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ABSTRACT 

The aim of this review is to provide an overview of the structures of discrete metal complexes with 

N-heterocyclic ferrocenes, based on their crystal structures. These N-heterocyclic ferrocenes act as 

versatile ligands for the construction of metal complexes with unique structures, owing to the π···π 

interaction between the N-heterocycles and conformational flexibility of the ferrocenyl moiety. 

N-Heterocyclic ferrocenes coordinate to metal ions in monodentate, C,N-bidentate, multidentate, 

and bridging fashions, which results in metal complexes with various M:L stoichiometry. The 

ligands and their metal complexes have been recently employed for applications including chemical 

sensors, homogeneous catalysts, and redox-driven conformational switching. 
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1. Introduction 

Ferrocene derivatives have been widely utilized in various fields, mainly owing to their 

unique structural, electronic, and magnetic properties [1–3]. In particular, synthesis and applications 

of ferrocene derivatives as ligands have been reported extensively [1–3]. However, N-heterocyclic 

ferrocenes, defined here as ferrocenes with N-heterocyclic substituents on their cyclopentadienyl 

rings, have received less attention as ligands. These groups are rich in synthetic chemistry and 

structural chemistry [4–8]; however, they have only recently been employed as ligands in 

coordination chemistry. There are several advantages for using N-heterocyclic ferrocenes as ligands. 

First, they show interesting coordination chemistry owing to the variety of N-heterocycles (Fig. 1) 

and the conformational flexibility of ferrocene rings and N-heterocycles (Fig. 2). Second, 

functionalized building blocks, especially metal-containing ligands (metalloligands) [9–11], have 

been the subject of recent attention in crystal engineering [12, 13]. In fact, the introduction of a 

ferrocenyl group to an N-heterocyclic ring is a rational approach to obtain metalloligands. Third, 

N-heterocyclic ferrocenes and their metal complexes have proven to act as chemical sensors 

[14–19], homogeneous catalysts, and conformationally switchable materials, taking advantage of 

the conformational flexibility and redox ability of the ligands. Finally, many of these systems have 

well-defined structures, which allows for a better understanding of their properties.  

In this review, we discuss the structural variation of the discrete metal complexes with 

N-heterocyclic ferrocenes based on crystallographic data. Complexes without crystallographic data 

will be described only when they have remarkable aspects. Omitted from this review are ferrocenes 

bearing chiral N-heterocycles, saturated N-heterocycles, and mixed donor N-heterocycles, which 

have considerable use as ligands for asymmetric catalysts, because they have been reviewed in the 

literature [20–23]. Also omitted are coordination polymer complexes with N-heterocyclic 

ferrocenes, which are summarized in our previous review [11]. 
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2. Structures of metal complexes 

All N-heterocyclic ferrocenes in this review are classified according to their coordination 

fashion and ring size (Fig. 3). N-Heterocyclic ferrocenes can be prepared by general synthetic 

procedures, including palladium catalyzed cross-coupling [24–31], cyclodehydration [32–39], azide 

alkyne Huisgen cycloaddition (Click reaction) [14, 15, 40, 41], and other reactions [42–46]. 

 

2.1. N-Heterocyclic ferrocenes that produce monodentate complexes 

Structural formulae of N-heterocyclic ferrocenes adopting monodentate ligation are 

summarized in Fig. 4. The chemical formulas of their complexes are listed in Table 1. Although the 

N-heterocyclic ferrocenes dealt with in this section are simple, their coordination structures vary, 

accompanying the variation of the M:L ratios. Ferrocenes with bulky N-heterocycles, such as indole 

[47], benzimidazole [37], perimidine [48], quinoline [30, 32, 39, 43], and quinoxaline [33–36, 38], 

also act as monodentate ligands; however, their metal complexes are fewer. 

 

2.1.1. Pyrazole and triazole derivatives (L1–L4) 

Although many ferrocenyl pyrazole derivatives have been reported, their coordination 

complexes are relatively few. The photochemical reaction of L1·H and W(CO)6 affords a 1:1 M:L 

complex [W(CO)5(L1·H)] (1, Fig. 5) [49]. The crystal structure of 1 reveals that the pyrazole of 

L1·H coordinates to the tungsten(II) center with the nitrogen atom farther away from the ferrocenyl 

moiety. The N–H group of 1 forms an intermolecular hydrogen bonding with a carbonyl moiety of 

an adjacent molecule to construct a 1D network structure.  

L2·H, a regioisomer of L1·H, coordinates to a metal(II) ion via the 2-position nitrogen to 

construct 1:4 or 1:2 M:L complexes, [MX2(L2·H)n] {M = Zn, X = NO3
−
, n = 4 (2, Fig. 6a); M = Co, 

X = Cl
−
, n = 4 (3, Fig. 6b); M = Zn, X = NCS, n = 2 (4, Fig. 6c)} [50]. 2 and 4 possess 1D hydrogen 

bonding network structures, while 3 shows a discrete structure. 2 has two polymorphs, 2a and 2b. 

Despite the difference in their packing structures and space groups (P-1 for 2a, P21/c for 2b), their 
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molecular structures and the hydrogen bonding networks are almost the same. The metal(II) ions in 

2a and 3 adopt an octahedral geometry and are occupied by four equatorial nitrogen atoms from 

four L2·H ligands and two axial heteroatoms from counter anions. In 2a, two of the four L2·H 

ligands form intramolecular N−H···O hydrogen bonds with two NO3
−
 anions, while the others form 

intermolecular N−H···O hydrogen bonds with two NO3
−
 anions from two adjacent molecules, 

affording a 1D network structure. The zinc(II) ion in 4 shows a tetrahedral coordination geometry, 

surrounded by four nitrogen atoms from two L2·H ligands and from two NCS
−
anions. Each unit is 

linked by intermolecular N−H···S hydrogen bonds between two ligands and two counter anions, 

forming a 1D network structure.  

Several ferrocenyltriazole derivatives and their coordination complexes have been prepared 

during the development of the Click reaction [14, 40]. By treating with PdCl2(PhCN)2, L3 and L4 

afford [PdCl2(L)2] {L = L3 (5, Fig. 7) [51] and L4 (6) [52], respectively}. The palladium(II) centers 

in both 5 and 6 show square planar coordination geometry, in which the N-donor ligands occupy the 

trans positions. In both complexes, the ligands coordinate to the metal center with the nitrogen atom 

farthest away from the benzyl group. A trinuclear ferrocenyltriazole derivative can be also prepared 

using the Click reaction of the trifunctionalized benzene derivative and ethynylferrocene, and this 

derivative reacts with β-cyclodextrin to form an encapsulated complex (Fig. 8). The complex can 

stabilize and solubilize palladium nanoparticles, which catalyze both the Suzuki and Heck reactions 

in aqueous media [53]. 

 

2.1.2. Pyridine, pyrimidine, and pyrazine derivatives (L5–L9) 

The most widely investigated class of N-heterocyclic ferrocenes has been those with 

six-membered rings. Many complexes with L5 and L6 are crystallographically characterized. Most 

studies on the complexes with L6 deal with their electrochemical properties, which have revealed 

that there is little electronic communication between the ferrocenyl group and the metal center 

[54–58]. Because of the similarity of the complexes, we will limit our discussion to certain 

interesting 1:2 and 2:2 M:L complexes with L5, [MCl2(L5)2] {M = Pd (7, Fig. 9a) [59], Pt (8, Fig. 
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9b) [60]}, and [Au(C6F5)(L5)]2 (9, Fig. 9c) [61]. The two L5 ligands in 7 occupy the trans-positions 

of the palladium(II) center, while those in 8 coordinate to the cis-positions of the platinum(II) center. 

The assembled structure of 9 can be regarded as a 2:2 M:L dimer, in which the gold(I) centers adopt 

a slightly distorted T-shaped geometry and are bounded by a nitrogen atom from L5, a carbon atom 

from C6F5, and an adjacent gold(I) ion (Au···Au = 3.301(2) Å). In the dimer, the pyridyl moiety of 

L5 and the adjacent C6F5 ring lie approximately parallel and are separated by 3.58 Å, which is an 

acceptable distance for π···π stacking interaction [62]. The structures of [RhCl(cod)(L5)] [63], 

[Au(L5)(PPh3)] [61], [Au(C6F5)n(L5)m] (n = 2, m = 2; n = 3, m = 1) [61], and 

[RuCl(L6){[14]aneS4}]Cl [54] are similar to the above ones. 

The reaction of PdCl2(CH3CN)2 and the diferrocene L7 generates the 1:2 M:L complex 

[PdCl2(L7)2] (10, Fig. 10) [64], in which the square planar palladium(II) center is coordinated by 

the trans nitrogen atoms from two L7 ligands and two chlorine atoms. The two L7 ligands adopt a 

head-to-head conformation around the palladium(II) center in which the ferrocene groups adopt the 

anti conformation with respect to the central pyridine ring. The angles between the pyridyl and Cp 

rings in the complexes with L5–L7 vary between 3.3 and 52.3°. A similar variation is found in the 

complexes with L8. 

L8 is a versatile ligand that coordinates to a variety of metal ions to generate discrete 

complexes or coordination polymers [11, 65, 66]. In the 2:2 M:L complex [Cu(OAc)2(L8)]2 (11, Fig. 

11a) [65], one of the two pyrimidine rings shows intermolecular π···π interactions (3.59 Å). The 1:2 

M:L complex [Zn(NCS)2(L8)2] (12, Fig. 11b) also possesses a dimer-like structure with an effectual 

π···π interaction between the Cp ring and pyrimidine ring of an adjacent molecule (3.58 Å) [65]. 

The choice of solvent for the complexion of L8 and [Ni(hfac)2] is critical; the reaction in diethyl 

ether generates a 1:2 M:L discrete complex, [Ni(hfac)2(L8)2] (13, Fig. 11c) [67], while the reaction 

in pentane leads to a zigzag side chain polymer, [Ni(hfac)2(L8)]n [66], having an M:L ratio of 1:1, 

regardless of the initial M:L ratio during synthesis. Two L8 ligands in 13 act as monodentate 

ligands and occupy the cis positions of the nickel(II) center. This contrasts with the result of 

[Ni(hfac)2(L8)]n, in which L8 behaves as a bidentate bridging ligand and occupies the trans 
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positions of the nickel(II) center. The 1:3 M:L complex [Zn(NO3)2(L8)3] (14, Fig. 11d) possesses a 

five-coordinated distorted square pyramidal zinc(II) center [65], in which two nitrogen atoms from 

two L8 ligands, two oxygen atoms from two counter anions occupy the equatorial positions, and a 

nitrogen atom from the remaining L8 occupies the axial position. The 1:4 M:L pinwheel-like 

complex [Ni(NCS)2(L8)4] (15, Fig. 11e) contains a nickel(II) ion with a distorted octahedral 

geometry in which four L8 ligands occupy the equatorial position [67], and the two NCS
−
 groups 

are in the axial positions. The reaction of cis-Pt(NH3)2Cl2 and L8 in the presence of AgPF6 

generates [cis-Pt(NH3)2(L8)2](PF6)2 (16), which transforms to [trans-Pt(NH3)2(L8)2](PF6)2 (17) on 

heating [68]. The NH3 groups in the crystal of 16·ethanol (Fig. 12a) form intermolecular hydrogen 

bonds with a non-coordinated nitrogen atom of adjacent L8 and with two oxygen atoms of two 

ethanol molecules, constructing a quasi-2D structure. The NH3 groups in the crystal of 

17·2(CH3)2CO (Fig. 12b) form hydrogen bonds with the oxygen atoms of the solvate molecules. 

The angles between the pyrimidyl groups and the Cp rings of L8 in 11–17 vary in the range of 0.6 

to 44.5°, which provides their coordination complexes with structural variety. 

L9 coordinates to a metal ion only via the 4-nitrogen atom of the pyrazine ring, constructing 

discrete complexes. In the 1:2 M:L complex [Cu(hfac)2(L9)2] (18, Fig. 13a) [67], the geometry 

around the copper(II) center is a six-coordinate octahedron in which two nitrogen atoms from two 

L9 ligands occupy the trans positions. A related complex [Cu(NO3)2(L9)2] (19, Fig. 13b) has a 

square planar copper(II) center coordinated with two trans nitrogen atoms from two L9 ligands [67]. 

The angles between the pyrazyl and Cp rings of the ligands in 18 and 19 are 3.7 and 26.3°, 

respectively. 

 

2.1.3. Naphthyridine derivative (L10) 

Ferrocenes with 8-naphthyridinyl substituents show unique coordination chemistry with 

metal ions. L10 can coordinate to metal ions in a monodentate or bidentate chelate fashion to 

produce a series of unique complexes with various M:L stoichiometries. Metal complexes with L10 

are discussed in Bera′s review [69]; hence we omit discussion on some of their complexes. The 
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reaction of PdCl2(CH3CN)2 and L10 generates the 1:1 M:L complex [PdCl2(L10)] (20) [70], which 

catalyzes the methoxycarbonylation of styrene; however, the performance in terms of activity and 

selectivity is very low compared with related complexes. The reaction of [Ir(cod)(L10)2]BF4 (21) 

and CO in CH2Cl2 results in the formation of a dimer complex, [IrCl2(CO)2(L10)]2 (22, Fig. 14) [70, 

71]. The chlorides are from the solvent molecules. In this complex, the monomer units are linked by 

an unsupported iridium(II)−iridium(II) bond (2.7121(8) Å). 

 

2.2. N-Heterocyclic ferrocenes that produce metallacycle complexes 

Structural formulae of N-heterocyclic ferrocenes producing metallacycle complexes are 

summarized in Fig. 15. The chemical formulas of their complexes are listed in Table 2. 

N-heterocycles with a ferrocenyl group attached to the next carbon atom to the nitrogen atom have 

the ability to produce metallacycle complexes via ortho-metalation (Fig. 16). Some of the 

complexes show good catalytic activity.  

 

2.2.1. Imidazoline derivatives (L11, L12) 

The reactions of ferrocenylimidazoline L11 or L12 and palladium salts in the presence of a 

base generate chloride-bridged palladacycle dimers [Pd(μ-Cl)(L)]2 {L = L11′ (23), L12′ (24)} [72, 

73], where the prime indicates that the ligand is deprotonated at the α-carbon atom of the ferrocenyl 

moiety; hereinafter the same meaning is applied. Although their crystal structures have not been 

determined, their PPh3 adducts [PdCl(L)PPh3] {L = L11′ (25), L12′ (26, Fig 17)} have been 

crystallographically characterized [72]. They are stable in air and moisture, which offers advantages 

to catalytic processes. The coordination geometries around the palladium(II) centers of 25 and 26 

are similar to each other, where the phosphine atom is trans to the nitrogen atom.  

23 has been employed for aza-Claisen rearrangement of N-p-methoxyphenylbenzimidate to 

generate N-allyl-N-(p-methoxyphenyl)benzamide [74]. The complex catalyzes the coupling reaction 

of 4-bromotoluene and phenylboronic acid to give 4-methy-1,1′-biphenyl. The reaction is achieved 

at low catalyst loading and short reaction time; however, a high temperature is required. 26 activates 
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the C−Cl bond in aryl chlorides and is employed as the catalyst for the coupling reaction of 

4-nitrochlorobenzene and phenylboronic acid in aqueous media to give 4-nitro-1,1′-biphenyl [71]. 

This catalyst, however, requires a higher temperature and longer reaction time than the water 

soluble Pd(II)–diimine catalyst [75]. 

 

2.2.2. Pyridine and pyrimidine derivatives (L13–L15) 

L13 usually behaves as a monodentate ligand and generates discrete metal complexes; 

however, their crystal structures have not been reported to the best of our knowledge. In contrast, 

many metallacycle complexes with L13′ have been crystallographically studied. The reaction of 

L13 with Li2PdCl4 generates a 1:2 M:L complex [PdCl2(L13)2] (27) [60]. When a similar reaction 

is carried out in the presence of NaOAc, ortho-metalation occurs at the Cp ring, and a 2:2 M:L 

chloride-bridged palladacycle dimer [Pd(µ-Cl)(L13′)]2 (28) is generated [76]. 28 is the precursor of 

palladacycle complexes [PdCl(L13′)PPh3] and [Pd(acac)(L13′)] [76]. The reaction of L13 and a 

polymeric complex [RuCl2(CO)2]n in the presence of Na2CO3 leads to the formation of a 2:2 M:L 

chloride-bridged ruthenocycle dimer complex, [Ru(µ-Cl)(L13′)(CO)2]2 (29, Fig. 18) [77, 78], which 

has a planar chirality at the ruthenocycle. The two ruthenocycle units in 29 are perpendicular to 

each other. This contrasts with other relevant complexes such as cis-[Ru(μ-Cl)(ptpy)(CO)2]2, in 

which the ruthenocycle units show a parallel arrangement [79]. 29 is also a precursor of related 

complexes, [PPN][RuCl2(L13′)(CO)2] and [Ru(N^N)(L13′)(CO)2] (N^N = chiral bidentate ligands) 

[77]. 

A palladacycle complex [PdCl(L14′)(iPrNHC)] (30, Fig. 19) [80], having the advantage of 

being air-stable, has been tested as a catalyst for both the Suzuki coupling and the 

Buchwald–Hartwig amination reactions in a PEG media. High activities have been observed when 

high temperatures and long reaction time are applied. The catalyst can be recycled and reused three 

times without lessening of activity. 

The reactivity and structure of a palladacycle dimer [Pd(μ-Cl)(L15′)]2 (31) are similar to that 

found in 28 [81]. In 31, one of the two nitrogen atoms of the pyrimidine ring remains vacant. The 
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complex is a precursor for several phosphine complexes, such as [PdCl(L15′)(P-donor)] {P-donor 

= PPh3, PCy3, PCy2(2-biphenyl), dcpab (32, Fig. 20)} [81]. The coordination environment around 

the metal center of 32 is similar to that in 26. Compound 32 shows a catalytic activity for the 

Buchwald–Hartwig amination, catalyzing the coupling of 2-chloroanisole and 2,5-dimethylaniline. 

 

2.2.3. Bipyridine, quinoline, and phenanthroline derivatives (L16–L19) 

Many ferrocenyl-bipyridine derivatives and their metal complexes have been prepared; 

however, their crystal structures are rather limited [82–85].  

L16 undergoes an ortho-metalation when reacted with PdCl2(cod), and subsequently 

produces a 1:1 M:L palladacycle complex, [PdCl(L16′)] (33) [86], in which L16′ behaves as a CNN 

ligand. Although ortho-metalation generally requires a base to remove the α proton, this reaction 

proceeds without a base. When treated with t-BuNC, 33 produces [Pd(L16′)(t-BuNC)]Cl (34) [87], 

showing no successive isocyanide insertion (Fig. 21). The reaction of PdCl2(cod) and L17 affords a 

1:1 M:L palladacycle complex, [PdCl(L17′)] (35, Fig. 22) [86]. In 35, the ferrocenyl rings adopt a 

synclinal conformation and the two bipyridine rings are approximately parallel to each other. One of 

the two bipyridyl groups is nearly planar and coordinates to a square planar palladium(II) ion in a 

CNN fashion, while the other is twisted and without coordination. 

L18 acts as a bidentate ligand in the 1:1 M:L complex [ZnCl2(L18)] (36, Fig. 23) [88], which 

exhibits a metallacycle structure. The ligand coordinates to the zinc(II) ion via the nitrogen atom of 

the quinoline ring and a carbon atom of the Cp ring, where the Zn−C distance is 2.407(2) Å. The 

metal center adopts a distorted tetrahedral coordination geometry. The spacing between adjacent 

naphthalene rings is 3.39 Å, which falls within a π∙∙∙π interaction distance. 

The reaction of Pd(OAc)2 and L19 in the presence of CF3CO2H affords a palladacycle 

complex, [Pd(O2CCF3)(L19′)] (37, Fig. 24) [89]. This complex is used for the preparation of 

[Pd(L19′)(MeCN)]PF6, [Pd(L19′)(PPh3)](O2CCF3)2, and [{Pd(L19′)}2(μ-P^P)](O2CCF3)2 (P^P = 

dppe, dppp), owing to the lability of the CF3CO2
 
anion. The reaction of K2PdCl4 and L19 generates 

the palladacycle complex [PdCl(L19′)] (38) [90]. The coordination geometries around the metal 
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centers in 37 and 38 are similar to each other.  

 

2.3. N-Heterocyclic ferrocenes that produce chelate complexes 

Structural formulae of N-heterocyclic ferrocenes producing chelate complexes are 

summarized in Fig. 25. The chemical formulas of their complexes are listed in Table 3. These 

complexes have been studied mainly in terms of structural chemistry; however, several metal 

complexes with polypyridinyl ferrocenes have been employed for DNA binding and DNA 

photocleavage reagents.  

 

2.3.1. Pyrazole and triazole derivatives (L20–L23) 

The heptanuclear wheel-like complex [Ni7(OH)4(L20)8](ClO4)2·6CH3CN (39, Fig. 26) is 

obtained by the reaction of L20 and Ni(ClO)4·6H2O in the presence of a base [91]. This complex is 

composed of nickel(II) ions with four different types of coordination geometries, including a 

NiN2O4 octahedron, a NiN5O octahedron, two NiN3O2 square pyramids, and two NiN3O square 

planes. The NiN2O4 octahedron is located at the center of the wheel, while the other nickel(II) ions 

are linked by six L20 ligands to construct a macrocycle. The temperature dependence of the 

magnetic susceptibility shows the presence of antiferromagnetic interactions (θ = −22.5 K) between 

the nickel(II) ions. 

An N-alkylated ligand L21 has been obtained by the treatment of L20 with NaH and 

BrCH2COOC2H5. The reaction of L21 and Mo(CO)4(piperidine)2 affords the 1:1 M:L complex 

[Mo(CO)4(L21)] (40, Fig. 27), in which the ligand coordinates to the molybdenum(0) center in an 

NN bidentate chelate fashion [92].  

A tridentate ligand L22 can be prepared from L2. The reaction of L22 and Fe(BF4)2·6H2O in 

acetonitrile affords a pentanuclear complex, [Fe(L22)2](BF4)2·3CH3CN (41, Fig. 28) [93]. The 

coordination geometry around the iron(II) center is a highly distorted octahedron, in which L22 

occupies the meridional positions of the iron(II) ion. The Fe−N lengths of the complex are relatively 

long, being characteristic for a high spin state of iron(II) ion. The complex does not show a spin 
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conversion even at low temperature, owing to the distorted geometry that stabilizes the high spin 

state.  

A nitrogen-rich ligand L23 acts as a chemical sensor for toxic heavy metal ions [94]. Addition 

of cadmium(II), lead(II), and mercury(II) to an acetonitrile solution of L23 increases the half-wave 

redox potential (E1/2) of the ferrocenyl moiety. The reaction of L23 with Zn(OTf)2 yields the 1:2 

M:L complex [Zn(OTf)2(L23)2]∙CHCl3 (42, Fig. 29) [94], in which the distorted octahedral zinc(II) 

ion is coordinated with four equatorial nitrogen atoms from two L23 and axial oxygen atoms of 

OTf
−
 anions. 

 

2.3.2. Bipyridine and pyrimidine derivatives (L16, L24) 

As described above, L16 can act as NN-bidentate chelate and CNN-tridentate ligands. The 

1:2 M:L complex [Co(L16)2(CH3CN)2](OTf)2 (43, Fig. 30) possesses an octahedral cobalt(II) center 

coordinated by two L16 ligands in a chelate fashion and two acetonitrile molecules occupying the 

cis positions [95]. 

The complexes [Cu(2,9-dianthryl-1,10-phenanthroline)(L24)]BF4 (R = p-tolyl, 1-naphthyl, 

9-anthracenyl, and t-butyl) (44) contain a tetrahedral copper(I) center coordinated with two bulky 

ligands in a chelate fashion [96, 97]. In the solution state, the ferrocene group in 44 is located near 

the copper(I) center in the neutral state (Fig. 31a), whereas it is placed far away from the copper(I) 

center in the oxidized state owing to the electrostatic repulsion between the copper(I) center and the 

ferricinium moiety (Fig. 31b). Therefore, these complexes exhibit redox-driven conformational 

switching, which may further lead to interesting molecular functions. 

 

2.3.3. Terpyridine and polypyridine derivatives (L25, L26) 

Similar to the ferrocenyl-bipyridine derivatives, several positional isomers of 

ferrocenyl-terpyridine derivatives have been prepared [84, 98]; however, only L25 has been 

extensively studied as a ligand [99–101]. The 1:1 M:L complex [Cu(dppz)(L25)](ClO4)2 (45) shows 

DNA binding and photoinduced DNA clearage activities [102]. The analogues [M(N^N)(L25)]X2 
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{M = Cu, N^N = dppz, X = ClO4
−
 (46, Fig. 32) [102]; M = Cu, N^N = bpy, X = BF4

−
 (47) [103]; M 

= Cu, N^N = phen, X = ClO4
−
 (48) [104]; M = Zn, N^N = phen, X = ClO4

−
 (49) [105]; M = VO, 

N^N = bpy, X = PF6
−
 (50) [106]} have been crystallographically characterized. 46 has a distorted 

square pyramidal copper(II) center. In 46, L25 and one of the two pyrido nitrogen atoms of dppz 

occupy the equatorial plane of the metal center, while the remaining pyrido nitrogen atom is located 

at the axial position. The coordination geometries around the metal centers of 47–50 resemble that 

of 46. In 50, the coordination geometry of vanadium(IV) is approximately octahedral, in which the 

three nitrogen atoms from L25 occupy the meridional positions. L25 can also coordinate to three 

different metal ions using its three pyridyl nitrogen atoms. The reaction of three equivalents of 

Au(C6F5)(THF) and L25 affords a 3:1 M:L complex, [{Au(C6F5)}3(L25)] (51, Fig. 33) [107], in 

which the three pyridyl nitrogen atoms coordinate to three different gold(I) ions. The three gold(I) 

ions are linked by L25 and aurophilic interactions of themselves, in which the central gold(I) ion 

adopts a distorted square planar coordination and the outer two gold(I) ions adopt a T-shaped 

coordination geometry. The outer two pyridyl nitrogen atoms point in almost opposite directions. 

The polypyridine ligand L26 may behave as either a multidentate or a bridging ligand to 

produce complexes with 1:1, 2:2, and 2:1 M:L ratios. The 2:2 M:L complex [Ag(L26)]2(OTf)2 (52, 

Fig. 34) has a double-helical structure in which the two silver(I) ions have different coordination 

environments [108]. One is an elongated trigonal bipyramid, and the other has a geometry 

intermediate between tetrahedron and square plane. The distance between the silver(I) ions is 

3.089(2) Å, which is an acceptable distance for argentophilic interactions [109–111]. A similar 

double-helical structural motif is found in [M(solv)(L26)]2(PF6)n [112] [M = Cu, solv = none, n = 3 

(53, Fig. 35a); M = Ni, solv = H2O, n = 4 (54)], in which one of the two metal centers adopts a 

six-coordinate geometry and the other shows a four coordinate geometry. The six- and 

four-coordinate metal centers in 53 are copper(II) and copper(I) ions, respectively; thus the complex 

is in a mixed valence state. The metal centers in 1:1 M:L complexes [M(H2O)2(L26)](PF6)2 [M = Fe 

(55), Co (56)] (Fig. 35b) adopt a hepta-coordinate geometry [113], which is occupied by five 

nitrogen atoms from L26 and two oxygen atoms from two water molecules. A helical complex 
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[Ru2Cl(L25)2(L26)](PF6)3 (57, Fig. 35c) includes two different six-coordinate ruthenium(II) centers 

[112]. One of the two ruthenium centers is coordinated by three nitrogen atoms from L25 and three 

nitrogen atoms from L26, while the other is surrounded by two nitrogen atoms from L25, three 

nitrogen atoms from L26 and a chloride anion.  

 

2.3.4. Hydroxyquinoline and phenanthroline derivatives (L27, L19) 

The reaction of hydroxyquinoline derivative L27 and metal salts produces [M(L27)2(H2O)2] 

[M = Ni (58), Cu (59)] [113]. They adopt a six-coordinate octahedral geometry, in which two 

nitrogen atoms and two phenoxy oxygen atoms are from the ligands and two oxygen atoms are from 

two coordinated water molecules. 

The reaction of phenanthroline derivative L19 and a palladium(II) salt produces a complex 

with chelate bidentate or CNN tridentate coordination modes depending on experimental conditions. 

A chelate complex [PdCl2(L19)] is obtained by the reaction of L19 and PdCl2(cod) [86], while the 

palladacycle complex [PdCl(L19′)] (38) is generated by the reaction of L19 and K2PdCl4 [90]. The 

treatment of [PdCl(CH3)(L19)] (60) with AgPF6 in CH3CN leads to the formation of 

[Pd(CH3)(CH3CN)(L19)] (61) [89], which shows excellent catalytic activity in the Heck reaction of 

iodobenzene and methylacrylate to afford methyl-trans-cinnamate. 

 

2.4. N-Heterocyclic ferrocenes that produce macrocyclic complexes 

Structural formulae of N-heterocyclic ferrocenes producing macrocyclic complexes are 

summarized in Fig. 36. The chemical formulae of their complexes are listed in Table 4. 1,1′-Bis 

substituted ferrocenes with N-heterocycles of six-membered rings and condensed aromatic rings are 

likely to adopt the syn conformation and therefore afford discrete metal complexes, although they 

are capable of adopting other conformations. This is associated with the intramolecular π···π 

interaction between the N-heterocyclic rings. 

In 1,1′-bis substituted ferrocenes, the torsion angle τ is used to express the conformation, 

which is defined as the torsion angle of X
1
–Cp

1
–Cp

2
–X

2
, where X

1
 and X

2
 are carbon atoms bonded 
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to N-heterocycles, and Cp
1
 and Cp

2
 are the centroids of the Cp rings (Fig. 37) [11]. The variety of 

torsion angles of the ferrocene backbone provides N-heterocyclic ferrocene complexes with 

structural versatility. 

 

2.4.1 Pyrazole derivative (L1) 

The reaction of L1·H and [Rh(µ-Cl)(cod)]2 in the presence of a base generates the 

macrocyclic complex [Rh(µ-L1)(cod)]2 (62, Fig. 38) [114]. The complex adopts a head-to-tail 

structure in which the –Rh–N–N–Rh–N–N– metallacycle exhibits a boat conformation.  

 

2.4.2. Pyridine and pyrazine derivatives (L28–L31) 

Ditopic ligands L28 and L29 show either chelating or bridging coordination modes to 

construct 2:2, 1:1, and 2:1 M:L complexes. The 2:2 M:L dimeric complex [Ag(µ-ClO4)(L28)]2 (63, 

Fig. 39a) contains two Ag(L28) units which are linked by two ClO4
−
 counter anions [115]. The L28 

ligand in 63 adopts a synclinal conformation (τ = 84.2°) and coordinates to silver(I) ion with the 

trans chelating mode (N−Ag−N = 163.1°). The L28 ligand in 1:1 M:L [Pd(CH3)Cl(L28)] (64, Fig. 

39b) adopts a synclinal conformation (τ = 0.4°) and chelates to palladium(II) ion in the cis mode 

(N−Pd−N = 84.5°) [116]. The complex shows C=O insertion into the Pd−CH3 bond to generate 

[Pd(COCH3)Cl(L28)] (65) [116]. The coordination chemistries of octamethylated L29 are similar to 

those of L28. The ligand conformations in 2:1 M:L [Cu(L29)][CuCl2] (66, Fig. 39c) and 1:1 M:L 

[Cu(L29)]BF4 (67) are similar to that in 61 [117,118] In contrast to 63 and 64, in the 2:1 M:L 

complex [{PtCl2(C2H4)}2(µ-L28)] (68, Fig. 39d) [116], L28 bridges metal ions. The two pyridine 

rings of L28 in the complex lie approximately parallel and are separated by 3.65 Å, which is an 

acceptable distance for π···π interactions. The molecular structure of 2:1 M:L 

[{PtCl2(C2H4)}2(µ-L29)] (69) is almost identical to that of 68 [118]. 

L30 cannot chelate to a metal ion and has a tendency to adopt the syn conformation, causing 

its complex to form 2:2 M:L metallomacrocyclic structures. Indeed, coordination polymer 

complexes containing L30 with an anti conformation have not been reported. In the 
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metallomacrocycle [AgNO3(L30)]2·1.5H2O (70, Fig. 40a) [119, 120], the two pyridine rings of L30 

are in a face-to-face orientation, with the distance between the two pyridine rings being 3.44 Å. The 

silver(I) ions are coordinated in a highly distorted tetrahedral geometry by two nitrogen atoms from 

two L30 ligands and two oxygen atoms from the NO3
−
 anion. One of the two anions links adjacent 

macrocyclic units. The macrocyclic complex [Zn(OAc)2(L30)]2 (71, Fig. 40b) contains two zinc(II) 

ions with a distorted square pyramidal geometry and two L30 ligands with a synperiplanar 

conformation (τ = 3.6°) [119]. Two of the four OAc
−
 anions bridge the two zinc(II) ions in the 

macrocycle with a monoatomic μ
2
-bridging mode, while the others coordinate to the ions with a 

monodentate syn fashion. The crystal structure of [Cd(OAc)2(L30)]2·CH3OH·0.5C6H6 (72) is 

somewhat similar to that of 71 [119]. The butterfly shaped complex [ZnCl2(L30)]2 (73, Fig. 40c) is 

composed of two zinc(II) ions with a tetrahedral geometry and two L30 ligands with a synclinal 

conformation (τ = 35.1°) [119, 120]. In 70–72, the pyridine rings in L30 are approximately parallel 

and are twisted with respect to the attached Cp rings by 3.5–14.8°. Comparison of the zinc(II) 

complexes 71 and 73 reveals the correlation between the Zn···Zn and Fe···Fe distances and the 

conformation of L30. The Zn···Zn and Fe···Fe distances of 71 with a synperiplanar L30 are 3.9 and 

15.0 Å, respectively, whereas those of 73 with a synclinal L30 are 6.1 and 11.9 Å, respectively.  

The 1,1′-di-subsituted ligand L31 tends to adopt the synperiplanar conformation, probably 

owing to an intramolecular π···π interaction between the two pyrazine rings. The pyrazine rings in 

L31 may lie in the same direction or different directions; hence the ligand can afford macrocyclic or 

polymer complexes when reacted with metal salts. The copper(I) complex [(CuI)2(L31)]2·L31 (74, 

Fig. 41a) contains a ladder-like (CuI)4(L31)2 unit and a free L31 [121]. The ladder-like unit consists 

of three (CuI)2 cyclic units and two L31 ligands with a synperiplanar conformation. In the crystal, 

the free L31 adopts an antiperiplanar conformation and occupies the space between the ladder-like 

units. The reaction of AgX and L31 affords a series of metallomacrocycles [AgX(L31)]2·(solv) [X = 

ClO4
−
, solv = 2C6H6 (75, Fig. 41b); X = ClO4

−
, solv = none; X = NO3

−
, solv = C6H6; X = NO3

−
, 

solv = PhCl; X = NO3
−
, solv = PhCH3; X = PF6

−
, solv = none] with various Ag···Ag distances [121]. 

The macrocyclic unit in 75 is composed of two silver(I) ions with a highly distorted tetrahedral 
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geometry, which are bridged by the two L31 ligands and two counter anions, constructing a 

paddle-windmill-like structure. The other macrocyclic complexes exhibit almost identical structures. 

The Ag···Ag distances in these units can be changed by changing the counter anions (PF6
−
 = ca. 3.4 

Å; ClO4
−
 = ca. 3.4–3.3 Å; NO3

−
 = ca. 3.2 Å). The difference in the Ag···Ag distances between the 

ClO4
−
 and NO3

−
 complexes is ascribable to the differences in the negative charge density on the 

oxygen atoms of the counter anions.  

 

2.4.3. Quinoline and naphthyridine derivatives (L32, L33) 

The 1,1-disubstituted ligand L32 acts as a tridentate ligand in [ZnCl(L32)]2[Zn2Cl6] (76, Fig. 

42) [122], with the ligand coordinating to a zinc(II) ion by the two nitrogen atoms of the quinoline 

rings and the iron(II) atom in the ferrocenyl group. The complex consists of two 1:1 M:L cation 

[ZnCl(L32)]
+
 units and a dianion [Zn2Cl6]

2−
 unit. The zinc(II) center in the cation adopts a distorted 

tetrahedral geometry and is coordinated by L32 in a tridentate fashion and by a chlorine atom. The 

zinc(II)−iron(II) distance is 2.562(1) Å. The ferrocenyl moiety adopts a synclinal conformation.  

The tetramer complex [ZnCl2(L33)]4 (77, Fig. 43) possesses a macrocyclic structure [123, 

124], in which L33 behaves as a bridging ligand and adopts a synclinal conformation (τ = 2.5°). In 

77, the two naphthyridine rings of L33 form π···π interactions (3.37 Å) and coordinate to two 

different zinc(II) ions with the nitrogen atoms far from ferrocene group. The reaction of 

Cu(CH3CN)4·ClO4 and L33 affords complexes with various M:L stoichiometries [Cu(L33)]2(ClO4)2 

(78), [Cu(L33)]ClO4 (79), and [Cu2(ClO4)(L33)]ClO4 (80) [123, 124], depending on the initial ratio 

of M:L. The crystal structure of 78·4CH3NO2 reveals that it adopts a 2:2 M:L macrocyclic structure 

(Fig. 44a), in which the copper(I) ions show a linear coordination geometry occupied by two 

nitrogen atoms farthest from the ferrocene groups of two L33 ligands. The intramolecular Cu···Cu 

distance is 3.27 Å, suggesting no significant interaction between them. In the complex, the 

ferrocenyl moiety adopts a synclinal conformation (τ = 3.7°) and the two naphthyridine rings of L33 

stack in a head-to-head orientation (3.53 Å). 80 shows a 2:1 M:L macrocyclic structure (Fig. 44b), 

in which one of the copper(I) ions, coordinated by the nitrogen atoms near the ferrocenyl group of 
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L33, adopts a nearly linear geometry. The other copper(I) ion has a T-shaped coordination geometry, 

surrounded by two nitrogen atoms farther from the ferrocenyl group in L33 and a oxygen atom 

from the ClO4
−
 anion. There is no significant interaction between the copper(I) ions (2.47 Å). L33 

adopts a synclinal conformation (τ = 80.2°) in the complex. 

 

3. Summary and future outlook 

The structural aspects of N-heterocyclic ferrocene complexes have been discussed in detail in 

this review. Many N-heterocyclic ferrocenes have been known for years; however, it is only rather 

recently that they have been exploited as ligands and chemical sensors. These N-heterocyclic 

ferrocenes show interesting coordination chemistry, in which they act as monodentate, bidentate, 

multidentate, or bridging ligands depending mainly on the ligand design, namely the size, shape, 

and number of nitrogen atoms of the N-heterocycles. In addition, we have briefly discussed 

applications of these complexes for catalysts and redox-driven conformational switching.  

In the future, the design and use of ferrocene derivatives bearing nitrogen-rich N-heterocycles 

will in future become a more active area because of their potential to produce metallacycle and 

hetero-polynuclear complexes with unique properties. As described above, such complexes have 

played roles in many important areas from catalysis chemistry to material chemistry. In addition, the 

development of redox-switchable materials, such as electrochromic dyes, or catalysts which can be 

tuned “on/off” by an external potential, is also an interesting research target.  
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Table 1 

Metal complexes with monodentate N-heterocyclic ferrocenes. 

Number Complex Figure Reference 

1 [W(CO)5(L1·H)] 5 [49] 

2 [Zn(NO3)2(L2·H)4] 6a [50] 

3 [CoCl2(L2·H)4] 6b  

4 [Zn(NCS)2(L2·H)2] 6c  

5 [PdCl2(L3)2] 7 [51] 

6 [PdCl2(L4)2] - [52] 

7 [PdCl2(L5)2] 9a [59] 

8 [PtCl2(L5)2] 9b [60] 

9 [Au(C6F5)(L5)]2 9c [61] 

10 [PdCl2(L7)2] 10 [64] 

11 [Cu(OAc)2(L8)]2 11a [65] 

12 [Zn(NCS)2(L8)2] 11b  

13 [Ni(hfac)2(L8)2] 11c [67] 

14 [Zn(NO3)2(L8)3] 11d [65] 

15 [Ni(NCS)2(L8)4] 11e [67] 

16 [cis-Pt(NH3)2(L8)2](PF6)2 12a [68] 

17 [trans-Pt(NH3)2(L8)2](PF6)2 12b  

18 [Cu(hfac)2(L9)2] 13a [67] 

19 [Cu(NO3)2(L9)2] 13b  

20 [PdCl2(L10)] - [70] 

21 [Ir(cod)(L10)2]BF4 - [70,71] 

22 [IrCl2(CO)2(L10)]2 14  
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Table 2 

Metallacycle complexes from N-heterocyclic ferrocenes. 

Number Complex Figure Reference 

23 [Pd(µ-Cl)(L11′)]2 - [72,73] 

24 [Pd(µ-Cl)(L12′)]2 -  

25 [PdCl(L11′)PPh3] - [72] 

26 [PdCl(L12′)PPh3] 17  

27 [PdCl2(L13)2] - [60] 

28 [Pd(µ-Cl)(L13′)] - [76] 

29 [Ru(µ-Cl)(L13′)(CO)2]2 18 [77,78] 

30 [PdCl(L14′)(iPrNHC)] 19 [80] 

31 [Pd(µ-Cl)(L15′)] - [81] 

32 [PdCl(L15′)(dcpab)] 20  

33 [PdCl(L16′)] 21 [86] 

34 [Pd(L16′)(t-BuNC)]Cl  [87] 

35 [PdCl(L17′)] 22 [86] 

36 [ZnCl2(L18)] 23 [88] 

37 [Pd(O2CCF3)(L19′)] 24 [89] 

38 [PdCl(L19′)] - [90] 
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Table 3 

Chelate complexes with N-heterocyclic ferrocenes. 

Number Complex Figure Reference 

39 [Ni7(OH)4(L20)8](ClO4)2∙6CH3CN 26 [91] 

40 [Mo(CO)4(L22)] 27 [92] 

41 [Fe(L22)2](BF4)2∙3CH3CN 28 [93] 

42 [Zn(OTf)2(L23)2]∙CHCl3 29 [94] 

43 [Co(L16)2(CH3CN)2](OTf)2 30 [95] 

44 [Cu(2,9-dianthryl-1,10-phenanthroline)(L24)]BF4 31 [96,97] 

45 [Cu(dppz)(L25)](PF6)2 - [102] 

46 [Cu(dppz)(L25)](ClO4)2 32  

47 [Cu(bpy)(L25)](BF4)2 - [103] 

48 [Cu(phen)(L25)](ClO4)2 - [104] 

49 [Zn(phen)(L25)](ClO4)2 - [105] 

50 [VO(bpy)(L25)](PF6)2 - [106] 

51 [{Au(C6F5)}3(L25)] 33 [107] 

52 [Ag(L26)]2(OTf)2 34 [108] 

53 [Cu(L26)]2(PF6)3 35a [112] 

54 [Ni(H2O)(L26)]2(PF6)4 -  

55 [Fe(H2O)2(L26)](PF6)2 35b [113] 

56 [Co(H2O)2(L26)](PF6)2   

57 [Ru2Cl(L25)2(L26)](PF6)3 35c [112] 

58 [Ni(L27)2(H2O)2] - [113] 

59 [Cu(L27)2(H2O)2] -  

60 [PdClCH3(L19)] - [89] 

61 [Pd(CH3)(CH3CN)(L19)] -  
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Table 4 

Macrocyclic complexes with N-heterocyclic ferrocenes. 

Number Complex Figure Reference 

62 [Rh(µ-L1)(cod)]2 38 [114] 

63 [Ag(µ-ClO4)(L28)]2 39a [115] 

64 [Pd(CH3)Cl(L28)] 39b [116] 

65 [Pd(COCH3)Cl(L28)] -  

66 [Cu(L29)][CuCl2]  39c [117,118] 

67 [Cu(L29)]BF4 -  

68 [{PtCl2(C2H4)}2(µ-L28)] 39d [116] 

69 [{PtCl2(C2H4)}2(µ-L29)]  [118] 

70 [AgNO3(L30)]2·1.5H2O 40a [119,120] 

71 [Zn(OAc)2(L30)]2 40b [119] 

72 [Cd(OAc)2(L30)]2·CH3OH·0.5C6H6 -  

73 [ZnCl2(L30)]2 40c [119,120] 

74 [(CuI)2(L31)]2·L31 41a [121] 

75 [AgX(L31)]2·2C6H6 41b  

76 [ZnCl(L32)]2[Zn2Cl6] 42 [122] 

77 [ZnCl2(L33)]4 43 [123,124] 

78 [Cu(L33)]2(ClO4)2 44a  

79 [Cu(L33)]ClO4 -  

80 [Cu2(ClO4)(L33)]ClO4 44b  
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Figure Captions 

 

Fig. 1. Representative N-heterocycles that are used as substituents to ferrocenes.  

 

Fig. 2. Conformational flexibility of ferrocene rings and N-heterocycles (e.g. 

1,1′-bis(2-pyridyl)ferrocene). 

 

Fig. 3. Possible coordination modes of N-heterocyclic ferrocenes.  

 

Fig. 4. N-Heterocyclic ferrocenes that adopt monodentate coordination. 

 

Fig. 5. 1D hydrogen bonding network structure of 1. Dotted lines indicate hydrogen bonds. 

Hydrogen atoms bonded to carbon atoms are omitted for clarity, similarly hereinafter. 

 

Fig. 6. (a) 1D hydrogen bonding network structure of 2a, (b) molecular structure of 3, and (c) 1D 

hydrogen bonding network structure of 4. Dotted lines indicate hydrogen bonds. 

 

Fig. 7. Molecular structure of 5.  

 

Fig. 8. Schematic illustration of the complexation of ferrocenyltriazole and β-cyclodextrin. 

 

Fig. 9. Molecular structures of (a) 7, (b) 8, and (c) 9. Dotted line indicates Au∙∙∙Au aurophilic 

interactions. 

 

Fig. 10. Schematic drawing of the molecular structure of 10.  

 

Fig. 11. Molecular structures of (a) 11, (b) 12, (c) 13, (d) 14, and (e) 15.  

 

Fig. 12. Molecular structures of (a) 16·ethanol and (b) 17·2(CH3)2CO. Solvate molecules are also 

shown. Dotted lines indicate hydrogen bonds. 

 

Fig. 13. Molecular structures of (a) 18 and (b) 19. 

 

Fig. 14. Molecular structure of 22.  

 

Fig. 15. N-Heterocyclic ferrocenes that produce metallacycle complexes. 

 

Fig. 16. Ortho-metalation of N-heterocyclic ferrocenes.  
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Fig. 17. Molecular structure of 26.  

 

Fig. 18. Molecular structure of 29.  

 

Fig. 19. Molecular structure of 30. 

 

Fig. 20. Molecular structure of 32.  

 

Fig. 21. Formation of 34 from 33 and t-BuNC. 

 

Fig. 22. Molecular structure of 35.  

 

Fig. 23. Molecular structure of 36.  

 

 

Fig. 24. Molecular structure of 37.  

 

Fig. 25. N-Heterocyclic ferrocenes that produce chelate complexes. 

 

Fig. 26. Molecular structure of 39. Coordination geometries around the nickel ions are highlighted.  

 

Fig. 27. Molecular structure of 40.  

 

Fig. 28. Molecular structure of 41. Counter anions and solvent molecules are omitted for clarity.  

 

Fig. 29. Molecular structure of 42. Solvent molecules are omitted for clarity. 

 

Fig. 30. Molecular structure of 43. Counter anions are omitted for clarity. 

 

Fig. 31. Redox-driven conformational change of 44: (a) neutral and (b) oxidized states.  

 

Fig. 32. Molecular structure of 46. Counter anions are omitted for clarity.  

 

Fig. 33. Molecular structure of 51. 

 

Fig. 34. Schematic drawing of the molecular structure of 52. Dashed line indicates Ag∙∙∙Ag 

argentophilic interactions. 

 

Fig. 35. Schematic drawing of the molecular structures of (a) 53, (b) 55 and 56, and (c) 57. 
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Fig. 36. N-Heterocyclic ferrocenes that produce macrocyclic complexes.  

 

Fig. 37. Schematic illustrations of the torsion angle τ and conformational flexibility of 

1,1′-disubstituted ferrocenes. 

 

Fig. 38. Molecular structure of 62.  

 

Fig. 39. Molecular structures of (a) 63 and (b) 64, (c) 66, and (d) 68. Dotted line indicates weak 

Ag∙∙∙O interactions.  

 

Fig. 40. Molecular structures of (a) 70, (b) 71, and (c) 73. Solvent molecules are omitted for clarity. 

Dotted lines indicate weak Ag∙∙∙O interactions.  

 

Fig. 41. Molecular structures of (a) 74 and (b) 75. Solvent molecules are omitted for clarity. Dotted 

lines indicate weak Ag∙∙∙O interactions. 

 

Fig. 42. Molecular structure of 76. Counter anions are omitted for clarity. 

 

Fig. 43. Molecular structure of 77.  

 

Fig. 44. Molecular structures of (a) 78·4CH3NO2 and (b) 80. Solvent molecules and 

non-coordinated counter anions are omitted for clarity.  

 


