	-12.884	-43.982	183.384	-0.2896
PD2 C1A	-11.608	-44.346	183.052	-0.1944
PD2 C2A	-11.569	-45.224	181.821	0.1677
PD2 H2A	-10.831	-44.849	181.098	-0.0054
PD2 C3A	-13.005	-45.08	181.286	0.3488
PD2 H3A	-13.398	-46.061	181.019	-0.0549
PD2 C4A	-13.761	-44.494	182.477	0.0699
PD2 CMA	-13.083	-44.142	180.081	-0.4287
PD2 HMA1	-12.495	-44.523	179.238	0.0782
PD2 HMA2	-12.707	-43.151	180.354	0.1006
PD2 HMA3	-14.117	-44.033	179.758	0.1242

PD2 CAA	-11.203	-46.676	182.169	0.1725
PD2 HAA1	-11.949	-47.06	182.871	0.0162
PD2 HAA2	-10.241	-46.718	182.683	-0.0009
PD2 CBA	-11.139	-47.582	180.932	-0.6793
PD2 HBA1	-10.305	-47.264	180.299	0.1596
PD2 HBA2	-12.057	-47.534	180.344	0.1557
PD2 CGA	-10.948	-49.024	181.33	0.8471
PD2 O1A	-11.75	-49.91	181.133	-0.5501
PD2 O2A	-9.776	-49.191	181.965	-0.3426
PD2 NB	-15.472	-43.261	184.682	-0.4856
PD2 C1B	-15.948	-43.965	183.628	0.2495
PD2 C2B	-17.404	-44.078	183.719	0.0474
PD2 C3B	-17.778	-43.399	184.858	0.0281
PD2 C4B	-16.547	-42.901	185.467	0.0701
PD2 CMB	-18.282	-44.844	182.784	-0.2918
PD2 HMB1	-17.972	-45.893	182.71	0.0682
PD2 HMB2	-18.276	-44.434	181.767	0.091
PD2 HMB3	-19.309	-44.819	183.151	0.0826
PD2 CAB	-19.097	-43.183	185.469	-0.0857
PD2 HAB	-19.164	-43.428	186.528	0.0651
PD2 CBB	-20.172	-42.65	184.876	-0.3394
PD2 HBB1	-21.087	-42.466	185.428	0.1386
PD2 HBB2	-20.157	-42.321	183.845	0.1585
PD2 NC	-14.068	-42.065	186.974	-0.5127
PD2 C1C	-15.33	-41.721	187.331	0.1054
PD2 C2C	-15.31	-40.844	188.496	0.1423
PD2 C3C	-13.987	-40.685	188.84	-0.2318
PD2 C4C	-13.222	-41.48	187.887	0.4202
PD2 CMC	-16.511	-40.231	189.141	-0.3928
PD2 HMC1	-17.044	-40.965	189.757	0.0928
PD2 HMC2	-17.213	-39.835	188.399	0.1003
PD2 HMC3	-16.237	-39.406	189.802	0.1625
PD2 CAC	-13.421	-39.779	189.895	0.2326
PD2 HAC1	-12.967	-40.358	190.707	0.0146
PD2 HAC2	-14.244	-39.226	190.357	0.0192
PD2 CBC	-12.39	-38.777	189.336	-0.387

PD2 HBC1	-11.372	-39.166	189.425	0.085
PD2 HBC2	-12.427	-37.833	189.879	0.1314
PD2 HBC3	-12.591	-38.554	188.283	0.0874
PD2 ND	-11.632	-42.845	185.757	-0.6268
PD2 C1D	-11.075	-42.359	186.929	0.3685
PD2 C2D	-9.636	-42.609	186.941	0.1057
PD2 C3D	-9.37	-43.204	185.723	-0.3057
PD2 C4D	-10.612	-43.346	185.052	0.1883
PD2 CMD	-8.68	-42.299	188.027	-0.3834
PD2 HMD1	-8.634	-43.092	188.78	0.1418
PD2 HMD2	-9.006	-41.399	188.533	0.1147
PD2 HMD3	-7.67	-42.155	187.641	0.1588
PD2 CAD	-8.31	-43.768	184.901	0.7241
PD2 OBD	-7.116	-43.84	185.103	-0.4812
PD2 CBD	-9.036	-44.334	183.601	-0.6943
PD2 HBD1	-8.806	-45.398	183.509	0.2002
PD2 CGD	-8.453	-43.607	182.414	0.8375
PD2 O1D	-8.618	-42.423	182.235	-0.5543
PD2 O2D	-7.711	-44.394	181.632	-0.3656
total (PD2)	-6.933	-43.722	180.616	-0.1001
PD2 CED	-6.681	-42.715	180.935	0.1211
PD2 HED1	-7.494	-43.671	179.686	0.105
PD2 HED2	-6.037	-44.318	180.474	0.1165
PD2 HED3	-9.498	-50.523	182.417	-0.1022
PD2 C1	-9.685	-51.247	181.623	0.083
PD2 H1	-10.114	-50.757	183.286	0.1152
PD2 H2	-50.527	182.698	0.1139	
P146			0.7694	

(b) Chld/Chld (Tomo et al.)

PD1 CMB	-16.683	-47.182	185.377	-0.5319
PD1 HMB1	-17.545	-47.703	184.955	0.1286
PD1 HMB2	-15.923	-47.919	185.64	0.1928
PD1 HMB3	-16.238	-46.546	184.605	0.1792
PD1 CAB	-14.738	-45.545	187.271	0.5371
PD1 HAB	-14.24	-44.898	188.018	-0.0479
PD1 OAB	-14.074	-46.048	186.373	-0.4787
PD1 NC	-18.657	-43.935	190.755	-0.8445
PD1 C1C	-17.289	-43.835	190.62	0.4563
PD1 C2C	-16.743	-42.962	191.651	0.0566
PD1 C3C	-17.804	-42.529	192.401	-0.258
PD1 C4C	-19.001	-43.151	191.813	0.6494
PD1 CMC	-15.294	-42.631	191.826	-0.2099
PD1 HMC1	-14.81	-42.428	190.866	0.0251
PD1 HMC2	-14.754	-43.443	192.314	0.0894
PD1 HMC3	-15.155	-41.755	192.456	0.1204
PD1 CAC	-17.714	-41.624	193.595	0.0265
PD1 HAC1	-17.065	-42.122	194.326	0.0829
PD1 HAC2	-18.694	-41.538	194.065	0.0416
PD1 CBC	-17.159	-40.207	193.342	-0.128
PD1 HBC1	-16.248	-40.211	192.741	0.0088
PD1 HBC2	-16.912	-39.742	194.298	0.0883
PD1 HBC3	-17.875	-39.561	192.831	0.0466
PD1 ND	-21.465	-44.115	190.413	-0.9083
PD1 C1D	-21.497	-43.295	191.537	0.573
PD1 C2D	-22.896	-42.908	191.821	0.0617
PD1 C3D	-23.635	-43.509	190.829	-0.3047
PD1 C4D	-22.728	-44.239	190.01	0.5178
PD1 CMD	-23.373	-42.106	192.97	-0.4624
PD1 HMD1	-22.529	-41.851	193.602	0.1358
PD1 HMD2	-24.093	-42.674	193.567	0.1967
PD1 HBD1 \quad HBD	-24.828	-44.465	188.933	-0.7062
PD1 CAD	-25.154	-43.883	188.066	0.2158
PD1 OBD	-24.884	-41.189	192.659	0.1785
PD1	-43.554	190.229	0.714	
PD				

PD1 CGD	-25.847	-45.556	189.042	0.8808
PD1 O1D	-25.656	-46.645	189.54	-0.5907
PD1 O2D	-27.02	-45.098	188.61	-0.3261
PD1 CED	-28.157	-45.94	188.827	-0.1481
PD1 HED1	-28.052	-46.472	189.772	0.1084
PD1 HED2	-28.243	-46.662	188.011	0.1197
PD1 HED3	-29.015	-45.269	188.852	0.1231
PD1 C1	-27.644	-45.876	183.518	-0.0984
PD1 H1	-27.762	-46.652	184.27	0.1215
PD1 H2	-27.941	-46.233	182.531	0.0946
PD1 H3	-28.228	-44.996	183.796	0.0919
PD2 MG	-13.536	-42.673	185.026	1.3921
PD2 CHA	-10.514	-44.013	183.829	0.0322
PD2 CHB	-15.136	-44.495	182.582	-0.5151
PD2 HHB	-15.677	-44.969	181.769	0.1576
PD2 CHC	-16.497	-42.153	186.644	-0.2646
PD2 HHC	-17.438	-41.863	187.095	0.1829
PD2 CHD	-11.84	-41.678	187.89	-0.6306
PD2 HHD	-11.302	-41.271	188.74	0.23
PD2 NA	-12.881	-43.98	183.383	-0.4067
PD2 C1A	-11.612	-44.344	183.053	-0.0608
PD2 C2A	-11.567	-45.223	181.822	0.1133
PD2 H2A	-10.828	-44.847	181.103	0.0046
PD2 C3A	-13.002	-45.079	181.284	0.3277
PD2 H3A	-13.395	-46.061	181.018	-0.0512
PD2 C4A	-13.757	-44.494	182.473	0.1967
PD2 CMA	-13.081	-44.142	180.078	-0.4352
PD2 HMA1	-12.492	-44.522	179.236	0.0839
PD2 HMA2	-12.706	-43.15	180.351	0.0973
PD2 HMA3	-14.114	-44.034	179.755	0.126
PD2 CAA	-11.204	-46.675	182.172	0.1893
PD2 HAA1	-11.949	-47.058	182.875	0.0272
PD2 HAA2	-10.241	-46.718	182.686	-0.0028
PD2 CBA	-11.14	-47.58	180.935	-0.6993
PD2 HBA1	-10.306	-47.263	180.3	0.1642

PD2 HBA2	-12.058	-47.533	180.346	0.1628
PD2 CGA	-10.948	-49.023	181.33	0.85
PD2 O1A	-11.749	-49.91	181.131	-0.5501
PD2 O2A	-9.776	-49.191	181.965	-0.3425
PD2 NB	-15.492	-43.266	184.698	-0.5314
PD2 C1B	-15.947	-43.981	183.629	0.3147
PD2 C2B	-17.383	-44.113	183.698	0.132
PD2 C3B	-17.784	-43.426	184.839	-0.2402
PD2 C4B	-16.572	-42.904	185.463	0.1668
PD2 CMB	-18.261	-44.859	182.749	-0.333
PD2 HMB1	-18.037	-45.932	182.764	0.0777
PD2 HMB2	-18.138	-44.514	181.717	0.0971
PD2 HMB3	-19.297	-44.714	183.042	0.1054
PD2 CAB	-19.138	-43.243	185.342	0.4618
PD2 HAB	-19.217	-42.672	186.289	-0.072
PD2 OAB	-20.167	-43.656	184.815	-0.3985
PD2 NC	-14.076	-42.082	186.979	-0.5726
PD2 C1C	-15.344	-41.728	187.332	0.1063
PD2 C2C	-15.317	-40.846	188.496	0.1641
PD2 C3C	-13.993	-40.691	188.837	-0.3073
PD2 C4C	-13.232	-41.493	187.884	0.5727
PD2 CMC	-16.514	-40.228	189.143	-0.3842
PD2 HMC1	-17.042	-40.957	189.767	0.0846
PD2 HMC2	-17.219	-39.838	188.401	0.0992
PD2 HMC3	-16.237	-39.397	189.795	0.1632
PD2 CAC	-13.423	-39.783	189.891	0.252
PD2 HAC1	-12.968	-40.362	190.702	0.0122
PD2 HAC2	-14.245	-39.229	190.353	0.0185
PD2 CBC	-12.391	-38.78	189.334	-0.3903
PD2 HBC1	-11.373	-39.169	189.424	0.087
PD2 HBC2	-12.43	-37.837	189.878	0.1326
PD2 HBC3	-12.591	-38.556	188.281	0.0872
PD2 ND	-11.636	-42.841	185.756	-0.8411
PD2 C1D	-11.081	-42.356	186.927	0.5459
PD2 C2D	-9.635	-42.607	186.939	0.0498
PD2 C3D	-9.372	-43.201	185.724	-0.3145

PD2 C4D	-10.616	-43.344	185.051	0.3414
PD2 CMD	-8.681	-42.298	188.026	-0.3612
PD2 HMD1	-8.639	-43.092	188.778	0.1424
PD2 HMD2	-9.005	-41.397	188.531	0.1091
PD2 HMD3	-7.67	-42.157	187.641	0.1569
PD2 CAD	-8.312	-43.768	184.9	0.7453
PD2 OBD	-7.118	-43.837	185.104	-0.4785
PD2 CBD	-9.038	-44.332	183.602	-0.7352
PD2 HBD1	-8.811	-45.398	183.511	0.2163
PD2 CGD	-8.453	-43.607	182.414	0.8322
PD2 O1D	-8.619	-42.422	182.237	-0.5531
PD2 O2D	-7.713	-44.394	181.633	-0.3591
PD2 CED	-6.933	-43.723	180.616	-0.0992
PD2 HED1	-6.681	-42.716	180.936	0.1219
PD2 HED2	-7.494	-43.672	179.687	0.1051
PD2 HED3	-6.038	-44.32	180.476	0.1159
PD2 C1	-9.498	-50.523	182.417	-0.1049
PD2 H1	-9.685	-51.247	181.623	0.0829
PD2 H2	-10.114	-50.756	183.286	0.1182
PD2 H3	-8.446	-50.527	182.699	0.1137
total (PD1)				0.7653
total (PD2)				0.2347

(c) Chla/Chld (Schlodder et al.)

	atom	\mathbf{x}	y	z	charge	
PD1	MG		-19.928	-45.135	189.566	1.5793
PD1	CHA		-23.364	-44.825	188.889	-0.1795
PD1	CHB		-19.578	-46.571	186.477	-0.6221
PD1	HHB		-19.455	-47.126	185.556	0.1789
PD1	CHC		-16.56	-44.429	189.601	-0.511
PD1	HHC		-15.494	-44.249	189.639	0.2003
PD1	CHD		-20.354	-42.892	192.212	-0.5913
PD1	HHD		-20.479	-42.252	193.079	0.2563
PD1	NA		-21.297	-45.592	187.915	-0.7372
PD1	C1A		-22.664	-45.382	187.849	0.2848
PD1	C2A		-23.213	-45.766	186.495	-0.1272
PD1	H2A		-24.165	-46.294	186.601	0.0877
PD1	C3A		-22.092	-46.689	185.974	0.1111
PD1	H3A		-21.888	-46.529	184.91	0.0201
PD1	C4A		-20.905	-46.256	186.821	0.6227
PD1	CMA		-22.389	-48.174	186.24	-0.4415
PD1	HMA1		-23.283	-48.498	185.697	0.1114
PD1	HMA2		-22.559	-48.348	187.308	0.1296
PD1	HMA3		-21.548	-48.794	185.923	0.1134
PD1	CAA		-23.431	-44.503	185.614	0.3873
PD1	HAA1		-22.457	-44.068	185.365	-0.0873
PD1	HAA2		-23.983	-43.753	186.186	-0.0225
PD1	CBA		-24.202	-44.773	184.319	-0.5896
PD1	HBA1		-23.74	-45.564	183.716	0.1271
PD1	HBA2		-24.181	-43.874	183.691	0.1733
PD1	CGA		-25.659	-45.132	184.546	0.7623
PD1	O1A		-26.234	-45.101	185.616	-0.4898
PD1	O2A		-26.257	-45.494	183.392	-0.3708
PD1	NB		-18.346	-45.441	188.27	-0.8763
PD1	C1B		-18.405	-46.163	187.101	0.4814
PD1	C2B		-17.061	-46.39	186.582	0.1231
PD1	C3B		-16.2	-45.728	187.429	-0.2308
PD1	C4B		-17.038	-45.166	188.5	0.5811

PD1 CMB	-16.733	-47.22	185.39	-0.4188
PD1 HMB1	-17.575	-47.844	185.08	0.1119
PD1 HMB2	-15.897	-47.885	185.622	0.1498
PD1 HMB3	-16.44	-46.605	184.532	0.138
PD1 CAB	-14.761	-45.538	187.357	0.0171
PD1 HAB	-14.299	-45.101	188.236	0.0758
PD1 CBB	-13.953	-45.787	186.314	-0.3608
PD1 HBB1	-12.895	-45.561	186.376	0.1527
PD1 HBB2	-14.318	-46.15	185.363	0.1426
PD1 NC	-18.671	-43.938	190.756	-0.8372
PD1 C1C	-17.305	-43.836	190.614	0.4458
PD1 C2C	-16.752	-42.963	191.643	0.0604
PD1 C3C	-17.808	-42.532	192.399	-0.2621
PD1 C4C	-19.01	-43.153	191.815	0.655
PD1 CMC	-15.302	-42.631	191.808	-0.1942
PD1 HMC1	-14.835	-42.382	190.85	0.016
PD1 HMC2	-14.751	-43.463	192.248	0.0825
PD1 HMC3	-15.157	-41.785	192.477	0.1175
PD1 CAC	-17.715	-41.632	193.595	0.0319
PD1 HAC1	-17.067	-42.134	194.324	0.0809
PD1 HAC2	-18.695	-41.546	194.065	0.041
PD1 CBC	-17.158	-40.215	193.346	-0.1343
PD1 HBC1	-16.244	-40.219	192.75	0.0126
PD1 HBC2	-16.915	-39.751	194.304	0.0895
PD1 HBC3	-17.872	-39.568	192.832	0.0477
PD1 ND	-21.474	-44.116	190.419	-0.9108
PD1 C1D	-21.503	-43.296	191.542	0.581
PD1 C2D	-22.903	-42.905	191.827	0.0626
PD1 C3D	-23.644	-43.504	190.835	-0.3072
PD1 C4D	-22.739	-44.236	190.015	0.5195
PD1 CMD	-23.376	-42.103	192.976	-0.4613
PD1 HMD1	-22.528	-41.847	193.604	0.1351
PD1 HMD2	-24.092	-42.671	193.576	0.1966
PD1 HMD3	-23.888	-41.186	192.667	0.1784
PD1 CAD	-24.98	-43.544	190.236	0.7146
-25.984	-42.948	190.557	-0.4593	

PD1 CBD	-24.84	-44.454	188.939	-0.7011
PD1 HBD1	-25.169	-43.871	188.074	0.2118
PD1 CGD	-25.854	-45.549	189.045	0.8793
PD1 O1D	-25.657	-46.642	189.532	-0.5899
PD1 O2D	-27.031	-45.091	188.622	-0.3264
PD1 CED	-28.161	-45.943	188.829	-0.1483
PD1 HED1	-28.054	-46.481	189.77	0.108
PD1 HED2	-28.241	-46.658	188.007	0.1196
PD1 HED3	-29.025	-45.278	188.857	0.1231
PD1 C1	-27.644	-45.876	183.518	-0.0979
PD1 H1	-27.75	-46.654	184.27	0.1208
PD1 H2	-27.931	-46.238	182.53	0.095
PD1 H3	-28.246	-45.008	183.795	0.0918
PD2 MG	-13.547	-42.676	184.99	1.3121
PD2 CHA	-10.502	-44.019	183.814	0.0825
PD2 CHB	-15.108	-44.507	182.519	-0.4556
PD2 HHB	-15.639	-44.978	181.698	0.1478
PD2 CHC	-16.523	-42.18	186.574	-0.2583
PD2 HHC	-17.472	-41.897	187.013	0.1794
PD2 CHD	-11.877	-41.689	187.86	-0.5087
PD2 HHD	-11.351	-41.278	188.716	0.2161
PD2 NA	-12.865	-43.987	183.344	-0.3182
PD2 C1A	-11.587	-44.347	183.026	-0.1619
PD2 C2A	-11.532	-45.224	181.795	0.1128
PD2 H2A	-10.779	-44.857	181.084	0.0077
PD2 C3A	-12.959	-45.076	181.237	0.376
PD2 H3A	-13.349	-46.055	180.959	-0.0583
PD2 C4A	-13.728	-44.498	182.422	0.0945
PD2 CMA	-13.021	-44.136	180.034	-0.4401
PD2 HMA1	-12.406	-44.504	179.205	0.0803
PD2 HMA2	-12.667	-43.14	180.322	0.1013
PD2 HMA3	-14.046	-44.04	179.684	0.127
PD2 CAA	-11.185	-46.677	182.153	0.1794
PD2 HAA1	-11.939	-47.051	182.851	0.016
PD2 HAA2	-10.225	-46.728	182.672	0.0007

PD2 CBA	-11.125	-47.587	180.919	-0.6802
PD2 HBA1	-10.287	-47.276	180.286	0.1606
PD2 HBA2	-12.041	-47.536	180.328	0.1573
PD2 CGA	-10.942	-49.027	181.323	0.8463
PD2 O1A	-11.749	-49.911	181.135	-0.5494
PD2 O2A	-9.77	-49.194	181.957	-0.3423
PD2 NB	-15.494	-43.277	184.63	-0.4674
PD2 C1B	-15.931	-43.997	183.558	0.241
PD2 C2B	-17.363	-44.143	183.612	0.1509
PD2 C3B	-17.785	-43.462	184.75	-0.2414
PD2 C4B	-16.585	-42.928	185.388	0.1409
PD2 CMB	-18.216	-44.887	182.639	-0.3219
PD2 HMB1	-17.977	-45.956	182.641	0.0713
PD2 HMB2	-18.078	-44.521	181.616	0.0947
PD2 HMB3	-19.259	-44.763	182.912	0.1004
PD2 CAB	-19.15	-43.296	185.227	0.4601
PD2 HAB	-19.26	-42.71	186.161	-0.0647
PD2 OAB	-20.162	-43.742	184.69	-0.4039
PD2 NC	-14.106	-42.097	186.932	-0.517
PD2 C 1 C	-15.379	-41.747	187.275	0.1222
PD2 C2C	-15.358	-40.866	188.439	0.1244
PD2 C3C	-14.036	-40.711	188.79	-0.2221
PD2 C4C	-13.271	-41.509	187.842	0.4152
PD2 CMC	-16.553	-40.244	189.087	-0.3938
PD2 HMC1	-17.077	-40.969	189.718	0.0896
PD2 HMC2	-17.26	-39.856	188.347	0.1021
PD2 HMC3	-16.271	-39.411	189.734	0.1635
PD2 CAC	-13.465	-39.815	189.855	0.2414
PD2 HAC1	-13.011	-40.406	190.659	0.0101
PD2 HAC2	-14.285	-39.266	190.324	0.0176
PD2 CBC	-12.426	-38.807	189.316	-0.3981
PD2 HBC1	-11.409	-39.197	189.41	0.0888
PD2 HBC 2	-12.467	-37.871	189.873	0.134
PD2 HBC3	-12.616	-38.571	188.264	0.0907
PD2 ND	-11.648	-42.862	185.735	-0.6173
PD2 C1D	-11.104	-42.366	186.911	0.3537

PD2 C2D	-9.661	-42.605	186.935	0.1131
PD2 C3D	-9.382	-43.199	185.721	-0.3039
PD2 C4D	-10.618	-43.353	185.04	0.1941
PD2 CMD	-8.715	-42.287	188.029	-0.387
PD2 HMD1	-8.65	-43.093	188.766	0.1438
PD2 HMD2	-9.063	-41.404	188.55	0.1152
PD2 HMD3	-7.708	-42.115	187.647	0.1604
PD2 CAD	-8.31	-43.75	184.903	0.72
PD2 OBD	-7.115	-43.802	185.11	-0.4783
PD2 CBD	-9.022	-44.326	183.601	-0.6866
PD2 HBD1	-8.785	-45.391	183.516	0.1996
PD2 CGD	-8.439	-43.604	182.412	0.8341
PD2 O1D	-8.603	-42.419	182.23	-0.5524
PD2 O2D	-7.703	-44.394	181.629	-0.3643
PD2 CED	-6.925	-43.727	180.61	-0.1012
PD2 HED1	-6.667	-42.721	180.929	0.1218
PD2 HED2	-7.49	-43.672	179.683	0.1054
PD2 HED3	-6.033	-44.327	180.465	0.1166
PD2 C1	-9.498	-50.523	182.417	-0.1012
PD2 H1	-9.684	-51.252	181.627	0.0829
PD2 H2	-10.118	-50.751	183.285	0.1143
PD2 H3	-8.447	-50.53	182.704	0.1134
total (PD1)				0.8506
total (PD2)				0.1496

(d) $\mathrm{Ch} l d / \mathrm{Ch} l a$

atom	\mathbf{x}	\mathbf{y}	\mathbf{z}		charge
PD1 MG	-19.911	-45.135	189.571	1.5483	
PD1 CHA	-23.351	-44.835	188.885	-0.18	
PD1 CHB	-19.561	-46.569	186.473	-0.4697	
PD1 HHB	-19.431	-47.134	185.559	0.1545	
PD1 CHC	-16.536	-44.43	189.615	-0.489	
PD1 HHC	-15.468	-44.261	189.669	0.1947	
PD1 CHD	-20.347	-42.887	192.208	-0.5677	
PD1 HHD	-20.477	-42.247	193.075	0.253	
PD1 NA	-21.284	-45.602	187.913	-0.5879	
PD1 C1A	-22.647	-45.406	187.853	0.1955	
PD1 C2A	-23.202	-45.816	186.502	-0.006	
PD1 H2A	-24.151	-46.349	186.614	0.0672	
PD1 C3A	-22.075	-46.735	185.989	0.0963	
PD1 H3A	-21.887	-46.591	184.919	0.0191	
PD1 C4A	-20.882	-46.274	186.818	0.4004	
PD1 CMA	-22.351	-48.217	186.273	-0.3986	
PD1 HMA1	-23.243	-48.563	185.739	0.0954	
PD1 HMA2	-22.507	-48.382	187.344	0.1251	
PD1 HMA3	-21.5	-48.822	185.956	0.1059	
PD1 CAA	-23.422	-44.569	185.607	0.2045	
PD1 HAA1	-22.444	-44.147	185.356	-0.0057	
PD1 HAA2	-23.965	-43.803	186.167	0.0237	
PD1 CBA	-24.186	-44.844	184.31	-0.5955	
PD1 HBA1	-23.743	-45.663	183.731	0.1297	
PD1 HBA2	-24.138	-43.961	183.661	0.17	
PD1 CGA	-25.652	-45.156	184.538	0.7943	
PD1 O1A	-26.23	-45.085	185.603	-0.4914	
PD1 O2A	-26.251	-45.523	183.387	-0.3755	
PD1 NB	-18.315	-45.45	188.275	-0.7503	
PD1 C1B	-18.379	-46.163	187.107	0.2865	
PD1 C2B	-17.044	-46.382	186.582	0.3232	
PD1 C3B	-16.179	-45.723	187.444	-0.4322	
PD1 C4B	-16.998	-45.167	188.511	0.5103	

PD1 CMB	-16.693	-47.183	185.381	-0.5572
PD1 HMB1	-17.552	-47.734	184.99	0.1274
PD1 HMB2	-15.906	-47.897	185.631	0.1935
PD1 HMB3	-16.291	-46.545	184.587	0.1817
PD1 CAB	-14.737	-45.551	187.279	0.5557
PD1 HAB	-14.233	-44.932	188.046	-0.0525
PD1 OAB	-14.075	-46.029	186.365	-0.4945
PD1 NC	-18.657	-43.934	190.758	-0.8147
PD1 C1C	-17.293	-43.834	190.624	0.4128
PD1 C2C	-16.747	-42.962	191.652	0.0692
PD1 C3C	-17.809	-42.528	192.404	-0.258
PD1 C4C	-19.005	-43.147	191.819	0.6099
PD1 CMC	-15.299	-42.628	191.828	-0.2166
PD1 HMC1	-14.823	-42.389	190.871	0.0256
PD1 HMC2	-14.75	-43.455	192.28	0.0857
PD1 HMC3	-15.159	-41.775	192.489	0.1201
PD1 CAC	-17.715	-41.623	193.597	0.0279
PD1 HAC1	-17.066	-42.12	194.329	0.0811
PD1 HAC2	-18.694	-41.534	194.068	0.0422
PD1 CBC	-17.158	-40.207	193.341	-0.1359
PD1 HBC1	-16.246	-40.214	192.742	0.0077
PD1 HBC2	-16.912	-39.738	194.296	0.0888
PD1 HBC3	-17.873	-39.562	192.826	0.047
PD1 ND	-21.467	-44.114	190.414	-0.9129
PD1 C1D	-21.501	-43.293	191.539	0.566
PD1 C2D	-22.894	-42.907	191.822	0.041
PD1 C3D	-23.636	-43.51	190.828	-0.2854
PD1 C4D	-22.731	-44.239	190.01	0.4936
PD1 CMD	-23.374	-42.105	192.97	-0.4517
PD1 HMD1	-22.529	-41.851	193.602	0.1312
PD1 HMD2	-24.093	-42.673	193.567	0.1928
PD1 HMD3	-23.884	-41.187	192.66	0.172
PD1 CAD	-24.97	-43.553	190.231	0.6928
PD1 OBD	-25.978	-42.96	190.546	-0.4615
PDD1	-24.828	-44.466	188.933	-0.678
	-25.157	-43.882	188.068	0.1994

PD1 CGD	-25.847	-45.556	189.041	0.8859
PD1 O1D	-25.66	-46.646	189.54	-0.5924
PD1 O2D	-27.021	-45.098	188.608	-0.3275
PD1 CED	-28.157	-45.94	188.828	-0.1568
PD1 HED1	-28.052	-46.471	189.773	0.1101
PD1 HED2	-28.245	-46.663	188.013	0.1199
PD1 HED3	-29.016	-45.269	188.853	0.1243
PD1 C1	-27.644	-45.876	183.518	-0.1042
PD1 H1	-27.761	-46.651	184.27	0.1233
PD1 H2	-27.942	-46.233	182.531	0.0976
PD1 H3	-28.228	-44.996	183.797	0.0923
PD2 MG	-13.531	-42.672	185.026	1.3856
PD2 CHA	-10.513	-44.016	183.829	0.0329
PD2 CHB	-15.145	-44.49	182.584	-0.5136
PD2 HHB	-15.684	-44.965	181.769	0.1628
PD2 CHC	-16.485	-42.156	186.64	-0.2011
PD2 HHC	-17.435	-41.881	187.078	0.1481
PD2 CHD	-11.836	-41.675	187.892	-0.6296
PD2 HHD	-11.296	-41.27	188.741	0.2326
PD2 NA	-12.883	-43.981	183.384	-0.3945
PD2 C1A	-11.612	-44.346	183.053	-0.0702
PD2 C2A	-11.57	-45.223	181.822	0.1459
PD2 H2A	-10.831	-44.847	181.102	-0.001
PD2 C3A	-13.006	-45.08	181.287	0.3031
PD2 H3A	-13.4	-46.061	181.022	-0.0452
PD2 C4A	-13.76	-44.492	182.476	0.2015
PD2 CMA	-13.084	-44.143	180.081	-0.4269
PD2 HMA1	-12.495	-44.524	179.239	0.0848
PD2 HMA2	-12.706	-43.151	180.353	0.0963
PD2 HMA3	-14.117	-44.033	179.757	0.125
PD2 CAA	-11.204	-46.676	182.171	0.179
PD2 HAA1	-11.948	-47.059	182.874	0.0317
PD2 HAA2	-10.241	-46.718	182.683	-0.0013
PD2 CBA	-11.14	-47.581	180.933	-0.7016
PD2 HBA1	-10.306	-47.264	180.298	0.1652

PD2 HBA2	-12.058	-47.534	180.345	0.1638
PD2 CGA	-10.948	-49.024	181.33	0.85
PD2 O1A	-11.75	-49.91	181.131	-0.5488
PD2 O2A	-9.776	-49.19	181.965	-0.3421
PD2 NB	-15.47	-43.267	184.689	-0.5602
PD2 C1B	-15.946	-43.968	183.63	0.3498
PD2 C2B	-17.404	-44.079	183.72	0.0271
PD2 C3B	-17.779	-43.402	184.858	0.0129
PD2 C4B	-16.544	-42.904	185.468	0.1226
PD2 CMB	-18.281	-44.844	182.784	-0.2921
PD2 HMB1	-17.968	-45.892	182.709	0.0738
PD2 HMB2	-18.277	-44.431	181.768	0.0916
PD2 HMB3	-19.307	-44.822	183.152	0.0874
PD2 CAB	-19.097	-43.185	185.469	-0.0687
PD2 HAB	-19.164	-43.434	186.527	0.0577
PD2 CBB	-20.17	-42.651	184.876	-0.3412
PD2 HBB1	-21.087	-42.471	185.428	0.143
PD2 HBB2	-20.156	-42.318	183.845	0.161
PD2 NC	-14.069	-42.074	186.976	-0.5634
PD2 C1C	-15.332	-41.725	187.332	0.1125
PD2 C2C	-15.31	-40.842	188.498	0.1705
PD2 C3C	-13.989	-40.685	188.84	-0.3127
PD2 C4C	-13.224	-41.486	187.886	0.5771
PD2 CMC	-16.512	-40.23	189.142	-0.377
PD2 HMC1	-17.04	-40.966	189.759	0.0902
PD2 HMC2	-17.214	-39.838	188.399	0.097
PD2 HMC3	-16.238	-39.404	189.801	0.1621
PD2 CAC	-13.422	-39.779	189.894	0.2483
PD2 HAC1	-12.967	-40.36	190.705	0.016
PD2 HAC2	-14.244	-39.227	190.357	0.0216
PD2 CBC	-12.39	-38.778	189.335	-0.3897
PD2 HBC1	-11.372	-39.166	189.425	0.0862
PD2 HBC2	-12.429	-37.834	189.879	0.135
PD2 HBC3	-12.591	-38.554	188.282	0.0863
PD2 ND	-11.634	-42.843	185.758	-0.8406
PD2 C1D	-11.08	-42.358	186.926	0.5526

PD2 C2D	-9.632	-42.61	186.938	0.0542
PD2 C3D	-9.369	-43.203	185.724	-0.3209
PD2 C4D	-10.615	-43.346	185.051	0.352
PD2 CMD	-8.679	-42.299	188.026	-0.3622
PD2 HMD1	-8.639	-43.091	188.78	0.1452
PD2 HMD2	-9.004	-41.397	188.529	0.1098
PD2 HMD3	-7.668	-42.16	187.642	0.1581
PD2 CAD	-8.31	-43.769	184.899	0.7499
PD2 OBD	-7.117	-43.839	185.103	-0.4763
PD2 CBD	-9.036	-44.334	183.601	-0.74
PD2 HBD1	-8.809	-45.399	183.51	0.2184
PD2 CGD	-8.453	-43.608	182.414	0.8305
PD2 O1D	-8.619	-42.422	182.237	-0.5531
PD2 O2D	-7.712	-44.393	181.632	-0.3576
PD2 CED	-6.932	-43.723	180.615	-0.1013
PD2 HED1	-6.68	-42.716	180.935	0.1232
PD2 HED2	-7.494	-43.672	179.687	0.1061
PD2 HED3	-6.037	-44.319	180.474	0.1172
PD2 C1	-9.498	-50.523	182.417	-0.1071
PD2 H1	-9.685	-51.247	181.623	0.084
PD2 H2	-10.114	-50.756	183.286	0.1194
PD2 H3	-8.446	-50.527	182.699	0.1146
total (PD1)				0.5668
total (PD2)				0.4332

elongatus_D1	MTTTLQRRESANLWERFCNWVTSTDNRLYVGWFGVIMIPTLLAATICFVIAFIAAPPVDI 60
marina_D1	MTTVLQRRESASAWERFCSFITSTNNRLYIGWFGVLMIPTLLTAVTCFVIAFIGAPPVDI 60
elongatus_D2	MTIAIGRAPAERGWFDILDDWLKRDRFVFVGWSGILLFPCAYLALGGWLTGTTFVTSWYT 60
marina_D2	MTVALGRVQ-ERGWFDVLDDWLKRDRFVFIGWSGLLLFPCAFLSIGGWFTGTTFVTSWYT 59

elongatus_D1	DGIREPVSGSLLYGNNIITGAVVPSSNAIGLHFYPIWEAAS---LDEWLYNGGPYQLIIF 117
marina_D1	DGIREPVAGSLLYGNNIITGAVVPSSNAIGLHLYPIWEAAS---LDEWLYNGGPYQLIIF 117
elongatus_D2	HGLAS----SYLEGCNFLTVAVSTPANSMGHSLLLLWGPEAQGDFTRWCQLGGLWTFIAL 116
marina_D2	HGLAS----SYLEGCNFLTAAVSTPADSMGHSLLLLWGPEARGDFTRWCQLGGMWNFVTL 115

elongatus_D1	HFLLGASCYMGRQWELSYRLGMRPWICVAYSAPLASAFAVFLIYPIGQGSFSDGMPLGIS 177
marina_D1	HYMIGCICYLGRQWEYSYRLGMRPWICVAYSAPLAATYSVFLIYPLGQGSFSDGMPLGIS 177
elongatus_D2	HGAFGLIGFMLRQFEIARLVGVRPYNAIAFSAPIAVFVSVFLIYPLGQSSWFFAPSFGVA 176
marina_D2	HGAFGLIGFMLRQFEIARLVNVRPYNAVAFSGPIAVFVSVFLMYPLGQSSWFFAPSWGVA 175

elongatus_D1	GTFNFMIVFQAEHNILMHPFHQLGVAGVFGGALFCAMHGSLVTSSLIRETTETESANYGY 237
marina_D1	GTFNFMFVFQAEHNILMHPFHMFGVAGVLGGSLFAAMHGSLVSSTLVRETTEGESANYGY 237
elongatus_D2	AIFRFLLFFQGFHNWTLNPFHMMGVAGVLGGALLCAIHGATVENTLFQDG-EGASTFRAF 235
marina_D2	SIFRFLLFVQGFHNLTLNPFHMMGVAGILGGALLCAIHGATVENTLFEDT-KDANTFSGF 234

elongatus_D1 KFGQEEETYNIVAAHGYFGRLIFQYASFNNSRSLHFFLAAWPVVGVWFTALGISTMAFNL 297

```
marina_D1
```

KFGQEEETYNIVAAHGYFGRLIFQYASFSNSRSLHFFLGAWPVVCIWLTAMGISTMAFNL 297
NPTQAEETYSMVTANRFWSQIFG--IAFSNKRWLHFFMLFVPVTGLWMSAIGVVGLALNL 293
SPTQSEETYSMVTANRFWSQIFG--IAFSNKRWLHFFMLFVPVTGLWASAIGLVGIALNM 292

elongatus_D1	NGFNFNHSVIDAKGN-----VINTWADIINRANLGMEVMHERNAHNFPLDLA--------- 344
marina_D1	NGFNFNHSIVDSQGN----VVVNTWADVLNRANLGFEVMHERNAHNFPLDLAAGESAPVAL 353
elongatus_D2	RSYDFISQEIRAAEDPEFETFYTKNLLLNEGIRAWMAPQDQPHENFVFPEEVLPRGNAL- 352
marina_D2	RAYDFVSQEIRAAEDPEFETFYTKNILLNEGLRAWMAPQDQIHENFVFPEEVLPRGNAL- 351

Figure S1. The amino acid sequence of the D1 and D2 subunits from T. elongatus and A. marina. Note that T. vulcanus PSII poessesses essentially the same amino acid sequence as T. elongatus PSII. D1/D2 residue pairs in each line were generated from the protein sequence alignment performed with the CLUSTAL program [1].
[1] D.G. Higgins, J.D. Thompson and T.J. Gibson, Using CLUSTAL for multiple sequence alignments, Methods Enzymol. 266 (1996) 383-402.

