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1 Introduction

It is no exaggeration to say that the most fascinating topic in string theory is the

AdS/CFT correspondence [1]. It provides a specific approach to quantum gravity as

well as a useful tool to study strongly-coupled systems. An enormous amount of evi-

dence support the duality, but still there is no rigorous proof of it. One may attempt to

ask what mechanism is responsible for AdS/CFT. At the present time, the integrability

is recognized as the fundamental structure of AdS/CFT (For a comprehensive review,

see [2]).

The next issue is to consider integrable deformations of AdS/CFT. In this direc-

tion there are preceding works such as β-deformation [3] and its gravity dual [4–6] , and

q-deformation of the world-sheet S-matrix [7–9]. Apart from them, we are interested

in three-dimensional squashed spheres and warped AdS3 . These geometries appear
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in recent studies like holographic condensed matter [10], Kerr/CFT [11] and warped

AdS3/dipole CFT2 [12, 13]. The potential applications to these topics make it signifi-

cant to study the integrable structure of two-dimensional non-linear sigma models with

target space warped AdS3 and squashed spheres.

In this paper we concentrate on the classical integrable structure of sigma models

with squashed spheres. The reason is that warped AdS3 geometries are obtained via

double Wick rotations of squashed spheres and the classical analysis performed here is

valid irrespective of compactness of target space. We refer to the sigma models as “the

squashed sigma models” as an abbreviation hereafter.

In a series of works [14–17] (For a short summary see [18]), we have shown that

quantum affine algebra and Yangian algebra are realized in the squashed sigma models1.

According to them, there are two descriptions to describe the classical dynamics: 1) the

rational description and 2) the trigonometric description. Depending on the description,

two kinds of Lax pair, which lead to the identical classical equations of motion, are

constructed and also there are the corresponding monodromy matrices.

This means the “local” equivalence of the two descriptions and does not imply the

equivalence of classical moduli spaces, namely “global” equivalence. In other words,

the “global” equivalence is equivalent to the left-right symmetry. In fact, the “local”

equivalence has been well known, while it has been believed that the “global” equiva-

lence is not realized because the universality class of Lax pairs (i.e., topology of classical

moduli space), spectral parameters and the number of poles are different between the

two descriptions2.

We proceed here to study the classical integrable structure of squashed sigma mod-

els. We show the gauge-equivalence of monodromy matrices in the trigonometric and

rational descriptions under the relation of spectral parameters and the rescalings of

sl(2) generators. As a result, the trigonometric description is shown to be equivalent

to a composite of the rational descriptions. That is, the “global” equivalence is ac-

curately realized even after squashing the target space geometry, in contrast to the

folklore which has been believed so far without concrete proof. All of the difficulties

mentioned in the previous paragraph are resolved by taking account of the two rational

descriptions and finding out the relation between spectral parameters. Moreover, we

find the “reduced” trigonometric description that works as the Lax pair at least at

the classical level. With this description, the equivalence of the monodromy matrices

becomes very apparent.
1 The classical integrability is discussed also from T-duality argument [19].
2 For example, see the sentence just below (2.18) of [20] . We are grateful to Adam Rej for drawing

our attention to this article.
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This paper is organized as follows. In section 2 we introduce the squashed sigma

models and the monodromy matrices in the trigonometric and rational descriptions. In

section 3 the monodromy matrices are expanded around some points and the relation

of spectral parameters is deduced. In section 4 we show the gauge-equivalence of

monodromy matrices under the spectral parameter relation and the rescalings of sl(2)

generators. The reducibility of the trigonometric Lax pair is also discussed. Section 5

is devoted to conclusion and discussion.

2 Preliminaries

We introduce the classical action of squashed sigma models and give a short review

on a series of works [14–18], including some new results. Two descriptions to describe

the classical dynamics are explained with monodromy matrices, which will be the main

objects in the following discussion.

2.1 The classical action of squashed sigma models

First of all, let us introduce the su(2) Lie algebra generators T a (a = 1, 2, 3) satisfying[
T a, T b

]
= εabcT

c , Tr
(
T aT b

)
= −1

2
δab .

The totally antisymmetric tensor εabc is normalized as ε123 = +1 .

By using the left-invariant one-form,

J ≡ g−1dg , g ∈ SU(2) ,

the metric of squashed spheres in three dimensions is given by

ds2 = −L2

2

[
Tr
(
J2
)
− 2C

(
Tr
[
T 3J

])2]
. (2.1)

The deformation parameter C is a real constant supposed to be C > −1 . When C = 0 ,

the metric (2.1) is reduced to that of round S3 with radius L .

For C ̸= 0 , the S3 isometry SO(4) = SU(2)L×SU(2)R is broken to SU(2)L×U(1)R .

The SU(2)L transformation is just the left action and U(1)R transformation is the right

action generated by T 3 ,

g → gL · g · e−T 3θ . (2.2)

The infinitesimal forms are

δL,ag = ϵ T ag , δR,3g = −ϵ gT 3 . (2.3)
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The minus sign in the right transformation law comes from the convention in (2.2) .

The classical action of squashed sigma models is given by

S =

∫ ∞

−∞
dt

∫ ∞

−∞
dx ηµν

[
Tr (JµJν)− 2CTr

(
T 3Jµ

)
Tr
(
T 3Jν

)]
, (2.4)

where xµ = (t, x) with the Lorentzian metric ηµν = diag(−1, 1) . We impose the

boundary condition that Jµ vanishes at the spatial infinity. That is, the group field

variable g(t, x) approaches a constant element like3

g(t, x) → g∞ (x → ±∞) .

The Virasoro constraints are not taken into account, for simplicity.

The classical equations of motion are

∂µJµ − 2CTr(T 3∂µJµ)T
3 − 2CTr(T 3Jµ)

[
Jµ, T 3

]
= 0 . (2.5)

In the squashed sigma models, two infinite-dimensional symmetries 1) quantum affine

algebra and 2) Yangian algebra are realized and hence two kinds of Lax pairs can

be constructed depending on the symmetries. That is, there are two descriptions to

describe the classical dynamics. We shall give a short summary of the two descriptions

in the coming two subsections.

2.2 Trigonometric description

The one is the trigonometric description related to quantum affine algebra [17].

With the spectral parameter λR , the associated Lax pair is given by [22]4

LR
t (x;λR) = −1

2

3∑
a=1

[
wa(α+ λR)J

a
+ + wa(α− λR)J

a
−
]
T a ,

LR
x (x;λR) = −1

2

3∑
a=1

[
wa(α+ λR)J

a
+ − wa(α− λR)J

a
−
]
T a , (2.6)

where the following quantities have been introduced,

x± ≡ 1

2
(t± x) , J± ≡ Jt ± Jx , Ja

µ ≡ −2Tr(T aJµ) .

3Seemingly, two independent, constant elements are allowed at the two endpoints x = ±∞ . How-

ever, they must be identical by the gauge invariance of the trace of monodromy matrix.
4The study of squashed sigma models has a long history and the trigonometric Lax pair was

originally constructed by Cherednik [21]. We here use the expression of the Lax pair in [22].
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w1(λR) = w2(λR) ≡
sinhα

sinhλR

, w3(λR) ≡
tanhα

tanhλR

.

The parameter α is related to the squashing parameter C as

i
√
C = tanhα . (2.7)

Due to the relation (2.7) and the reality of C , α must be pure imaginary for C > 0 and

real, up to iπn (n ∈ Z) , for −1 < C < 0 . Note that the value of C is automatically

restricted to the physical region C > −1 . The following zero curvature condition[
∂t − LR

t (x;λR), ∂x − LR
x (x;λR)

]
= 0 (2.8)

leads the equations of motion (2.5) and the Maurer-Cartan equation dJ + J ∧ J = 0.

We often discuss the C → 0 limit, which corresponds to the α → 0 limit from (2.7).

Before taking the limit, we have to rescale λR as

λR = αλ̃R . (2.9)

Then the α → 0 limit of (2.6) leads to the Lax pair of rational type for SU(2)R .

It is convenient later to use the light-cone notation like

LR
±(x;λR) = LR

t (x;λR)± LR
x (x;λR)

= − sinhα

sinh (α± λR)

[
T−J+

± + T+J−
± +

cosh (α± λR)

coshα
T 3J3

±

]
, (2.10)

where T 1,2 are recombined into

T± ≡ 1√
2

(
T 1 ± iT 2

)
= T∓ .

Since the Lax pair given in (2.6) has the periodicity 2πi with λR by the definition

LR
±(x;λR) = LR

±(x;λR + 2πi) , (2.11)

the spectral parameter λR can be regarded as living on a cylinder. For our convention,

the cylinder is parametrized by

−π

2
< ImλR ≤ 3

2
π . (2.12)

The Lax pair (2.6) allows |λR| = ∞ but has four poles5,

λR = ±α , ±α + πi . (2.13)
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a) For C > 0 b) For −1 < C < 0

Figure 1. λR takes values on a cylinder with four punctures.

Thus the cylinder has four punctures as depicted in Figure 1.

It is useful to introduce a new parameter defined as

zR ≡ e−λR .

This maps the λR-cylinder to the zR-plane depicted in Figure 2. According to (2.12) ,

the argument of zR satisfies

−3

2
π ≤ arg(zR) <

π

2
.

With the spatial component of the Lax pair (2.10), the associated monodromy

matrix is constructed as

UR(λR) = P exp

[∫ ∞

−∞
dx LR

x (x;λR)

]
, (2.14)

where the symbol P is the path-ordering. Because of the flatness condition (2.8), this

quantity is conserved
d

dt
UR(λR) = 0 .

By expanding UR(λR) around |zR| < 1 and |zR| > 1 , the generators of quantum affine

algebra are obtained at the classical level [17].

In the current algebra, non-ultra local terms are contained as in the case of principal

chiral models [22], hence there is a subtlety in computing classical r-matrix. We follow

the r/s-matrix formalism [23] and show the classical integrability6.
5 The number of poles is twice in the relativistic theory in comparison to the non-relativistic case.
6The monodromy matrices in [16] are computed as the retarded monodromy matrices by following

[24]. However, it causes a discrepancy and we have to follow the r/s-matrix formalism [23] as in [18].
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With the tensor product notation

{A ⊗, B}P ≡ {A⊗ 1, 1⊗B}P ,

the Poisson bracket of the spatial components of the Lax pair is given by{
LR

x (x;λR) ⊗, LR
x (y;µR)

}
P
=
[
rR(λR, µR), L

R
x (x;λR)⊗ 1 + 1⊗ LR

x (y;µR)
]
δ(x− y)

−
[
sR(λR, µR), L

R
x (x;λR)⊗ 1− 1⊗ LR

x (y;µR)
]
δ(x− y)

−2sR(λR, µR)∂xδ(x− y) .

The classical r-matrix rL(λR, µR) and s-matrix sL(λR, µR) are given by [18]

rR(λR, µR) ≡
hR(λR) + hR(µR)

2 sinh (λR − µR)

(
T+ ⊗ T− + T− ⊗ T+ + cosh (λR − µR)T

3 ⊗ T 3
)
,

sR(λR, µR) ≡
hR(λR)− hR(µR)

2 sinh (λR − µR)

(
T+ ⊗ T− + T− ⊗ T+ + cosh (λR − µR)T

3 ⊗ T 3
)
,

where a new function hR(λR) is defined as

hR(λR) ≡
sinhα coshα sinh2 λR

sinh (α− λR) sinh (α + λR)
. (2.15)

It is easy to show the extended classical Yang-Baxter equation is satisfied,[
(r + s)R13(λ, ν), (r − s)R12(λ, µ)

]
+
[
(r + s)R23(µ, ν), (r + s)R12(λ, µ)

]

Figure 2. The zR-plane for C > 0 is depicted. It has four punctures but contains ∞ . Hence this

plane should be regarded as a Riemann sphere with four punctures.
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+
[
(r + s)R23(µ, ν), (r + s)R13(λ, ν)

]
= 0 , (2.16)

where the subscripts denote the vector spaces on which the r/s-matrices act.

Finally we comment on the pole structure of the r/s-matrices. There are two kinds

of poles there. The first is the four poles of hR(λR) given in (2.15) that exactly agrees

with those of the Lax pair in (2.6) . The second is the two poles coming from the factor

1/ sinh(λR − µR) in the r-matrix, λR = µR and λR = µR + πi (or λR = µR − πi) ,

depending on the location of µR . Note that there is no pole of the second kind in

the s-matrix. In order for the r/s-matrices to satisfy the Yang-Baxter equation (2.16),

the detail form in (2.15) is irrelevant. Therefore we distinguish the class of r-matrix

in terms of the number of poles in the r-matrix apart from the pole coming from the

scalar function (2.15). This classification is the same as the one in [25]. According to

this criterion, the r-matrix in the present case is of trigonometric type.

2.3 Rational description

The other is the rational description, which has been developed in [14] , based on the

Yangian algebra.

Constructing the Lax pairs in this description, we use the improved currents,

jL±
µ = gJµg

−1 − 2CTr(T 3Jµ)gT
3g−1 ∓

√
Cϵµν∂

ν(gT 3g−1) . (2.17)

The anti-symmetric tensor ϵµν is normalized with ϵtx = 1 . The third term is the

improvement term so that the currents (2.17) satisfy the flatness condition [14]

ϵµν
(
∂µj

L±
ν − jL±

µ jL±
ν

)
= 0 . (2.18)

There are two types of currents depending on the sign of the improvement term and

the subscript of L± in (2.17) denotes it.

It is worth noting that, with the improved currents (2.17) , the classical action (2.4)

can be rewritten into a simple, dipole-like form,

S =
1

1 + C

∫ ∞

−∞
dt

∫ ∞

−∞
dx ηµν Tr(jL+

µ jL−
ν ) . (2.19)

We have not realized the advantage of this expression so far, but it looks very suggestive.

With the improved currents (2.17), two kinds of Lax pairs are constructed.

The one is a Lax pair represented by jL+
µ ,

L
L+

t (x;λL+) ≡
1

1− λ2
L+

(
j
L+

t − λL+j
L+
x

)
,
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LL+
x (x;λL+) ≡

1

1− λ2
L+

(
jL+
x − λL+j

L+

t

)
,

L
L+

± (x;λL+) ≡ L
L+

t (x;λL+)± LL+
x (x;λL+) =

1

1± λL+

j
L+

±

=
1

1± λL+

g
(
J± − 2C Tr

(
T 3J±

)
T 3 ∓

√
C
[
J±, T

3
])

g−1 . (2.20)

The terms including
√
C come from the improvement term. The spectral parameter

λL+ takes values on a Riemann sphere except the poles λL+ = ±1 , namely a two

punctured Riemann sphere. It is noted that the zero curvature condition[
∂t − L

L+

t (x;λL+), ∂x − LL+
x (x;λL+)

]
= 0 (2.21)

also leads the equations of motion (2.5) and the flatness condition (2.18) .

The associated monodromy matrix

UL+(λL+) = P exp

[∫ ∞

−∞
dx LL+

x (x;λL+)

]
(2.22)

is also conserved due to the zero curvature condition (2.21) as

d

dt
UL+(λL+) = 0 .

The generators of Yangian are obtained by expanding this monodromy matrix around

λL+ = ∞ [14]. The Poisson bracket of the spatial components of the Lax pair leads to

the r/s-matrices,

rL(λL+ , µL+) =
hL(λL+) + hL(µL+)

2
(
λL+ − µL+

) (
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
,

sL(λL+ , µL+) =
hL(λL+)− hL(µL+)

2
(
λL+ − µL+

) (
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
,

where a scalar function hL(λL+) is defined as

hL(λL+) ≡
C + λ2

L+

1− λ2
L+

. (2.23)

The r-matrix function has a single pole apart from the poles of hL(λL+) . Hence the

r/s-matrices are of rational type in the sense of [25]. They satisfy the extended Yang-

Baxter equation (2.16) .
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The other Lax pair with jL−
µ is given by

L
L−
t (x;λL−) ≡

1

1− λ2
L−

(
j
L−
t − λL−j

L−
x

)
,

LL−
x (x;λL−) ≡

1

1− λ2
L−

(
jL−
x − λL−j

L−
t

)
,

L
L−
± (x;λL−) ≡ L

L−
t (x;λL−)± LL−

x (x;λL−) =
1

1± λL−

j
L−
±

=
1

1± λL−

g
(
J± − 2C Tr

(
T 3J±

)
T 3 ±

√
C
[
J±, T

3
])

g−1 . (2.24)

The spectral parameter λL− is independent of λL+ and λL− takes values on another

Riemann sphere with two punctures. The zero curvature condition is given by[
∂t − L

L−
t (x;λL−), ∂x − LL−

x (x;λL−)
]
= 0. (2.25)

This Lax pair also leads to the equations of motion (2.5) and the flatness condition

(2.18) .

The monodromy matrix is constructed as

UL−(λL−) = P exp

[∫ ∞

−∞
dx LL−

x (x;λL−)

]
. (2.26)

Similarly, this is also a conserved quantity because of the zero curvature condition

(2.25) and the Poisson bracket of the spatial components of the Lax pair leads to

the r/s-matrices of rational class. The resulting r/s-matrices are the same as those

of LL+
x (x;λL+) , up to the spectral parameters. It is a convincing result because the

r/s-matrices depend only on C , not on
√
C .

In the following, we will argue that the monodromy matrices introduced in (2.14),

(2.22) and (2.26) are gauge-equivalent under a certain relation of spectral parameters

and the rescalings of sl(2) generators.

3 The trigonometric/rational correspondence

In order to discuss the direct relations among monodromy matrices, we would like to see

the correspondence between the trigonometric and rational descriptions by expanding

the monodromy matrices around some points. The data on the expansion points is

enough to determine the relation of spectral parameters. The necessity of the rescaling

of sl(2) generators is anticipated in comparison to the level structure of quantum affine

algebra.
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3.1 Expansions of UR(λR)

Let us consider expanding the monodromy matrix UR(λR) in (2.14) around some points.

The first is the expansion around |zR| < 1 and |zR| > 1 . In these regimes, UR(λR)

is expanded like [17]

UR(λR) = eū0 exp

[
∞∑
n=1

znR ūn

]
(|zR| < 1) ,

UR(λR) = eu0 exp

[
∞∑
n=1

z−n
R un

]
(|zR| > 1) .

Here un and ūm (n,m = 0, 1, . . .) consist of conserved charges. For example, the first

two of them are

u0 = −ū0 = iγT 3QR,3
(0) , γ ≡

√
C

1 + C
, (3.1)

u1 = 2iγ
(
T−eγQ

R,3
(0)

/2QR,+
(1) + T+e−γQR,3

(0)
/2Q̃R,−

(1)

)
,

ū1 = −2iγ
(
T+eγQ

R,3
(0)

/2QR,−
(1) + T−e−γQR,3

(0)
/2Q̃R,+

(1)

)
.

The conserved charges QR,3
(0) , Q

R,±
(1) and Q̃R,±

(1) precisely generate a quantum affine algebra

Uq(ŝl(2)R) in the sense of Drinfeld’s first realization [26]. The expressions of the charges

are given in [17].7 Note that γ is related to a q-deformation parameter in Uq(sl(2)R)

[26, 27] through the relation q ≡ eγ [16].

The second is the expansion around λR = 0 . The spatial component of the Lax

pair is expanded around λR = 0 as

LR
x (x;λR) = −Jx + λR

(
− i√

C
Jt + 2i

√
C Tr(T 3Jt)T

3

)
+λ2

R

[(
1

C
+

1

2

)
Jx −

1

2
Tr(T 3Jx)T

3

]
+O(λ3

R) . (3.2)

This leads to the expansion of UR(λR) around λR = 0 ,

UR(λR) = g−1
∞ · exp

[
∞∑
n=0

(
− iλR√

C

)n+1

QL
(n)

]
· g∞ . (3.3)

Here QL
(n) (n = 0, 1, . . .) are the conserved charges because UR(λR) is a conserved

quantity. The first two charges QL
(0) and QL

(1) generate the SU(2)L Yangian in the sense

of Drinfeld’s first realization [26].
7abc

– 11 –



Before mentioning QL
(0) and QL

(1) , we have to detail the construction of the Yangian

generators. By using the improved SU(2)L currents (2.17) , two kinds of the generators

can be constructed as

Q
L±
(0) =

∫ ∞

−∞
dx j

L±
t (x) ,

Q
L±
(1) =

1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dy ϵ(x− y) j

L±
t (x)j

L±
t (y)−

∫ ∞

−∞
dx jL±

x (x) , (3.4)

where the signature function ϵ(x− y) ≡ θ(x− y)− θ(y−x) and θ(x) is a step function.

Note that the concrete expressions do not depend on
√
C and hence it is shown that

Q
L+

(0) = Q
L−
(0) Q

L+

(1) = Q
L−
(1) . (3.5)

This is the case for higher conserved charges. Thus either of Q
L+

(n) and Q
L−
(n) may be

taken as QL
(n) in (3.3) . For later discussion, we choose Q

L+

(n) as Q
L
(n) here.

It is quite non-trivial that the SU(2)L Yangian generators have been reproduced

by expanding UR(λR) around λR = 0 , because UR(λR) leads to the trigonometric

r/s-matrices while the Yangian is closely related to the rational class. Conversely, we

show that a quantum affine algebra is reproduced by expanding UL±(λL±) in the next

subsection.

Finally, let us consider the expansion around λR = πi . It also provides the SU(2)L
Yangian generators, basically because the Lax pair is invariant under the shift of λR

by πi , up to the sign flipping of T± ,

LR
±(x;λR + πi) = − sinhα

sinh (α± λR)

[
−T−J+

± − T+J−
± +

cosh (α± λR)

coshα
T 3J3

±

]
.(3.6)

This sign flipping is closely related to the rescalings of sl(2) generators discussed later.

The Yangian charges in this expansion should be identified with Q
L−
(n) , according to the

choice in the expansion around λR = 0 . The reason to assign the charges in this way

will be clarified later.

3.2 Expansions of UL±(λL±)

We then consider the expansions of UL+(λL+) and UL−(λL−) around some points.

Expanding UL+(λL+)

The first is the expansion of UL+(λL+) around λL+ = ∞ , where the SU(2)L Yangian

generators are obtained as [14, 16]

UL+(λL+) = exp

[
∞∑
n=0

λ−n−1
L+

QL
(n)

]
. (3.7)
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The charges QL
(n) here are Q

L+

(n) by definition, and the expansion in (3.7) exactly agrees

with the expansion of UR(λR) around λR = 0 .

Next let us consider the expansion around λL+ = ±i
√
C . It is convenient to

introduce infinitesimal parameters ϵ+(±) as

ϵ+(±) ≡ λL+ ∓ i
√
C .

The expansions of LL+
x (x;λL+) with respect to ϵ+(±) are given by, respectively,

LL+
x (x;λL+) = gJxg

−1 + g

[
∓i

√
CT 3J3

t ∓ 2i
√
C

1 + C
T±
(
J∓
t ∓ i

√
CJ∓

x

)]
g−1 (3.8)

−
ϵ+(±)

1 + C
g

[
T±

(
1− C

1 + C

(
J∓
t ∓ i

√
CJ∓

x

)
∓ 2i

√
C

1 + C

(
J∓
x ∓ i

√
CJ∓

t

))

+T∓
(
J±
t ∓ i

√
CJ±

x

)
+ T 3

(
(1− C)J3

t ∓ 2i
√
CJ3

x

)]
g−1 +O

(
(ϵ+(±))

2
)
.

It would be helpful to introduce the following identity

P exp

[∫ α

β

dx
(
T 3∂xϕ

3 + T+L−
x + T−L+

x

)
(x)

]
= eT

3ϕ3(α)P exp

[∫ α

β

dx
(
T+e+iϕ3

L−
x + T−e−iϕ3

L+
x

)
(x)

]
e−T 3ϕ3(β) . (3.9)

This identity is used in the following step.

The expansion (3.8) and the identity (3.9) lead to the monodromy matrix UL+(λL+)

in terms of ϵ+(+) ,

UL+(λL+) = g∞ · v̄+(0) exp

[
∞∑
n=1

(
−

ϵ+(+)

1 + C

)n

v̄+(n)

]
· g−1

∞ , (3.10)

where v̄+(n) (n = 0, 1, . . .) consist of the conserved charges. The first two of them are

represented by QR,3
(0) , Q

R,−
(1) and Q̃R,+

(1) as follows:

v̄+(0) = e−iγT 3QR,3
(0) exp

[
−2iγT+eγQ

R,3
(0)

/2QR,−
(1)

]
,

v̄+(1) = T−e−γQR,3
(0)

/2Q̃R,+
(1) − γT 3

[
Q̄R,3

(2) −QR,−
(1) Q̃

R,+
(1)

]
−γ2T+eγQ

R,3
(0)

/2

[
QR,−

(3) − Q̄R,3
(2) Q

R,−
(1) +

2

3

(
QR,−

(1)

)2
Q̃R,+

(1)

]
. (3.11)
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Similarly, the expansion in terms of ϵ−(−) is given by

UL+(λL+) = g∞ · v+(0) exp

[
∞∑
n=1

(
−

ϵ+(−)

1 + C

)n

v+(n)

]
· g−1

∞ , (3.12)

where v+(n) (n = 0, 1, . . .) also consist of the conserved charges and the first two are

expressed with QR,3
(0) , Q

R,+
(1) and Q̃R,−

(1) like

v+(0) = eiγT
3QR,3

(0) exp
[
2iγT−eγQ

R,3
(0)

/2QR,+
(1)

]
,

v+(1) = T+e−γQR,3
(0)

/2Q̃R,−
(1) − γT 3

[
QR,3

(2) −QR,+
(1) Q̃

R,−
(1)

]
−γ2T−eγQ

R,3
(0)

/2

[
QR,+

(3) −QR,3
(2) Q

R,+
(1) +

2

3

(
QR,+

(1)

)2
Q̃R,−

(1)

]
. (3.13)

In summary, all of the generators of quantum affine algebra have been obtained by

expanding UL+(λL+) around λL+ = ±i
√
C . This result is also far from trivial because

UL+(λL+) yields the rational r/s-matrices while quantum affine algebra is associated

with the trigonometric class.

Expanding UL−(λL−)

It is a turn to discuss the expansions of UL−(λL−) . We first consider he expansion

around λL− = ∞ , where the SU(2)L Yangian generators are obtained as [14, 16]

UL−(λL−) = exp

[
∞∑
n=0

(λL−)
−n−1QL

(n)

]
. (3.14)

The charges obtained here are Q
L−
(n) by definition, and the expansion in (3.14) exactly

agrees with the expansion of UR(λR) around λR = πi .

Then let us consider the expansion around λL− = ±i
√
C . It is convenient to

introduce infinitesimal parameters

ϵ−(±) ≡ λL− ∓ i
√
C . (3.15)

The charges QR,3
(0) , Q

R,−
(1) and Q̃R,+

(1) are obtained from the expansion in terms of ϵ−(+) like

UL−(λL−) = g∞ · v−(0) exp

[
∞∑
n=1

(
−

ϵ−(+)

1 + C

)n

v−(n)

]
· g−1

∞ ,

where v−(n) (n = 0, 1, . . .) consist of the conserved charges. The first two are given by

v−(0) = e−iγT 3QR,3
(0) exp

[
−2iγT−e−γQR,3

(0)
/2Q̃R,+

(1)

]
,
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v−(1) = T+eγQ
R,3
(0)

/2QR,−
(1) − γT 3

[
Q̄R,3

(2) + Q̃R,+
(1) Q

R,−
(1)

]
−γ2T−e−γQR,3

(0)
/2

[
Q̃R,+

(3) + Q̄R,3
(2) Q̃

R,+
(1) +

2

3

(
Q̃R,+

(1)

)2
QR,−

(1)

]
. (3.16)

The remaining charges QR,3
(0) , Q

R,+
(1) and Q̃R,−

(1) come from the expansion in terms of ϵ−(−)

as

UL−(λL−) = g∞ · v̄−(0) exp

[
∞∑
n=1

(
−

ϵ−(−)

1 + C

)n

v̄−(n)

]
· g−1

∞ ,

where v̄−(n) (n = 0, 1, . . .) consist of the conserved charges. The first two are

v̄−(0) = eiγT
3QR,3

(0) exp
[
2iγT+e−γQR,3

(0)
/2Q̃R,−

(1)

]
,

v̄−(1) = T−eγQ
R,3
(0)

/2QR,+
(1) − γT 3

[
QR,3

(2) + Q̃R,−
(1) Q

R,+
(1)

]
−γ2T+e−γQR,3

(0)
/2

[
Q̃R,−

(3) +QR,3
(2) Q̃

R,−
(1) +

2

3

(
Q̃R,−

(1)

)2
QR,+

(1)

]
. (3.17)

The above results can also be obtained by flipping the sign of
√
C in the results on

UL+(λL+) . Under the sign flipping, QR,3
(0) is invariant while QR,±

(1) and Q̃R,±
(1) are mapped

each other.

Finally the results obtained here are summarized in Table 1.

Charges \ Monodromies UR(λR) UL+(λL+) UL−(λL−)

QR,3
(0) , Q

R,−
(1) , Q̃R,+

(1) 0 +i
√
C +i

√
C

QR,3
(0) , Q

R,+
(1) , Q̃R,−

(1) ∞ −i
√
C −i

√
C

QL,a
(0) , Q

L,a
(1) ±1 ∞ ∞

local charges ±eα , ±e−α ±1 ±1

Table 1. The conserved charges and the expansion points of monodromy matrices are listed. For

quantum affine algebra and Yangian, the charges are denoted in the sense of Drinfeld’s first realization.

The expansion points of UR(λR) are described in terms of zR .

3.3 The relation of spectral parameters

Now it is a turn to argue the relation of spectral parameters. We have already prepared

the data enough to completely fix it.
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We assume the relation of spectral parameters is given by a Möbius transformation.

Taking account of the correspondence in Table 1, the Möbius transformation, which

relates the expansion points giving the same conserved charges in each description, is

uniquely determined as follows,

z2R =
λL − i

√
C

λL + i
√
C

(zR ≡ e−λR

) , (3.18)

where λL (= λL+ or λL−) . As we will show in section 4, it is noted that the map (3.18)

is valid not only on some particular expansion points but also on the whole region of

the spectral parameters. In checking the correspondence of local charges, it is helpful

to use the formula,

tanh−1 x =
1

2
log

1 + x

1− x
.

We should be careful for the parameter range of zR . The relation (3.18) contains

the square of zR and hence two Riemann spheres of λL are basically necessary so that

zR is represented by a single-valued function of λL . Each regime of λL+ and λL− has

already been fixed on a single Riemann sphere with two punctures from consistency of

the Lax pair in the rational description, hence it is not possible to use only either of

them. Thus it is necessary to use both λL+ and λL− . After all, zR is expressed as

zR =



(
λL+ − i

√
C

λL+ + i
√
C

)1/2

(Re zR > 0)

−

(
λL− − i

√
C

λL− + i
√
C

)1/2

(Re zR < 0)

. (3.19)

This assignment of λL+ and λL− is compatible with that of SU(2)L Yangian generators.

In the map (3.19) , there is a cut between +i
√
C and −i

√
C on each of the Riemann

spheres with λL+ and λL− , and the two Riemann spheres are joined there as depicted

in Fig. 3. Then this cut corresponds to the imaginary axis of zR . In order to see this

correspondence, let us rewrite the relation (3.18) as

λL = i
√
C

1 + z2R
1− z2R

, (3.20)

and parametrize the imaginary axis of zR as

zR = ±i e−ξ ( ξ ∈ R ) . (3.21)
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Figure 3. The λL±-spheres are joined on the cut between ±i
√
C (C > 0) . The constructed Riemann

surface is mapped to the Riemann sphere in zR depicted in Figure 2.

According to the map (3.20) , the imaginary axis (3.21) is represented by

λL = i
√
C tanh ξ ( ξ ∈ R ) (3.22)

on the λL±-spheres. This is nothing but the cut in the map (3.19) . More precisely,

depending on the sign of C , it is written as

λL = iy , −
√
C < y <

√
C (C > 0) ,

λL = x , −
√

|C| < x <
√
|C| (−1 < C < 0) .

Thus the resulting Riemann surface described by λL+ and λL− is mapped to the Rie-

mann sphere with zR , each other. The number of poles is preserved under the map.

3.4 The expansions of UL±(λL±) : revisited

It is worth reconsidering the expansions of monodromy matrices with the relation (3.18).

As a concrete example, we will concentrate on the two expansions,

i) UL+(λL+) around λL+ = i
√
C ,

ii) UR(λR) around zR = 0 .

With the relation (3.18) , the expansion parameter ϵ+(+) in the case i) is rewritten as

ϵ+(+) =
2i
√
C z2R

1− z2R
. (3.23)
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Since |ϵ+(+)| ≪ 1 , zR is infinitesimal. Hence ϵ+(+) can be expressed as a power series in

zR .

With the relation (3.23) , the expansion in (3.10) can be rewritten as

g−1
∞ · UL+(λL+) · g∞

= e−iγT 3QR,3
(0) exp

[
−2iγT+eγQ

R,3
(0)

/2QR,−
(1)

]
×

{
1− 2i

√
Cz2R

1 + C

[
T−e−γQR,3

(0)
/2Q̃R,+

(1) − γT 3
[
Q̄R,3

(2) −QR,−
(1) Q̃

R,+
(1)

]
−γ2T+eγQ

R,3
(0)

/2

[
QR,−

(3) − Q̄R,3
(2) Q

R,−
(1) +

2

3

(
QR,−

(1)

)2
Q̃R,+

(1)

]]
+O(z4R)

}
. (3.24)

Notice that the rescaling of sl(2) generators

T± → e∓λR T± , (3.25)

makes the expansion in (3.24) into a significant form,

g−1
∞ · UL+(λL+) · g∞

= e−iγT 3QR,3
(0)

[
1− 2iγzRT

+eγQ
R,3
(0)

/2QR,−
(1)

]
×
{
1− 2iγz2R

[
z−1
R T−e−γQR,3

(0)
/2Q̃R,+

(1) − γT 3
[
Q̄R,3

(2) −QR,−
(1) Q̃

R,+
(1)

]
−γ2zRT

+eγQ
R,3
(0)

/2

[
QR,−

(3) − Q̄R,3
(2) Q

R,−
(1) +

2

3

(
QR,−

(1)

)2
Q̃R,+

(1)

]]}
+O(z2R)

= e−iγT 3QR,3
(0)

{
1− 2iγzR

[
T+eγQ

R,3
(0)

/2QR,−
(1) + T−e−γQR,3

(0)
/2Q̃R,+

(1)

]}
+O(z2R) .

This is nothing but the expansion in the case ii). That is, if the rescaling (3.25) is

taken into account, then the expansion in ϵ+(+) can be regarded as the one in zR . The

rescaling (3.25) is just an isomorphism of the sl(2) algebra, hence it does not mean any

modifications of the system.

Similarly, the expansion of UL+(λL+) around λL+ = −i
√
C agrees with that of

UR(λR) around zR = ∞ under the relation (3.18) with the rescaling (3.25). In addition,

the expansion of UL−(λL−) around λL− = i
√
C (−i

√
C) agrees with that of UR(λR)

around zR = 0 (∞) , respectively, if we take another rescaling

T± → e±λR T± . (3.26)

From these agreements, one may anticipate that the rescalings of sl(2) generators

T± → e∓λR T± for UL+(λL+) , (3.27)
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T± → e±λR T± for UL−(λL−) . (3.28)

would be an important key in arguing the equivalence of monodromy matrices. Indeed

this is the case. The rescalings will play an essential role in the next section. Note that

the rescalings (3.27) and (3.28) are compatible with the sign flipping in (3.6) , because

the shift of λR ,

λR → λR + π i

flips the sign of T± after taking the rescalings (3.27) and (3.28) .

4 Gauge equivalence of monodromy matrices

Let us consider the gauge-equivalence of monodromy matrices UR(λR) and UL±(λL±)

under the parameter relation (3.18) and the rescalings (3.27) and (3.28).

4.1 Gauge equivalence of monodromy matrices: C = 0

First of all, as a warming-up, we shall consider the C = 0 case. This is nothing but

the case of SU(2) principal chiral model and its classical integrability is well studied

[28–32] (For a comprehensive book, see [33]).

On the one hand, the Lax pair in terms of the right-invariant current

jLµ ≡ ∂µg · g−1 = g Jµ g
−1 ,

is given by

LL
±(x;λL) =

1

1± λL

jL± , (4.1)

where the light-cone components are defined as

LL
t (x;λL) ≡

1

2

[
LL

+(x;λL) + LL
−(x;λL)

]
, LL

x (x;λL) ≡
1

2

[
LL

+(x;λL)− LL
−(x;λL)

]
.

On the other hand, the Lax pair in terms of the left-invariant current

jRµ ≡ −g−1∂µg = −Jµ ,

is given by

LR
±(x;λR) =

1

1± λR

jR± , (4.2)
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where the light-components are defined as

LR
t (x;λR) ≡

1

2

[
LR

+(x;λR) + LR
−(x;λR)

]
, LR

x (x;λR) ≡
1

2

[
LR
+(x;λR)− LR

−(x;λR)
]
.

Then we may introduce monodromy matrices for the Lax pairs (4.1) and (4.2) like

UL(λL) = P exp

[∫ ∞

−∞
dxLL

x (x;λL)

]
, (4.3)

UR(λR) = P exp

[∫ ∞

−∞
dxLR

x (x;λR)

]
. (4.4)

From now on, we will show that the two Lax pairs (4.1) and (4.2) are gauge-

equivalent under the identification of λL and λR with

λL =
1

λR

. (4.5)

First of all, let us perform the gauge transformation for the LL
±(x;λL) . Since the Lax

pair is transformed as a gauge field, the transformation law is give by[
LL

±(x;λL)
]g

≡ g−1LL
±(x;λL)g − g−1∂±g = − ±λL

1± λL

J± . (4.6)

Using the relation (4.5) , we can show that[
LL

±(x;λL)
]g

= LR
±(x;λR) . (4.7)

With this relation, we obtain the following formula for covariant derivatives,

g−1
[
∂µ − LL

µ(x;λL)
]
g = ∂µ − LR

µ (x;λR) . (4.8)

Thus the transformation law of monodromy matrices is given by

g−1
∞ · UL(λL) · g∞ = UR(λR) , (4.9)

and we have shown that UL(λL) is gauge-equivalent to UR(λR) under the identification

(4.5) .

It would be interesting to see the gauge-equivalence at r/s-matrix level. The r/s-

matrices are derived from the following Poisson brackets,{
LL

x (x;λL) ⊗, LL
x (y;µL)

}
P
=
[
rL(λL, µL), L

L
x (x;λL)⊗ 1 + 1⊗ LL

x (y;µL)
]
δ(x− y)

−
[
sL(λL, µL), L

L
x (x;λL)⊗ 1− 1⊗ LL

x (y;µL)
]
δ(x− y)
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−2sL(λL, µL)∂xδ(x− y) ,{
LR

x (x;λR) ⊗, LR
x (y;µR)

}
P
=
[
rR(λR, µR), L

R
x (x;λR)⊗ 1 + 1⊗ LR

x (y;µR)
]
δ(x− y)

−
[
sR(λR, µR), L

R
x (x;λR)⊗ 1− 1⊗ LR

x (y;µR)
]
δ(x− y)

−2sR(λR, µR)∂xδ(x− y) .

The classical r/s-matrices are the following:

rL(λL, µL) =
h(λL) + h(µL)

2 (λL − µL)

(
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
,

sL(λL, µL) =
h(λL)− h(µL)

2 (λL − µL)

(
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
,

rR(λR, µR) =
h(λR) + h(µR)

2 (λR − µR)

(
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
,

sR(λR, µR) =
h(λR)− h(µR)

2 (λR − µR)

(
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
. (4.10)

Here h(λ) is defined as

h(λ) ≡ λ2

1− λ2
. (4.11)

It is straightforward to compute the gauge transformation laws of r/s-matrices. The

r-matrix is transformed as[
rL(λL, µL)δ(x− y)

]g
= g−1(x)⊗ g−1(y)

[
rL(λL, µL)δ(x− y)

− 1

2

{
g(x) ⊗, LL

x (y;µL)
}
P
g−1(x)⊗ 1

−1

2

{
LL
x (x;λL) ⊗, g(y)

}
P
1⊗ g−1(y)

]
g(x)⊗ g(y) ,

and the s-matrix is transformed as[
sL(λL, µL)δ(x− y)

]g
= g−1(x)⊗ g−1(y)

[
sL(λL, µL)δ(x− y)

+
1

2

{
g(x) ⊗, LL

x (y;µL)
}
P
g−1(x)⊗ 1

−1

2

{
LL

x (x;λL) ⊗, g(y)
}
P
1⊗ g−1(y)

]
g(x)⊗ g(y) .

With the Poisson brackets,{
g(x) ⊗, LL

x (y;µL)
}
P
=

µL

µ2
L − 1

(
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
g(x)⊗ 1δ(x− y) ,

– 21 –



{
LL
x (x;λL) ⊗, g(y)

}
P
= − λL

λ2
L − 1

(
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
1⊗ g(y)δ(x− y) .

the gauge-equivalence of r/s-matrices are shown as[
rL(λL, µL)

]g
= rR(λR, µR) ,

[
sL(λL, µL)

]g
= sR(λR, µR) .

This equivalence still holds even after squashing the target space geometry, as we will

see in the next subsection.

Finally we should emphasize the advantage of r/s-matrix formalism. If one uses

the retarded monodromy matrix in [24], instead of the r/s-matrix formalism, then the

gauge-equivalence does not hold.

4.2 Gauge equivalence of monodromy matrices: C ̸= 0

It is a turn to consider the squashed sigma model case with C ̸= 0 . Here we will

show that UR(λR) is gauge-equivalent to UL±(λL±) under the relation (3.18) and the

rescalings (3.27) and (3.28) .

Let us start from rewriting the Lax pair L
L+

± (x;λL+) as

L
L+

± (x;λL+)

=
1

1± λL+

g
[
T+
(
1∓ i

√
C
)
J−
±+T−

(
1± i

√
C
)
J+
±+T 3(1 + C)J3

±

]
g−1 .

As in the case with C = 0 , a gauge transformation of it is evaluated as[
L

L+

± (x;λL+)
]g

≡ g−1L
L+

± (x;λL+)g − g−1∂±g

= −J± +
1

1± λL+

[
T+
(
1∓ i

√
C
)
J−
±+T−

(
1± i

√
C
)
J+
±+T 3(1 + C)J3

±

]
= −

±λL+

1± λL+

[
T+

(
1 +

i
√
C

λL+

)
J−
±+T−

(
1− i

√
C

λL+

)
J+
±+T 3

(
1∓ C

λL+

)
J3
±

]
.

By using the inverse relation of (3.18) ,

λL± =
tanhα

tanhλR

, (4.12)

the gauge transformation is further rewritten as[
L
L+

± (x;λL+)
]g

= − sinhα

sinh(α± λR)

[
T+eλRJ−

±+T−e−λRJ+
±+T 3 cosh(α± λR)

coshα
J3
±

]
.
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Thus, up to the rescaling (3.27), we have shown that[
L

L+

± (x;λL+)
]g

≃ LR
±(x;λR) . (4.13)

This relation means the gauge-equivalence of monodromy matrices,

g−1
∞ · UL+(λL+) · g∞ ≃ UR(λR) . (4.14)

Note that only half of the range of λR is covered by λL+ , as we know from (3.19) .

The same argument is possible for UL−(λL−) . Only the difference is that the

rescaling (3.28) has to be used instead of (3.27) . Then we obtain that

g−1
∞ · UL−(λL−) · g∞ ≃ UR(λR) . (4.15)

The remaining range of λR is covered by λ− . Thus, putting (4.14) and (4.15) together,

we have shown that UR(λR) is gauge-equivalent to UL±(λL±) .

Let us comment on the rescalings (3.27) and (3.28) . They can be expressed as a

transformation generated by e∓iT 3λR . Then the Lax pair is transformed as

LR±
µ (x;λR) = e±iT 3λR LR

µ (x;λR) e
∓iT 3λR . (4.16)

With this transformation law, the gauge-equivalence of monodromy matrices is repre-

sented by a simple form,

g̃−1
± · UL±(λL±) · g̃± = UR(λR) , g̃± ≡ g∞ · e±iT 3λR . (4.17)

Note that λR is a complex variable and hence the transformation (4.16) is not an

SU(2)L transformation.

The next task is to check the gauge-equivalence at the r/s-matrix level. Recall

that the left and right r/s-matrices are given by [18]

rL±(λL± , µL±) =
hL(λL±) + hL(µL±)

2
(
λL± − µL±

) (
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
,

sL±(λL± , µL±) =
hL(λL±)− hL(µL±)

2
(
λL± − µL±

) (
T+ ⊗ T− + T− ⊗ T+ + T 3 ⊗ T 3

)
,

rR(λR, µR) =
hR(λR) + hR(µR)

2 sinh (λR − µR)

(
T+ ⊗ T− + T− ⊗ T+ + cosh (λR − µR)T

3 ⊗ T 3
)
,

sR(λR, µR) =
hR(λR)− hR(µR)

2 sinh (λR − µR)

(
T+ ⊗ T− + T− ⊗ T+ + cosh (λR − µR)T

3 ⊗ T 3
)
.

– 23 –



Here scalar functions hL(λL) and hR(λR) are defined as, respectively,

hL(λL) ≡
C + λ2

L

1− λ2
L

, (4.18)

hR(λR) ≡
sinhα coshα sinh2 λR

sinh(α− λR) sinh(α + λR)
. (4.19)

Under the gauge transformation, the rational r/s-matrices are transformed as[
rL±(λL± , µL±)δ(x− y)

]g
= g−1(x)⊗ g−1(y)

[
rL±(λL± , µL±)δ(x− y)− 1

2

{
g(x) ⊗, LL±

x (y;µL±)
}
P
g−1(x)⊗ 1

−1

2

{
LL±

x (x;λL±)
⊗, g(y)

}
P
1⊗ g−1(y)

]
g(x)⊗ g(y)[

sL±(λL± , µL±)δ(x− y)
]g

= g−1(x)⊗ g−1(y)

[
sL±(λL± , µL±)δ(x− y) +

1

2

{
g(x) ⊗, LL±

x (y;µL±)
}
P
g−1(x)⊗ 1

−1

2

{
LL±

x (x;λL±)
⊗, g(y)

}
P
1⊗ g−1(y)

]
g(x)⊗ g(y) .

By using the following Poisson brackets,{
g(x) ⊗, LL±

x (y;µL)
}
P

(4.20)

=

{
−µL

1− µ2
L

(
T+⊗T− + T−⊗T+ + T 3⊗T 3

)
±

√
C

1− µ2
L

[
T+⊗T− + T−⊗T+ + T 3⊗T 3, gT 3g−1(x)⊗1

]}
g(x)⊗1δ(x− y) ,{

LL±
x (x;λL) ⊗, g(y)

}
P

(4.21)

=

{
λL

1− λ2
L

(
T+⊗T− + T−⊗T+ + T 3⊗T 3

)
∓

√
C

1− λ2
L

[
T+⊗T− + T−⊗T+ + T 3⊗T 3, 1⊗gT 3g−1(y)

]}
1⊗g(y)δ(x− y) ,

and the rescalings (3.27) and (3.28) , the gauge-equivalence of r/s-matrices are shown

as [
rL±(λL± , µL±)

]g
≃ rR(λR, µR) ,

[
sL±(λL± , µL±)

]g
≃ sR(λR, µR) .
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At first glance, it might seem contradictory because the number of poles of hL(λL)

is two and that of hR(λR) is four. However, the map (3.19) means that the range of λR

is divided into the two regions, hence the number of poles is also compatible. This is

the case for the pole of r-matrix apart from those in hL(λL) and hR(λR) . Its number

is just one and exactly agrees with the number in either of the rational descriptions.

Finally we should comment on the C → 0 limit. The relation (4.12) is reduced to

the relation (4.5) in the C → 0 limit with the rescaling (2.9).

4.3 Reduced trigonometric description and integrability

In the previous argument, one may have noticed the possibility that a couple of the

two Lax pairs

L
R+

± (x;λR+)

= − sinhα

sinh
(
α± λR+

) [e−λR+T−J+
± + eλR+T+J−

± +
cosh

(
α± λR+

)
coshα

T 3J3
±

]
,

L
R−
± (x;λR−)

= − sinhα

sinh
(
α± λR−

) [eλR−T−J+
± + e−λR−T+J−

± +
cosh

(
α± λR−

)
coshα

T 3J3
±

]
, (4.22)

are available in the trigonometric description, instead of the Lax pair LR
µ (x;λR) in

(2.6) . Now that two spectral parameters λR± are contained in the Lax pairs (4.22),

the periodicity of ImλR± is π, not 2π :

LR±
µ (x;λR±+ πi) = LR±

µ (x;λR±) . (4.23)

This observation implies that the Lax pair (2.6) is “reducible” in some sense. In fact,

it is straightforward to check that each of the Lax pairs (4.22) leads to the identical

classical equations of motion (2.5). Hence it really works well as the Lax pair, at least,

at the classical level, though it is unclear whether it works even at the quantum level

or not.

The two spectral parameters decompose the relation (3.18) into the two relations,

λL± =
tanhα

tanhλR±

. (4.24)

With the relation (4.24) , a gauge-transformation of L
L+

± (x;λL+) can be shown as[
L
L+

± (x;λL+)
]g

= g−1L
L+

± (x;λL+)g − g−1∂±g
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= −
±λL+

1± λL+

[
T+

(
1 +

i
√
C

λL+

)
J−
±+T−

(
1− i

√
C

λL+

)
J+
±+T 3

(
1∓ C

λL+

)
J3
±

]

= − sinhα

sinh(α± λR+)

[
T+eλR+J−

±+T−e−λR+J+
±+T 3 cosh(α± λR+)

coshα
J3
±

]
= L

R+

± (x;λR+) . (4.25)

Thus we have shown the gauge-equivalence as[
L
L+

± (x;λL+)
]g

= L
R+

± (x;λR+) , (4.26)

without the rescalings of sl(2) generators. The gauge-equivalence of L
L−
± (x;λL−) and

L
R−
± (x;λR−) can also be shown in the same way.

To summarize, the monodromy matrices satisfy the relations,

g−1
∞ · UL±(λL±) · g∞ = UR±(λR±) . (4.27)

The next is to consider the r/s-matrices related to a pair of the Lax pairs (4.22) .

From the Poisson brackets of the spatial components of the Lax pairs (4.22) , similarly,

one can read off the r/s-matrices,

rR±(λR± , µR±) =
hR(λR±) + hR(µR±)

2 sinh
(
λR± − µR±

) (e±(λR±−µR±)T+ ⊗ T−

+e∓(λR±−µR±)T− ⊗ T+ + cosh
(
λR± − µR±

)
T 3 ⊗ T 3

)
, (4.28)

sR±(λR± , µR±) =
hR(λR±)− hR(µR±)

2 sinh
(
λR± − µR±

) (e±(λR±−µR±)T+ ⊗ T−

+e∓(λR±−µR±)T− ⊗ T+ + cosh
(
λR± − µR±

)
T 3 ⊗ T 3

)
. (4.29)

Here a scalar function hR(λR±) is already introduced in (4.19). The r/s-matrices satisfy

the extended Yang-Baxter equation (2.16), and the classical integrability has also been

shown based on the Lax pair (4.22) .

Note that the range of λR± is restricted to half of the original trigonometric one

as in (4.23) . So the number of poles in hR(λR±) is just two and it agrees with that in

either of the rational descriptions. This is the case for the poles of the r-matrix apart

from the poles in hR(λR±) and it is just one. Thus the r-matrix is really of rational

type in the sense of [25], though it does not look so.
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This can be confirmed by showing that the r/s-matrices in the rational and re-

duced trigonometric descriptions are related each other by a gauge transformation.

The Poisson brackets (4.20) and (4.21) lead to the transformation laws[
rL±(λL± , µL±)δ(x− y)

]g
= rR±(λR± , µR±)δ(x− y) , (4.30)[

sL±(λL± , µL±)δ(x− y)
]g

= sR±(λR± , µR±)δ(x− y) , (4.31)

without rescaling the sl(2) generators. The relations (4.30) and (4.31) confirm that the

r/s-matrices (4.28) and (4.29) should be regarded as those of rational type.

Thus the trigonometric Lax pair (2.6) is really reducible to a pair of the rational

Lax pairs (4.22) applicable to the classical analysis of the squashed sigma models. It

would be interesting to consider how to interpret the reducibility of the Lax pair (2.6),

at the quantum level, especially in the language of Bethe ansatz [22, 34–37].

5 Conclusion and discussion

We have shown the gauge-equivalence of monodromy matrices in the trigonometric

and rational descriptions under the relation of spectral parameters and the rescalings

of sl(2) generators. As a result, the trigonometric description has been shown to be

equivalent to a pair of the rational descriptions. That is, the “global” equivalence is

accurately realized even after squashing the target space geometry. Moreover, we have

found the trigonometric description is reducible to a pair of the “reduced” trigonomet-

ric descriptions, each of which is of rational class and works well as the Lax pair at

the classical level. With this description, the equivalence of monodromy matrices has

become very apparent.

The equivalence implies that a squashed sphere is represented by a pair of round

spheres as a dipole from the viewpoint of classical integrability. This is equivalent to

say that a warped AdS3 space is a pair of undeformed AdS3 spaces via a double Wick

rotation. This dipole-like structure of target space would correspond to that of dipole

CFT2 in warped AdS3/CFT2 [12, 13]. It is a challenging issue to try to establish the

correspondence in the scenario.

In this direction the rational description would play an important role based on

the “global” equivalence because a Virasoro symmetry is realized as a reprametrization

of the initial data in the solution generating techniques, as dicussed in [38–40]. This

Virasoro symmetry is different from the one coming from the classical conformal sym-

metry of the system. Thus we speculate that the former Virasoro algebra and the initial
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data can be related to the quantities in the conjectured dual “dipole CFT” [12, 13].

This scenario might give a successful way to identify the dual CFT at the sigma model

level, while the asymptotic symmetry analysis at the gravity level has not completely

succeeded so far. Similarly, the related Kac-Moody algebra can also be discussed [38–

40]8. It would also be interesting to seek a direct connection to the theorem recently

presented by Hofman and Strominger [42].

It is of importance to look for the purely mathematical formulation of the cor-

respondence between a quantum affine algebra and a pair of Yangians, without the

sigma model framework. Another issue is to consider the RTT relation in light of the

correspondence. It would be useful to follow the quantum treatment of quantum affine

algebra [43] and the Bethe ansatz [34–37]. Notably, the trigonometric and rational

S-matrices are contained in the Bethe ansatz. If the equivalence shown here survives

quantization, the Bethe ansatz may be rewritten into the one consisting of only the

rational S-matrices but with the same spectrum.

It would also be nice to consider the similar correspondence of monodromy matrices

in the case of null-warped AdS3 , where the broken SL(2)R symmetry is realized as a

q-deformed Poincare symmetry [44]. Its affine extension has not been clarified yet, but,

conversely, it may be done by using the gauge-equivalence of monodromy matrices.
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