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Abstract. In the present article, we prove the sharp local well-posedness and
ill-posedness results for the “good” Boussinesq equation on T; the initial value
problem is locally well-posed in H−1/2(T) and ill-posed in Hs(T) for s < −1

2 .
Well-posedness result is obtained from reduction of the problem into a quadratic
nonlinear Schrödinger equation and the contraction argument in suitably mod-
ified Xs,b spaces. The proof of the crucial bilinear estimates in these spaces,
especially in the lowest regularity, rely on some bilinear estimates for one dimen-
sional periodic functions in Xs,b spaces, which are generalization of the bilinear
refinement of the L4 Strichartz estimate on R. Our result improves the known
local well-posedness in Hs(T) with s > − 3

8 given by Oh and Stefanov (2012) to
the regularity threshold H−1/2(T). Similar ideas also establish the sharp local
well-posedness in H−1/2(R) and ill-posedness below H−1/2 for the nonperiodic
case, which improves the result of Tsugawa and the author (2010) in Hs(R) with
s > − 1

2 to the limiting regularity.

1. Introduction

We investigate the following initial value problem for the “good” Boussinesq equa-

tion (GB): {
∂2

t v − ∂2
xv + ∂4

xv + ∂2
x(v

2) = 0, (t, x) ∈ [−T, T ] × Z,

v(0, x) = v0(x), ∂tv(0, x) = v1(x),
(1.1)

where Z = R or T := R/2πZ. The unknown function may be real-valued or complex-

valued. The principal aim of this article is to establish the sharp well-posedness and

ill-posedness results for (1.1) in Sobolev spaces.

In the 1870’s, Boussinesq proposed some model equations for the propagation of

shallow water waves as the first mathematical model for the phenomenon of solitary

waves which had been observed by Scott-Russell in the 1840’s. One of his equations

may be written in the form

∂2
t v − ∂2

xv − ∂4
xv + ∂2

x(v
2) = 0, (1.2)

which we call “bad” Boussinesq equation in contrast with (1.1). In fact, (1.2) is

linearly unstable due to the exponentially growing Fourier components, though it has
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a Lax pair formulation and admits the inverse scattering approach ([23, 4]). These

equations arise as a model for the nonlinear strings ([23]), while the Boussinesq type

equations of “good” sign also arise in the study of shape-memory alloys ([5]). It is

also known that solutions to GB may blow up in finite time ([10, 21]).

Let us review some of the known results on the local well-posedness (LWP) of

(1.1) in Sobolev spaces. The first result may go back to Bona and Sachs [2], who

applied Kato’s theory of quasilinear evolution equations to establish LWP for initial

data (v0, v1) in, roughly speaking, Hs(R) × Hs−2(R) with s > 5
2
. They also showed

the nonlinear stability of solitary wave solutions to (1.1) which leads to the global

existence of solutions close to a solitary wave.

Note that (1.1) is formally rewritten as

v(t) = cos(t
√
−∂2

x + ∂4
x)v0 +

sin(t
√

−∂2
x + ∂4

x)√
−∂2

x + ∂4
x

v1

+

∫ t

0

sin((t − t′)
√
−∂2

x + ∂4
x)

−∂2
x√

−∂2
x + ∂4

x

v2(t′) dt′,

(1.3)

in which the loss of two derivatives in the nonlinearity is totally recovered. Thus,

one expects that the Strichartz type inequalities are effective for lower regularities.

Linares [16] exactly did that and showed LWP of (1.1) for roughly (v0, v1) ∈ L2(R)×
H−2(R). We see that the difference of regularities between v0 and v1 is natural from

the viewpoint of the integral formulation (1.3).

Now, we recall the relation between (1.1) and quadratic nonlinear Schrödinger

equations mentioned in [15]. Consider the real-valued case for simplicity (for the

complex-valued case we refer to [15]). Putting u := v + i(1 − ∂2
x)

−1∂tv, the Cauchy

problem (1.1) transforms into{
i∂tu + ∂2

xu = 1
2
(u − ū) − 1

4
ω2(u + ū)2, (t, x) ∈ [−T, T ] × Z,

u(0, x) = u0(x),
(1.4)

where the unknown function is complex-valued and

ω2 :=
−∂2

x

1 − ∂2
x

, u0 = v0 + i(1 − ∂2
x)

−1v1.

We can recover (1.1) from (1.4) by putting v := <u, (v0, v1) := (<u0, (1 − ∂2
x)=u0).

The mappings

Hs(T; R) × Hs−2(T; R) 3 (v0, v1) 7→ u0 ∈ Hs(T; C),

C([0, T ]; Hs(T; R)) ∩ C1([0, T ]; Hs−2(T; R)) 3 v 7→ u ∈ C([0, T ]; Hs(T; C))

are bi-Lipschitz, so LWP of (1.1) in Hs × Hs−2 is equivalent to that of (1.4) in

Hs. Since the term 1
2
(u − ū) in (1.4) is harmless, the “good” Boussinesq equation

can be regarded essentially as the nonlinear Schrödinger equation with nonlinear-

ity ω2(F1(u, u) + F2(u, u) + F3(u, u)), where F1(u, v) := uv, F2(u, v) := uv̄, and

F3(u, v) := ūv̄.
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Z
Quadratic Schrödinger equations (1.5)

“Good” Boussinesq equation (1.1)
F1(u, u), F3(u, u) F2(u, u)

Bilinear estimate in Xs,b (b > 1
2
)

R s > −3
4

[11] s > −1
4

[11] s > −1
4

[7]

T s > −1
2

[11] s ≥ 0 [3] s > −1
4

[8]

Local well-posedness in Hs (in Hs × Hs−2 for (1.1))

R s ≥ −1 ∗ [1, 12] s ≥ −1
4

∗ [15] s > −1
2

[15]

T s > −1
2

[11] s ≥ 0 ∗ [3] s > −3
8

[20]

Table 1. The best known results on the local well-posedness of (1.1)

and (1.5). ∗ indicates the optimality of these results in the sense that

the data-to-solution map fails to be continuous below these regularity

thresholds.

The initial value problem of quadratic nonlinear Schrödinger equations (qNLS){
i∂tu + ∂2

xu = Fj(u, u), (t, x) ∈ [−T, T ] × Z,

u(0, x) = u0(x) ∈ Hs(Z), j = 1, 2, 3
(1.5)

has been extensively studied since Bourgain [3] introduced the Xs,b norms (see (2.2)

for the definition). When we apply the Xs,b norm method (i.e. Picard iteration

method using the Xs,b norms), LWP of (1.5) in Hs is often reduced to some bilinear

estimate in Xs,b, typically as follows:∥∥Fj(u, v)
∥∥

Xs,b−1 .
∥∥u

∥∥
Xs,b

∥∥v
∥∥

Xs,b .

(We usually take b such that 1
2

< b (< 1) to keep the Xs,b norm stronger than

L∞
t Hs

x.) Also for GB, the Xs,b norm method has provided substantial progress in low

regularity theory. See Table 1 for the best known results on the local well-posedness

of (1.1) and (1.5). The result of Fang and Grillakis [6] applied the argument of

Bourgain to the case of (1.1) on torus and proved LWP in L2, just the same as

the best regularity obtained for (1.5) with nonlinearity F2. (Results on GB should

be compared with the worst results on qNLS among Fj’s, since the nonlinearity in

(1.4) includes all of them.) Similarly, Farah [7] and Farah, Scialom [8] successfully

adapted the argument of Kenig, Ponce, Vega [11] for qNLS in the R case and the T
case, respectively, obtaining LWP in Hs × Hs−2 with s > −1

4
in both cases. These

results in [11, 7, 8] are the best that one can show by the standard iteration argument

in Xs,b, because the bilinear estimates in Xs,b (with b > 1
2
) fail if s is lower than

these thresholds.

It is worth noting the difference between (1.1) and (1.5): Concerning the bilinear

estimate, the required regularity for T is 1
4

worse than that for R in the results on

qNLS, while there is no difference in the results on GB. To explain this, we should

note that the worst nonlinear interaction which breaks the bilinear estimate in Xs,b is

of high × high → low type, i.e., the interaction of two components in high frequency

{|ξ| À 1} brings component in low frequency {|ξ| < 1}. The contribution from low

frequency is severer on torus than on R, which explains the difference of required
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regularities between R and T in the case of qNLS. However, the additional operator

ω2 in GB acts as ∂2
x in low frequency and reduces significantly (completely, in the

torus case) the low frequency component. That is why the difference becomes less

clear in GB.

Lack of the bilinear estimate in Xs,b, however, does not necessarily imply ill-

posedness of the problem. For instance, there may be a chance that one can recover

the bilinear estimate by changing function spaces. In fact, Bejenaru and Tao [1]

introduced a suitably modified Xs,b space for the problem (1.5) on R with nonlin-

earity F1, which captures the worst nonlinear interaction in this case and restores

the bilinear estimate, extending the previous result in [11] from s > −3
4

to s ≥ −1.

They also provided a general machinery to show ill-posedness, and actually obtained

the ill-posedness of this problem for s < −1. Their ideas were refined further by

the author [12] to give the same conclusion for the case of another nonlinearity F3,

and also appeared in the work of Tsugawa and the author [15] treating (1.5) with

nonlinearity F2. The idea of modifying Xs,b is also effective for GB, and the previous

LWP results for (1.1) on R was improved in [15] to s > −1
2
. On the other hand,

a different approach was recently taken by Oh and Stefanov [20] to push down the

regularity threshold for GB on T to s > −3
8
; they applied the method of normal

forms to show that the Duhamel part of the nonlinear solution is much smoother

than the free solution.

In this article, following [15], we shall perform more refined modification of the

Xs,b norms and establish the sharp LWP results for GB on both R and T. The main

result is as follows.

Theorem 1.1. Let Z be R or T. Then the initial value problem (1.4) in Hs(Z) is

locally well-posed for s ≥ −1
2

and ill-posed for s < −1
2
. More precisely, we have the

following.

(I) Let −1
4
≥ s ≥ −1

2
. Then, for any r > 0 and any u0 ∈ Hs with ‖u0‖Hs ≤ r,

there exists a solution u ∈ C([−T, T ]; Hs) to the integral equation associated to

(1.4) with the existence time T = T (r) > 0. Moreover, the solution is uniquely

obtained in some Banach space W s
T embedded continuously into C([−T, T ]; Hs), and

the data-to-solution map from
{

u0 ∈ Hs
∣∣ ‖u0‖Hs ≤ r

}
to W s

T is Lipschitz.

(II) Let s < −1
2
. Then, there exists T0 > 0 such that for any 0 < t0 ≤ T0 the

flow map of (1.4), u0 ∈ H−1/2 7→ u(t0) ∈ H−1/2 (defined in (I) for sufficiently small

data), is not continuous at the origin as a map on Hs.

Concerning (I), the definition of the function space W s
T (modification of Xs,b) for

the periodic case with s > −1
2

will be essentially the same as that for R given in [15].

Proof of the key bilinear estimate, which will be given in Section 4, is also simple,

based on some well-known estimates such as Bourgain’s L4 Strichartz estimate [3]

and the Sobolev embeddings. The limiting case s = −1
2

is much more difficult to

deal with, and we will have to refine further the definition of the function space and

exploit some estimates including gain of derivatives.
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For (II), we follow the argument in [15] which showed the ill-posedness for qNLS of

F2 type below H−1/4. This kind of argument was previously established by Bejenaru

and Tao [1] in more abstract settings, as mentioned above. They showed that one

can upgrade discontinuity of one of the Picard iterates to discontinuity of the whole

nonlinear solution map, in some special situations. It should be emphasized that, in

such situations, the LWP estimates for the limiting regularity (s = −1
2

in our case)

should be required for ill-posedness below that regularity. In fact, we will show the

discontinuity (unboundedness) of the second iterate for the problem and apply the

argument mentioned above, but it is not possible without LWP for s = −1
2
.

As a corollary of Theorem 1.1, we establish the sharp LWP and ill-posedness of

(1.1).

Corollary 1.2. Let Z be R or T. Then the initial value problem (1.1) in Hs(Z) ×
Hs−2(Z) (real- or complex-valued) is locally well-posed for s ≥ −1

2
and ill-posed for

s < −1
2
.

The paper is organized as follows. In the next section we will define the function

spaces and show the required estimates except for the bilinear estimate. Proof of

Theorem 1.1 (I) will be also given. In Section 3, we will prepare some modified

version of the L4 Strichartz estimate for periodic functions. We will give a proof of

the crucial bilinear estimate, for the case s > −1
2

in Section 4 and for the limiting

case s = −1
2

in Section 5. Finally, a proof of Theorem 1.1 (II) will be given in

Section 6. Appendix A will be devoted to the proof of some estimate which we will

use to derive the uniqueness of solutions.

2. Preliminaries

We begin with the scaling argument. When u(t, x) solves (1.4),

uλ(t, x) := λ−2u(λ−2t, λ−1x), λ > 0

solves the following rescaled initial value problem:{
i∂tu

λ + ∂2
xu

λ = 1
2
λ−2(uλ − uλ) − 1

4
ω2

λ(u
λ + uλ)2, (t, x) ∈ [−λ2T, λ2T ] × Zλ,

uλ(0, x) = uλ
0(x) ∈ Hs(Zλ)

(2.1)

with uλ
0(x) := λ−2u0(λ

−1x), where Zλ = R if Z = R and Zλ = Tλ := R/(2πλZ) if

Z = T. We have also used the notation

ω2
λ = F−1

ξ

λ2ξ2

1 + λ2ξ2
Fx.

For the torus case, we define the Fourier coefficients of a 2πλ periodic function φ in

the usual fashion as

Fxφ(k) :=
1√
2π

∫ 2πλ

0

e−ikxφ(x) dx, k ∈ Zλ := Z/λ.
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Zλ is equipped with the normalized counting measure and for f : Zλ → C,∥∥f
∥∥

`p(Zλ)
:=

( 1
λ

∑
k∈Zλ

|f(k)|p
)1/p

,∥∥φ
∥∥

Hs(Tλ)
:=

∥∥〈k〉sFxφ(k)
∥∥

`2k(Zλ)
, 〈 · 〉 := (1 + | · |2)1/2.

A simple calculation shows that if s < 0, we have∥∥uλ
0

∥∥
Hs(Zλ)

≤ λ−s−3/2
∥∥u0

∥∥
Hs(Zλ)

for λ ≥ 1. In the following, we treat 0 > s > −3
2

and construct solutions to

the rescaled problem (2.1) with λ ≥ 1 on the time interval [−1, 1] for initial data

sufficiently small in Hs(Zλ).

The Xs,b spaces for spacetime functions u(t, x) on R × Zλ is defined via the

following Xs,b norm∥∥u
∥∥

Xs,b(R×Zλ)
:=

∥∥〈ξ〉s〈τ + ξ2〉bũ
∥∥

L2
ξ(Z∗

λ;L2
τ (R))

, (2.2)

where ũ = Ft,xu denotes the spacetime Fourier transform of u and Z∗
λ = R or Zλ.

Also define the Y s spaces by ∥∥u
∥∥

Y s :=
∥∥〈ξ〉sũ∥∥

L2
ξL1

τ
.

Now, we define the space W s, which is modification of Xs,b, by the following norm∥∥u
∥∥

W s :=
∥∥P{〈τ+ξ2〉.〈ξ〉}u

∥∥
Xs,1

+
∥∥P{〈τ+ξ2〉&〈ξ〉}u

∥∥
Xs+1,0 +

∥∥P{〈τ+ξ2〉À〈ξ〉2}u
∥∥

Y s for − 1
4
≥ s > −1

2
,∥∥u

∥∥
W−1/2 :=

∥∥P{〈τ+ξ2〉.〈ξ〉}u
∥∥

X−1/2,1

+
∥∥P{〈ξ〉.〈τ+ξ2〉.〈ξ〉2}u

∥∥
X1/2,0

+
∑

M≥1 ; dyadic

∥∥P{〈τ+ξ2〉∼M}∩{〈τ+ξ2〉&〈ξ〉2}u
∥∥

X1/2,0 +
∥∥P{〈τ+ξ2〉À〈ξ〉2}u

∥∥
Y −1/2 ,

where we denote by PΩ the spacetime Fourier projection onto a set Ω ⊂ R × Z∗
λ.

Remark 2.1. In [15] we have used similar spaces defined by∥∥u
∥∥

Zs :=
∥∥P{〈τ+ξ2〉.〈ξ〉}u

∥∥
Xs,1

+
∥∥P{〈τ+ξ2〉&〈ξ〉}u

∥∥
X1/2,s+1/2 +

∥∥P{〈τ+ξ2〉À〈ξ〉2}u
∥∥

Y s , −1
4

> s > −1
2

for the nonperiodic case.

For T > 0, define the restricted space W s
T by the restrictions of distributions in

W s to (−T, T ) × Zλ, with the norm∥∥u
∥∥

W s
T

:= inf
{∥∥U

∥∥
W s

∣∣U ∈ W s is an extension of u to R × Zλ

}
.

This notation will be used for various function spaces of spacetime functions.

These spaces obey the following embeddings.

Lemma 2.2. For −1
4
≥ s ≥ −1

2
and 0 < θ ≤ 1 with (s, θ) 6= (−1

2
, 1), we have

Xs,1, Xs+θ,1−θ ∩ Y s ↪→ W s ↪→ Xs,0 ∩ Y s.
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Proof. W s ↪→ Xs,0 is trivial by the definition. For W s ↪→ Y s, it suffices to show∥∥P{〈τ+ξ2〉.N2}uN

∥∥
Y s .

∥∥P{N.〈τ+ξ2〉.N2}uN

∥∥
Xs+1,0 +

∥∥P{〈τ+ξ2〉.N}uN

∥∥
Xs,1

for each dyadic N ≥ 1, where uN := P{〈ξ〉∼N}u. This follows from the Cauchy-

Schwarz inequality as follows:∥∥P{N.〈τ+ξ2〉.N2}uN

∥∥
Y s .

(
N2

)1/2∥∥P{N.〈τ+ξ2〉N2}uN

∥∥
Xs,0

∼
∥∥P{N.〈τ+ξ2〉.N2}uN

∥∥
Xs+1,0 ,

∑
1≤M.N

∥∥P{〈τ+ξ2〉∼M}uN

∥∥
Y s .

∑
1≤M.N

M1/2
∥∥P{〈τ+ξ2〉∼M}uN

∥∥
Xs,0

.
∑

1≤M.N

M−1/2
∥∥P{〈τ+ξ2〉∼M}uN

∥∥
Xs,1 .

( ∑
M

M−1
)1/2∥∥P{〈τ+ξ2〉.N}uN

∥∥
Xs,1

.
∥∥P{〈τ+ξ2〉.N}uN

∥∥
Xs,1 .

We next consider Xs+θ,1−θ ∩Y s ↪→ W s. This immediately follows from the defini-

tion if s > −1
2
. For s = −1

2
, it suffices to observe that the Cauchy-Schwarz inequality

implies ∑
M≥1

∥∥P{〈τ+ξ2〉∼M}∩{〈τ+ξ2〉&〈ξ〉2}u
∥∥

X1/2,0

.
∑

M≥1

∥∥P{〈τ+ξ2〉∼M}∩{〈τ+ξ2〉&〈ξ〉2}u
∥∥

X−1/2+θ,(1−θ)/2

.
∑

M≥1

M−(1−θ)/2
∥∥P{〈τ+ξ2〉∼M}∩{〈τ+ξ2〉&〈ξ〉2}u

∥∥
X−1/2+θ,1−θ

.
∥∥P{〈τ+ξ2〉&〈ξ〉2}u

∥∥
X−1/2+θ,1−θ .

The above proof also works in the case of θ = 0. Then, Xs,1 ↪→ W s follows from

Xs,1 ↪→ Y s, which is easily verified by the Cauchy-Schwarz inequality in τ . ¤

The integral equation associated with the initial value problem (2.1) is

uλ(t) = eit∂2
xuλ

0 − i

∫ t

0

ei(t−t′)∂2
xF λ(t′) dt′,

where

F λ :=
1

2
λ−2(uλ − uλ) − 1

4
ω2

λ(u
λ + uλ)2.

To solve this on the interval [−1, 1], we take the same approach as [13] and consider

the following equation:

uλ(t) = ψ(t)eit∂2
xuλ

0 + IF λ(t),
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where ψ : R → [0, 1] is a smooth bump function satisfying 1[−1,1] ≤ ψ ≤ 1[−2,2] and

1Ω denotes the characteristic function of Ω,

IF λ :=
−i√
2π

ψ(t)eit∂2
xF−1

ξ

∫
R

F̃ λ(τ, ξ)ψ(τ + ξ2)
∞∑

n=1

tn

n!

[
i(τ + ξ2)

]n−1
dτ

+
i√
2π

ψ(t)eit∂2
xF−1

ξ

∫
R

F̃ λ(τ, ξ)
1 − ψ(τ + ξ2)

i(τ + ξ2)
dτ

− iF−1
τ,ξ

[
F̃ λ(τ, ξ)

1 − ψ(τ + ξ2)

i(τ + ξ2)

]
.

We observe that IF λ is actually an extension to t ∈ R of the inhomogeneous part

in the integral equation on t ∈ [−1, 1]. Note that we do not put ψ(t) on the third

term. This is due to the fact that it seems difficult to show the stability of our space

W−1/2 with respect to time localization, namely, ‖ψ(t)u‖W−1/2 . ‖u‖W−1/2 . For the

case s > −1
2
, it turns out that our space has this property, and we may consider the

usual equation

uλ(t) = ψ(t)eit∂2
xuλ

0 − iψ(t)

∫ t

0

ei(t−t′)∂2
xF λ(t′) dt′,

similarly to the nonperiodic case [15].

For convenience, we define the following spacetime Fourier multipliers

Jσ := F−1
ξ 〈ξ〉σFx, Λσ := F−1

τ,ξ 〈τ + ξ2〉σFt,x

for σ ∈ R. Homogeneous and inhomogeneous linear estimates are stated as follows.

Lemma 2.3. Let λ ≥ 1 and −1
4
≥ s ≥ −1

2
. Then the following estimates hold with

constants independent of λ.

(i)
∥∥η(t)eit∂2

xuλ
0

∥∥
W s .

∥∥η
∥∥

H1(R)

∥∥uλ
0

∥∥
Hs(Zλ)

for any η ∈ S(R).

(ii)
∥∥IF λ

∥∥
W s .

∥∥Λ−1F λ
∥∥

W s.

Proof. (i) From Lemma 2.2, we see that∥∥η(t)eit∂2
xuλ

0

∥∥
W s .

∥∥η(t)eit∂2
xuλ

0

∥∥
Xs,1 =

∥∥〈ξ〉s〈τ + ξ2〉Fη(τ + ξ2)Fuλ
0(ξ)

∥∥
L2

τ,ξ

=
∥∥ψ

∥∥
H1

∥∥uλ
0

∥∥
Hs .

(ii) For the first and the second terms in IF λ we note the support property of

ψ and apply the same argument for (i), obtaining the bound
∥∥Λ−1F λ

∥∥
Y s . This is

sufficient for the claim since W s ↪→ Y s from Lemma 2.2. The estimate for the third

term follows directly from the fact∣∣∣F̃ λ(τ, ξ)
1 − ψ(τ + ξ2)

i(τ + ξ2)

∣∣∣ . 〈τ + ξ2〉−1|F̃ λ(τ, ξ)|. ¤

As discussed in [15], linear terms in the right-hand side of (2.1) is negligible when

λ is sufficiently large. This can be seen from the following lemma.

Lemma 2.4. For λ ≥ 1 and −1
4
≥ s ≥ −1

2
, we have∥∥Λ−1uλ

∥∥
W s +

∥∥Λ−1uλ
∥∥

W s .
∥∥uλ

∥∥
W s .
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Proof. It follows from the embedding W s ↪→ Xs,0 (= ΛXs,1) ↪→ ΛW s given in

Lemma 2.2 and
∥∥uλ

∥∥
Xs,0 =

∥∥uλ
∥∥

Xs,0 . ¤
Now, we state the key bilinear estimate, which will be proved in Sections 4–5.

Proposition 2.5. Let λ ≥ 1 and −1
4
≥ s ≥ −1

2
. Then, we have∥∥Λ−1ω2

λ(u
λvλ)

∥∥
W s . Cs(λ)

∥∥uλ
∥∥

W s

∥∥vλ
∥∥

W s ,

Cs(λ) =

{
λ−2s−1/2 for − 1

4
> s ≥ −1

2
,(

log(1 + λ)
)1/2

for s = −1
4
.

If uλvλ is replaced by uλvλ or uλvλ, then the above estimate holds without Cs(λ).

Finally, we employ the argument of Muramatu and Taoka [19] to prove the unique-

ness of solutions in W s
T . This approach, also previously taken in [12, 13], is effective

especially if the resolution space is not a simple Xs,b space but modified in a com-

plicated way. Note that the simple scaling argument used in [15] to establish the

uniqueness for the nonperiodic case with s > −1
2

cannot be applied the limiting

regularity s = −1
2
.

The following proposition is the key for our argument. It was essentially proved

in [13], Lemma 4.2, employing the result of [19], Theorem 2.5. However, we will give

a complete proof in Appendix A to keep the article self-contained.

Proposition 2.6. Let Z be either Rd or Td
λ := Rd/(2πλZ)d for d ≥ 1, λ > 0.

Let s ∈ R and X s be a Banach space of functions on Rt × Zx with the following

properties:

(i) S(R × Z) is dense in X s,

(ii) Xs,b(R × Z) ↪→ X s ↪→ Ct(R; Hs(Z)) for some b > 1
2
,

(iii) Xs′,b′(R × Z) ↪→ X s for some s′ ∈ R and 1
2
≤ b′ < 1.

Suppose that a function u ∈ X s satisfies u(0, ·) = 0 in Hs(Z). Then, we have

lim
T→+0

∥∥u
∥∥
X s

T
= 0. (2.3)

From Lemma 2.2, we have Xs,1 ↪→ W s ↪→ Y s and Xs+ 1
4
, 3
4 ∩ Y s ↪→ W s. Then,

since Y s ↪→ Ct(H
s) and Xs+ 1

4
, 3
4 ↪→ Y s, we see that our space W s (−1

4
≥ s ≥ −1

2
)

satisfies the above properties (i)–(iii).

We are in a position to prove the local well-posedness for (1.4).

Proof of Theorem 1.1 (I). We only consider the case s = −1
2

for simplicity. We first

show that the map

Φλ,uλ
0

: uλ 7→ eit∂2
xuλ

0 − i

∫ t

0

ei(t−t′)∂2
xF λ(t′) dt′

associated with the rescaled problem (2.1) is a contraction on a ball in W
−1/2
1 if λ

is sufficiently large and ‖uλ
0‖H−1/2 is sufficiently small. By Lemmas 2.3, 2.4, and

Proposition 2.5, there exists C0 > 1 independent of λ such that∥∥Φλ,uλ
0
(uλ)

∥∥
W

−1/2
1

≤ C0

(∥∥uλ
0

∥∥
H−1/2 + λ−2

∥∥uλ
∥∥

W
−1/2
1

+ λ1/2
∥∥uλ

∥∥2

W
−1/2
1

)
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for uλ ∈ W
−1/2
1 and∥∥Φλ,uλ

0
(uλ) − Φλ,uλ

0
(vλ)

∥∥
W

−1/2
1

≤ C0

(
λ−2

∥∥uλ − vλ
∥∥

W
−1/2
1

+ λ1/2
(∥∥uλ

∥∥
W

−1/2
1

+
∥∥vλ

∥∥
W

−1/2
1

)∥∥uλ − vλ
∥∥

W
−1/2
1

)
for uλ, vλ ∈ W

−1/2
1 . Therefore, if λ2 ≥ λ2

0 := 4C0 and ‖uλ
0‖H−1/2 ≤ (4C0)

−2λ−1/2,

the map Φλ,uλ
0

will be a contraction on
{

uλ ∈ W
−1/2
1

∣∣ ‖uλ‖
W

−1/2
1

≤ (4C0)
−1λ−1/2

}
,

giving a solution uλ to (2.1) for this initial datum uλ
0 on the time interval [−1, 1].

Lipschitz continuity of the map uλ
0 7→ uλ is easily verified in a similar manner.

Next, consider the original problem (1.4) with initial data u0 satisfying ‖u0‖H−1/2 ≤
r. If r ≤ (4C0)

−2λ
1/2
0 , then we have ‖uλ0

0 ‖H−1/2 ≤ λ−1
0 ‖u0‖H−1/2 ≤ (4C0)

−2λ
−1/2
0 and

obtain a solution uλ0 to the λ0-rescaled problem on [−1, 1], thus obtain a solution

u to (1.4) with existence time T = λ−2
0 . If (4C0)

−2λ
1/2
0 < r =: (4C0)

−2λ(r)1/2, we

solve the λ(r)-rescaled problem on [−1, 1] in the same way to obtain a solution of

(1.4) with T = λ(r)−2.

Finally, we show the uniqueness of solution. Assume that u and v are solutions

to (1.4) with the common data u0 and the common existence time T0, and that

both of them belong to W
−1/2
T0

. Then, uλ(t, x) := λ−2u(λ−2t, λ−1x) and vλ are

solutions to the λ-rescaled problem (2.1) with initial data uλ
0(x) := λ−2u0(λ

−1x).

Applying Lemma 2.4 and Proposition 2.5 to the integral equation, it follows for

0 < T ≤ min{1, λ2T0} that∥∥uλ − vλ
∥∥

W
−1/2
T

≤ C0

(
λ−2 + λ1/2

∥∥uλ
∥∥

W
−1/2
T

+ λ1/2
∥∥vλ

∥∥
W

−1/2
T

)∥∥uλ − vλ
∥∥

W
−1/2
T

.

(2.4)

From Lemma 2.3, we see that

λ1/2
∥∥uλ

∥∥
W

−1/2
T

≤ λ1/2
∥∥uλ − eit∂2

xuλ
0

∥∥
W

−1/2
T

+ λ1/2
∥∥eit∂2

xuλ
0

∥∥
W

−1/2
T

≤ λ1/2
∥∥uλ − eit∂2

xuλ
0

∥∥
W

−1/2
T

+ Cλ−1/2
∥∥u0

∥∥
H−1/2 .

Since (uλ − eit∂2
xuλ

0)
∣∣
t=0

= 0, Proposition 2.6 implies that ‖uλ − eit∂2
xuλ

0‖W
−1/2
T

→ 0 as

T → 0. Now, for given u0 we choose λ = λ(‖u0‖H−1/2) ≥ 1 sufficiently large so that

C0λ
−2 + 2C0Cλ−1/2

∥∥u0

∥∥
H−1/2 ≤

1

4
,

and choose T = T (λ, u, v) > 0 so small that

C0λ
1/2

(∥∥uλ − eit∂2
xuλ

0

∥∥
W

−1/2
T

+
∥∥vλ − eit∂2

xuλ
0

∥∥
W

−1/2
T

)
≤ 1

4
.

Then, (2.4) yields ‖uλ − vλ‖
W

−1/2
T

= 0, so we conclude that u(t) = v(t) for −λ−2T ≤
t ≤ λ−2T . If λ−2T = T0, then the claim follows. If not, the coincidence on the whole

interval [−T0, T0] is obtained by a continuity argument. ¤
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3. Refined bilinear L4 estimates for periodic functions

In this section, we prepare some bilinear refinement of the L4 Strichartz estimate.

Let us begin with the following.

Lemma 3.1 (Bilinear L4 estimate). Let b, b′ ∈ R be such that

b > 1
4
, b′ > 1

4
, b + b′ ≥ 3

4
.

Then, we have ∥∥uv
∥∥

L2
t,x(R×Zλ)

.
∥∥u

∥∥
X0,b

∥∥v
∥∥

X0,b′ .

In left-hand side, uv can be replaced by ūv̄ or uv̄.

If we take b = b′ = 3
8
, then Lemma 3.1 becomes equivalent to the well-known L4

estimate of Bourgain [3] stated as ‖u‖L4
t,x

. ‖u‖X0,3/8 . In fact, we will always use it

with b = b′ = 3
8

in this article. We give a proof in the following, but a similar proof

can be found in [22], Proposition 2.13.

Proof. For a dyadic number M ≥ 1, we write uM to denote the restriction of u to

the frequency dyadic region
{

(τ, ξ) ∈ R×Z∗
λ

∣∣ 〈τ + ξ2〉 ∼ M
}
. Then, the Plancherel

theorem and the triangle inequality imply∥∥uv
∥∥

L2
t,x

≤
∑

M1,M2≥1

∥∥uM1vM2

∥∥
L2

t,x

∼
∑

M1,M2≥1

(∫
R×Z∗

λ

∣∣∣∣∫
R×Z∗

λ

ũM1(τ1, ξ1)ṽM2(τ − τ1, ξ − ξ1) dτ1dξ1

∣∣∣∣2 dτdξ

)1/2

.

(If Z∗
λ = Zλ,

∫
R×Z∗

λ
f(τ, ξ)dτdξ means 1

λ

∑
k∈Zλ

∫
R f(τ, k)dτ .) By Cauchy-Schwarz in-

equality in (τ1, ξ1), this is bounded by∑
M1,M2≥1

(
sup

(τ,ξ)∈R×Z∗
λ

∫{
〈τ1+ξ2

1〉∼M1

〈τ−τ1+(ξ−ξ1)2〉∼M2

} dτ1dξ1

)1/2∥∥ũM1

∥∥
L2

τ,ξ

∥∥ṽM2

∥∥
L2

τ,ξ

.

Let us estimate the integral. The quantity

(τ1 + ξ2
1) + (τ − τ1 + (ξ − ξ1)

2) = τ + ξ2

2
+ 1

2
(ξ − 2ξ1)

2 (3.1)

is bounded by max{M1, M2} whenever (τ1, ξ1) is in the integral domain. This

implies that, for fixed (τ, ξ), ξ1 is restricted to at most two intervals of measure

O(max{M1, M2}1/2). On the other hand, if we also fix ξ1, then τ1 is restricted to a

set with its measure O(min{M1,M2}), so we obtain∑
M1,M2≥1

max{M1,M2}1/4 min{M1,M2}1/2
∥∥ũM1

∥∥
L2

τ,ξ

∥∥ṽM2

∥∥
L2

τ,ξ

as a bound of ‖uv‖L2
x,t

.

We may restrict our attention to the case M1 ≥ M2 by symmetry and estimate∑
M,M ′≥1

(MM ′)1/4 · M1/2
∥∥ũMM ′

∥∥
L2

τ,ξ

∥∥ṽM

∥∥
L2

τ,ξ

=
∑

M ′≥1

M ′(1/4−b)
∑

M≥1 M3/4−b−b′
(
(MM ′)b

∥∥ũMM ′
∥∥

L2
τ,ξ

)(
M b′

∥∥ṽM

∥∥
L2

τ,ξ

)
.
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Applying Cauchy-Schwarz inequality in M and then summing over M ′, we finish

the proof. ¤

The following Lemmas 3.2–3.5 are modified bilinear L4 estimates for periodic

case which provide 1
2

gain of regularity. These estimates should be of independent

interest; compare them to Lemma 3.1, which has no regularity gain.

This type of smoothing effect is well known in the nonperiodic case. For instance,

we can show that∥∥ ∫∫
R2

〈ξ1 − (ξ − ξ1)〉1/2ũ(τ1, ξ1)ṽ(τ − τ1, ξ − ξ1) dτ1dξ1

∥∥
L2

τ,ξ(R2)
.

∥∥u
∥∥

X0,b

∥∥v
∥∥

X0,b

for b > 1
2

(see e.g. Corollary 2.3 in [9]). In the periodic setting, such a ‘dispersive

smoothing effect’ is not available in general. However, we can still capture the same

type of smoothing effect if functions are restricted out of an ‘exceptional’ frequency

region. On the other hand, there seems to be no way to gain regularity with respect

to x in this exceptional region, but such region is sufficiently small so that we can

gain enough regularity with respect to t. Even in the periodic case, these refined

estimates enable us to make arguments close to those for the nonperiodic problem.

Estimates of similar spirit are found in the paper by Molinet ([17], Lemma 3.4),

who treated the KdV and the modified KdV equations. See also a result of the author

([14], Lemma 2.5) for higher dimensional cases. The feature of our estimates is that

we specify ‘exceptional’ frequency set where the dispersive smoothing vanishes, and

separate it from unexceptional region in the estimates.

Lemma 3.2. Let λ ≥ 1 and

Γ1 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ ∣∣∣k1 − (k − k1) +

√
2(−τ − 1

2
k2)

∣∣∣ ≤ λ−1

or
∣∣∣k1 − (k − k1) −

√
2(−τ − 1

2
k2)

∣∣∣ ≤ λ−1
}
.

Then, we have∥∥ 1
λ

∑
k1∈Zλ

∫
R
〈k1 − (k − k1)〉1/21A1∩Γc

1
(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ − τ1, k − k1) dτ1

∥∥
`2kL2

τ

. M
1/2
1 M

1/2
2

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

, (3.2)∥∥ 1
λ

∑
k1∈Zλ

∫
R
1A1∩Γ1(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ − τ1, k − k1) dτ1

∥∥
`2kL2

τ

. λ−1/2 min{M1/2
1 , M

1/2
2 }

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

, (3.3)

where M1,M2 ≥ 1 are dyadic numbers and

A1 :=
{

(τ, k, τ1, k1)
∣∣ 〈τ1 + k2

1〉 . M1 and 〈(τ − τ1) + (k − k1)
2〉 . M2

}
.

Proof. Similarly to the proof of Lemma 3.1, (3.2) and (3.3) are reduced to the

estimates

sup
(τ,k)∈R×Zλ

1
λ

∑
k1∈Zλ

∫
R
〈k1 − (k − k1)〉1A1∩Γc

1
(τ, k, τ1, k1) dτ1 . M1M2 (3.4)
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and

sup
(τ,k)∈R×Zλ

1
λ

∑
k1∈Zλ

∫
R
1A1∩Γ1(τ, k, τ1, k1) dτ1 . λ−1 min{M1, M2}, (3.5)

respectively.

We fix (τ, k) and exploit the identity (3.1) again. In A1 ∩ Γc
1, it follows that

O(max{M1, M2}) =
∣∣(k1 − (k − k1))

2 + 2(τ + 1
2
k2)

∣∣
≥ λ−1 max{

∣∣∣k1 − (k − k1) +
√

2(−τ − 1
2
k2)

∣∣∣, ∣∣∣k1 − (k − k1) −
√

2(−τ − 1
2
k2)

∣∣∣}
≥ λ−1

∣∣τ + 1
2
k2

∣∣1/2
.

Consider the following two cases.

(i) max{M1, M2} & |τ + 1
2
k2|. In this case, (k1 − (k − k1))

2 is bounded by

O(max{M1, M2}), so we have

1
λ

∑
k1∈Zλ

∫
R
〈k1 − (k − k1)〉1A1∩Γc

1
(τ, k, τ1, k1) dτ1

. min{M1, M2}
1
λ

∑
k1∈Zλ; (k1−(k−k1))2

=O(max{M1, M2})

〈k1 − (k − k1)〉

. min{M1, M2}max{M1, M2} = M1M2.

This proves (3.4).

(ii) λ−1|τ + 1
2
k2|1/2 . max{M1, M2} ¿ |τ + 1

2
k2|. We may assume τ + 1

2
k2 < 0.

It follows that

|k1 − (k − k1)| = |2(τ + 1
2
k2)|1/2 + O(|τ + 1

2
k2|−1/2 max{M1, M2}).

Since |τ + 1
2
k2|−1/2 max{M1, M2} & λ−1, the number of k1 ∈ Zλ satisfying the above

condition is comparable to λ|τ + 1
2
k2|−1/2 max{M1, M2}, and such a k1 satisfies

|k1 − (k − k1)| ∼ |τ + 1
2
k2|1/2. Hence, we obtain the same bound, and then (3.4).

For (3.5), it is sufficient to observe that Γ1 contains only an O(1)-number of k1’s

for each (τ, k). ¤

Lemma 3.3. Let λ ≥ 1 and

Γ2 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ ∣∣τ − k2 + 2kk1

∣∣ ≤ λ−1|k|
}
.

Then, we have∥∥|k|1/2 1
λ

∑
k1∈Zλ

∫
R
1A2∩Γc

2
(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ1 − τ, k1 − k) dτ1

∥∥
`2kL2

τ

. M
1/2
1 M

1/2
2

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

, (3.6)∥∥ 1
λ

∑
k1∈Zλ

∫
R
1A2∩Γ2(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ1 − τ, k1 − k) dτ1

∥∥
`2kL2

τ

. λ−1/2 min{M1/2
1 , M

1/2
2 }

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

, (3.7)
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where M1,M2 ≥ 1 are dyadic numbers and

A2 :=
{

(τ, k, τ1, k1)
∣∣ 〈τ1 + k2

1〉 . M1 and 〈(τ1 − τ) + (k1 − k)2〉 . M2

}
.

Proof. We may consider only the case of k 6= 0 in the left-hand side of (3.6) and

(3.7); otherwise, they are trivial. As before, it suffices to show

sup
(τ,k)∈R×Zλ

|k| 1
λ

∑
k1∈Zλ

∫
R
1A2∩Γc

2
(τ, k, τ1, k1) dτ1 . M1M2 (3.8)

and

sup
(τ,k)∈R×Zλ

1
λ

∑
k1∈Zλ

∫
R
1A2∩Γ2(τ, k, τ1, k1) dτ1 . λ−1 min{M1, M2}. (3.9)

Following the proof of Lemma 3.2 and using the identity

(τ1 + k2
1) − (τ1 − τ + (k1 − k)2) = τ − k2 + 2kk1

instead of (3.1), we see that

k1 =
τ − k2

−2k
+ O(

max{M1,M2}
|k|

),

which yields (3.8). Eq. (3.9) also follows similarly to (3.5) in the proof of Lemma 3.2.

¤

Lemma 3.4. Let λ ≥ 1 and

∆1 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ ∣∣τ1 − k2

1 + 2k1k
∣∣ ≤ λ−1|k1|

}
.

Then, we have∥∥ 1
λ

∑
k1∈Zλ

∫
R
|k1|1/21B1∩∆c

1
(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ − τ1, k − k1) dτ1

∥∥
`2kL2

τ

. M1/2M
1/2
2

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

,∥∥ 1
λ

∑
k1∈Zλ

∫
R
1B1∩∆1(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ − τ1, k − k1) dτ1

∥∥
`2kL2

τ

. λ−1/2 min{M1/2, M
1/2
2 }

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

,

where M,M2 ≥ 1 are dyadic numbers and

B1 :=
{

(τ, k, τ1, k1)
∣∣ 〈τ + k2〉 . M and 〈(τ − τ1) + (k − k1)

2〉 . M2

}
.

Proof. The claim comes down to Lemma 3.3 through a duality argument. ¤

Lemma 3.5. Let λ ≥ 1 and

∆2 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ ∣∣∣k − (k1 − k) +

√
2(−τ1 − 1

2
k2

1)
∣∣∣ ≤ λ−1

or
∣∣∣k − (k1 − k) −

√
2(−τ1 − 1

2
k2

1)
∣∣∣ ≤ λ−1

}
.
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Then, we have∥∥ 1
λ

∑
k1∈Zλ

∫
R
〈k − (k1 − k)〉1/21B2∩∆c

2
(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ1 − τ, k1 − k) dτ1

∥∥
`2kL2

τ

. M1/2M
1/2
2

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

,∥∥ 1
λ

∑
k1∈Zλ

∫
R
1B2∩∆2(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ1 − τ, k1 − k) dτ1

∥∥
`2kL2

τ

. λ−1/2 min{M1/2, M
1/2
2 }

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

,

where M,M2 ≥ 1 are dyadic numbers and

B2 :=
{

(τ, k, τ1, k1)
∣∣ 〈τ + k2〉 . M and 〈(τ1 − τ) + (k1 − k)2〉 . M2

}
.

Proof. Again by duality, the claim is reduced to Lemma 3.2. ¤

Lemmas 3.2–3.5 can be regarded as the extension of the following nonperiodic

modified bilinear L4 estimates. We note that the above estimates for 2πλ periodic

functions contain λ as a parameter and formally converge to the corresponding

estimates stated below as λ → ∞. The argument in the proof of Lemmas 3.2–3.5

can be naturally adjusted to the nonperiodic case, so we will omit the proof.

Lemma 3.6. The sets A1, A2, B1, and B2 are the same as in Lemmas 3.2–3.5.

Then, we have the following estimates for spacetime functions u, v on R × R,∥∥∫
R2

〈ξ1 − (ξ − ξ1)〉1/21A1(τ, ξ, τ1, ξ1)ũ(τ1, ξ1)ṽ(τ − τ1, ξ − ξ1) dτ1dξ1

∥∥
L2

τ,ξ

+
∥∥|ξ|1/2

∫
R2

1A2(τ, ξ, τ1, ξ1)ũ(τ1, ξ1)ṽ(τ1 − τ, ξ1 − ξ) dτ1dξ1

∥∥
L2

τ,ξ

. M
1/2
1 M

1/2
2

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

,

∥∥∫
R2

|ξ1|1/21B1(τ, ξ, τ1, ξ1)ũ(τ1, ξ1)ṽ(τ − τ1, ξ − ξ1) dτ1dξ1

∥∥
L2

τ,ξ

+
∥∥∫

R2

〈ξ − (ξ1 − ξ)〉1/21B2(τ, ξ, τ1, ξ1)ũ(τ1, ξ1)ṽ(τ1 − τ, ξ1 − ξ) dτ1dξ1

∥∥
L2

τ,ξ

. M1/2M
1/2
2

∥∥u
∥∥

L2
t,x

∥∥v
∥∥

L2
t,x

.

4. Bilinear estimate for s > −1
2

In the case of s > −1
2
, Proposition 2.5 can be established by the Hölder, the

Young inequalities and Bourgain’s L4 estimate (Lemma 3.1). Hence, in the most

part of the proof there is no difference between the periodic and the nonperiodic

cases. We will concentrate on the case of T, and the same argument gives another

proof of LWP on R obtained in [15] (see also Remark 4.1 below).
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Proof of Proposition 2.5 for s > −1
2
. We show only the estimate for uv̄; the other

cases are treated similarly, as to be mentioned at the last part of the proof.

For a set Ω ⊂ (R × Zλ)
2, define a bilinear operator (u, v) 7→ BΩ(u, v) by

B̃Ω(u, v)(τ, k) :=
1
2π

1
λ

∑
k1∈Zλ

∫
R
1Ω(τ, k, τ1, k1)ũ(τ1, k1)˜̄v(τ − τ1, k − k1) dτ1

=
1
2π

1
λ

∑
k1∈Zλ

∫
R
1Ω(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ1 − τ, k1 − k) dτ1.

Note that B(R×Zλ)2(u, v) = uv̄.

First of all, we assume ũ, ṽ ≥ 0 without loss of generality. Since ω2
λ acts as P{k 6=0},

we can decompose the domain of integral as ω̃2
λ(uv̄) ≤

4∑
j=0

˜BΩj
(u, v),

Ω0 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ |k1| . 1 or |k1 − k| . 1

}
,

Ω1 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ 1 . |k1| . |k1 − k| ∼ |k|

}
,

Ω2 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ 1 . |k1 − k| . |k1| ∼ |k|

}
,

Ω3 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣ 1 . |k| ¿ |k1| ∼ |k1 − k|

}
,

Ω4 :=
{

(τ, k, τ1, k1) ∈ (R × Zλ)
2
∣∣λ−1 ≤ |k| ≤ 1 ¿ |k1| ∼ |k1 − k|

}
.

In the following, we will show that

3∑
j=0

∥∥Λ−1BΩj
(u, v)

∥∥
W s .

∥∥u
∥∥

W s

∥∥v
∥∥

W s ,∥∥Λ−1BΩ4(u, v)
∥∥

W s . Cs(λ)
∥∥u

∥∥
W s

∥∥v
∥∥

W s .

Estimate in Ω0

In the region |k1| . 1, for example, we note that 〈k〉 ∼ 〈k1 − k〉 and apply the

Young inequality. Also note that we may estimate the Xs,0 norm of BΩ0(u, v) with

the aid of Lemma 2.2. We have∥∥BΩ0(u, v)
∥∥

Xs,0 ∼
∥∥Ft,xBΩ0(u, Jsv)

∥∥
`2L2

.
∥∥Ft,xP{|k|.1}u

∥∥
`1L2

∥∥J̃sv
∥∥

`2L1 .
∥∥u

∥∥
Xs,0

∥∥v
∥∥

Y s .

The case of |k1 − k| . 1 is treated in the same manner.

For the remaining cases, the algebraic relation

L1 := max{|τ + k2|, |τ1 + k2
1|, |(τ1 − τ) + (k1 − k)2|}

≥
∣∣(τ + k2) − (τ1 + k2

1) + ((τ1 − τ) + (k1 − k)2)
∣∣/3 = 2|k||k1 − k|/3

(4.1)

will play an essential role.

Estimate in Ω2

Recall that 〈k〉 ∼ 〈k1〉 in this region. Consider three subregions

Ω21 :=
{

(τ, k, τ1, k1) ∈ Ω2

∣∣ |τ1 + k2
1| & |k1|

}
,

Ω22 :=
{

(τ, k, τ1, k1) ∈ Ω2

∣∣ |(τ1 − τ) + (k1 − k)2| & |k1 − k|
}
,

Ω23 := Ω2 \ (Ω21 ∪ Ω22)
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separately. In Ω21, we may measure u in Xs+1,0. Following the argument for Ω0 we

obtain the upper bound ∥∥BΩ21(u, v)
∥∥

Xs,0 .
∥∥ũ

∥∥
`1L2

∥∥v
∥∥

Y s .

Since s + 1 > 1
2
, we have ‖ũ‖`1L2 . ‖u‖Xs+1,0 by the Cauchy-Schwarz inequality in

k. The estimate in Ω22 is the same.

In Ω23, the relation (4.1) implies that 〈τ + k2〉 ∼ L1 ∼ 〈k〉〈k1 − k〉 (. 〈k〉2), so

we have

FΛ−1BΩ23(u, v) . FBΩ23(J
−1u, J−1v).

Also, we may estimate the Xs+1,0 norm of Λ−1BΩ23(u, v) by the Xs,1 norm of u and

v. We use Lemma 3.1 to obtain∥∥J−1uJ−1v
∥∥

Xs+1,0 ∼
∥∥JsuJ−1v

∥∥
L2

t,x
.

∥∥u
∥∥

Xs,3/8

∥∥v
∥∥

X−1,3/8 ,

which is an appropriate bound.

Estimate in Ω1

The argument for this case is parallel to that for Ω2.

Estimate in Ω3

Recall that 〈k1〉 ∼ 〈k1 − k〉. Consider three subregions

Ω31 :=
{

(τ, k, τ1, k1) ∈ Ω3

∣∣ |τ1 + k2
1| & |k1|

}
,

Ω32 :=
{

(τ, k, τ1, k1) ∈ Ω3

∣∣ |(τ1 − τ) + (k1 − k)2| & |k1 − k|
}
,

Ω33 := Ω3 \ (Ω31 ∪ Ω32)

separately.

See the estimate for Ω31 first. We may measure u in Xs+1,0. Since 0 > s > −1
2
,

we can choose 1 < q < 2 < p < ∞ such that

−s >
1
2
− 1

p
, 1 +

1
p

=
1
q

+
1
2
, 2s + 1 >

1
q
− 1

2
.

For such (p, q), the Hölder inequality, followed by the Young and again the Hölder,

implies that∥∥BΩ31(u, v)
∥∥

Xs,0 .
∥∥FBΩ31(J

−su, Jsv)
∥∥

`pL2 .
∥∥FJ−2s−1Js+1u

∥∥
`qL2

∥∥J̃sv
∥∥

`2L1

.
∥∥u

∥∥
Xs+1,0

∥∥v
∥∥

Y s .

The case of Ω32 is almost identical.

Now, consider Ω33, where we again have 〈τ + k2〉 ∼ 〈k〉〈k1 − k〉 from (4.1). We

may measure u and v in Xs,1 or Y s. Using Lemma 3.1 we obtain∥∥BΩ33(u, v)
∥∥

Xs+1,−1 .
∥∥J−1/2uJ−1/2v

∥∥
Xs,0 .

∥∥u
∥∥

X−1/2,3/8

∥∥v
∥∥

X−1/2,3/8 ,

while an application of the Hölder inequality implies∥∥Λ−1BΩ33(u, v)
∥∥

Y s ∼
∥∥BΩ33(J

−1/2u, J−1/2v)
∥∥

Y s−1 .
∥∥F(J−1/2uJ−1/2v)

∥∥
`∞L1 ,

which is evaluated by ‖u‖Y −1/2‖v‖Y −1/2 from the Young inequality.

Estimate in Ω4
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This is the worst case where the loss of Cs(λ) occurs. We claim that∥∥Λ−1P{|k|∼N}BΩ4(u, v)
∥∥

W s . N2s+1/2
∥∥u

∥∥
W s

∥∥v
∥∥

W s (4.2)

for dyadic N ∈ [λ−1, 1]. The desired estimate will follow by squaring (4.2) and

summing over N .

Fix N . We imitate the argument for Ω3 and divide Ω4 into five subregions

Ω41 :=
{

(τ, k, τ1, k1) ∈ Ω4

∣∣ |τ1 + k2
1| & |k1|

}
,

Ω′
41 :=

{
(τ, k, τ1, k1) ∈ Ω4

∣∣ |k1| & |τ1 + k2
1| & N |k1|

}
,

Ω42 :=
{

(τ, k, τ1, k1) ∈ Ω4

∣∣ |(τ1 − τ) + (k1 − k)2| & |k1 − k|
}
,

Ω′
42 :=

{
(τ, k, τ1, k1) ∈ Ω4

∣∣ |k1 − k| & |(τ1 − τ) + (k1 − k)2| & N |k1 − k|
}
,

Ω43 := Ω4 \ (Ω41 ∪ Ω′
41 ∪ Ω42 ∪ Ω′

42).

In the region Ω41 or Ω′
41, we first use the Hölder inequality in k to have∥∥P{|k|∼N}(uv̄)

∥∥
Xs,0 ∼

∥∥P{|k|∼N}(J
−suJsv)

∥∥
X0,0 . N1/2

∥∥FP{|k|∼N}(J
−suJsv)

∥∥
`∞L2 ,

and then apply the Young to obtain the bound N1/2‖u‖X−s,0‖v‖Y s . Since N2s ≥ 1

and s + 1 > −s, this is sufficient for the estimate in Ω41 where we may measure u

in Xs+1,0. In Ω′
41, where u should be evaluated in Xs,1, we have∥∥P{〈τ+k2〉&N〈k〉}u

∥∥
X−s,0 . N2s

∥∥u
∥∥

Xs,−2s ,

and conclude (4.2). We employ the same argument for Ω42 and Ω′
42.

In Ω43 we take a similar way, but now the relation (4.1) implies that 〈τ + k2〉 ≥
|τ + k2| ∼ N |k1| ∼ N〈k1〉. The estimate of the Xs+1,0 norm is∥∥P{|k|∼N}BΩ43(u, v)

∥∥
Xs+1,−1 . N1/2

∥∥FΛ−1P{|k|∼N}BΩ43(u, v)
∥∥

`∞L2

. N1/2N2s
∥∥FΛ−1−2s(JsuJsv)

∥∥
`∞L2 . N1/2N2s

∥∥u
∥∥

Xs,0

∥∥v
∥∥

Y s .

The Y s norm can be treated similarly and estimated by N1/2N2s‖u‖Y s‖v‖Y s , there-

fore (4.2) also follows in this case.

All the above argument works in the case of uv and ūv̄ with some trivial modifi-

cation. We use the algebraic relation

L2 := max{|τ + k2|, |τ1 + k2
1|, |(τ − τ1) + (k − k1)

2|}
≥

∣∣(τ + k2) − (τ1 + k2
1) − ((τ − τ1) + (k − k1)

2)
∣∣/3 = 2|k1||k − k1|/3

(4.3)

for the uv case and

L3 := max{|τ + k2|, | − τ1 + k2
1|, |(τ1 − τ) + (k1 − k)2|}

≥
∣∣(τ + k2) + (−τ1 + k2

1) + ((τ1 − τ) + (k1 − k)2)
∣∣/3 = (k2 + k2

1 + (k1 − k)2)/3

(4.4)

for the ūv̄ case instead of (4.1). The bilinear operator BΩ(u, v) is also replaced by

B̃′
Ω(u, v)(τ, k) :=

1
2π

1
λ

∑
k1∈Zλ

∫
R
1Ω(τ, k, τ1, k1)ũ(τ1, k1)ṽ(τ − τ1, k − k1) dτ1
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for uv and

B̃′′
Ω(u, v)(τ, k) :=

1
2π

1
λ

∑
k1∈Zλ

∫
R
1Ω(τ, k, τ1, k1)˜̄u(τ1, k1)˜̄v(τ − τ1, k − k1) dτ1

=
1
2π

1
λ

∑
k1∈Zλ

∫
R
1Ω(τ, k, τ1, k1)ũ(−τ1,−k1)ṽ(τ1 − τ, k1 − k) dτ1

for ūv̄. In fact, situation is much better than the case of uv̄ and there is no loss in

λ from the region |k| ≤ 1 (there is no need for separating Ω3 and Ω4). ¤

Remark 4.1. Concerning the bilinear estimate for the nonperiodic case, the only

difference from the above proof appears in the estimate inside Ω4; we also have to

consider the case |ξ| < λ−1. We still have (4.2) for dyadic numbers N < λ−1. Then,

noting that ω2
λ ∼ λ2N2 for frequencies |ξ| ∼ N < λ−1, we have∥∥Λ−1P{|k|∼N}ω

2
λBΩ4(u, v)

∥∥
W s . λ2N2s+5/2

∥∥u
∥∥

W s

∥∥v
∥∥

W s .

Since 2s + 5
2

> 0, we can sum up over 0 < N < λ−1 and reach the conclusion.

5. Bilinear estimate for s = −1
2

If we try to apply the above proof of Proposition 2.5 to the case of s = −1
2
, the

logarithmic divergences will occur in several parts of the proof. To overcome these

divergences, we shall exploit modified bilinear L4 estimates (Lemmas 3.2–3.5) which

provide 1
2

gain of regularity.

Again, we will focus on the case of Tλ; the nonperiodic case is easier to treat,

and it suffices to use Lemma 3.6 instead of Lemmas 3.2–3.5 and then modify the

estimate in low frequency (see Remark 4.1).

Proof of Proposition 2.5 for s = −1
2
. We first establish the bilinear estimate for uv̄

by modifying the proof for the case of s > −1
2
. Notations are the same as before.

Estimate in Ω0

The previous proof works also in the present case.

Estimate in Ω2

Recall the previous division

Ω21 :=
{

(τ, k, τ1, k1) ∈ Ω2

∣∣ |τ1 + k2
1| & |k1|

}
,

Ω22 :=
{

(τ, k, τ1, k1) ∈ Ω2

∣∣ |(τ1 − τ) + (k1 − k)2| & |k1 − k|
}
,

Ω23 := Ω2 \ (Ω21 ∪ Ω22).

We first see that the estimate in Ω23 is completely the same as before. Observe

that 〈k〉 . 〈τ + k2〉 ∼ 〈k〉〈k1 − k〉 . 〈k〉2 in this region and uv̄ is estimated in

X1/2,−1.

In Ω21, the same proof is not applicable because of the criticality. However, since

〈k〉 ∼ 〈k1〉 in this case, it suffices to show∥∥BΩ21(uN , v)
∥∥

X−1/2,0 .
∥∥uN

∥∥
X1/2,0

∥∥v
∥∥

Y −1/2
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for each dyadic N ≥ 1, where uN := P{〈k〉∼N}u. In fact, if we show this, then it

follows that∥∥BΩ21(u, v)
∥∥2

X−1/2,0 ∼
∑

N≥1

∥∥P{〈k〉∼N}BΩ21(u, v)
∥∥2

X−1/2,0

.
∑

N≥1

∥∥BΩ21(uN , v)
∥∥2

X−1/2,0 .
∑

N≥1

∥∥uN

∥∥2

X1/2,0 ·
∥∥v

∥∥2

Y −1/2 ∼
∥∥u

∥∥2

X1/2,0

∥∥v
∥∥2

Y −1/2 ,

which is the desired estimate. Since the Cauchy-Schwarz inequality implies

‖ũN‖`1L2 . N1/2‖ũN‖`2L2 ∼ ‖uN‖X1/2,0 ,

the argument for s > −1
2

is now applicable.

The case of Ω22 needs a little more attention, since we cannot decompose v into

dyadic pieces as above. We now assume by the previous case that 〈τ1 + k2
1〉 ¿ 〈k1〉,

thus u should be measured in X−1/2,1.

Consider the following three subsets of Ω22:

Ω22a := Ω22 ∩ {〈τ1 + k2
1〉 ¿ 〈k1〉, 〈k1 − k〉 . 〈τ1 − τ + (k1 − k)2〉 ¿ 〈k〉〈k1 − k〉},

Ω22b := Ω22 ∩ {〈τ1 + k2
1〉 ¿ 〈k1〉, 〈τ1 − τ + (k1 − k)2〉 ∼ 〈k〉〈k1 − k〉},

Ω22c := Ω22 ∩ {〈τ1 + k2
1〉 ¿ 〈k1〉, 〈τ1 − τ + (k1 − k)2〉 À 〈k〉〈k1 − k〉}.

Then, the W−1/2 norm of v is bounded from below by ‖v‖X1/2,0 in Ω22a and compa-

rable to ∑
M2≥1

∥∥vM2

∥∥
X1/2,0 +

∥∥v
∥∥

Y −1/2

in Ω22b ∪ Ω22c, where M2 is dyadic and vM2 := P{〈τ+k2〉∼M2}v.

The estimate in Ω22a is similar to that for Ω23. In fact, it also holds that 〈τ + k2〉 ∼
〈k〉〈k1 − k〉. Then, the X1/2,−1 norm of BΩ22a(u, v) is bounded by ‖J−1/2uJ−1v‖L2

t,x

similarly, which is in turn estimated with the Young inequality as∥∥J̃−1/2u
∥∥

`2L1

∥∥J̃−1v
∥∥

`1L2 .
∥∥u

∥∥
Y −1/2

∥∥v
∥∥

X−1/2+ε,0

for any ε > 0.

For Ω22b, we will use Lemma 3.3, one of modified versions of Lemma 3.1 stated in

the beginning of this section. It suffices to evaluate the X−1/2,0 norm of BΩ22b
(u, v)

in the following way:∥∥BΩ22b
(uN , v)

∥∥
X−1/2,0 .

∥∥uN

∥∥
X−1/2,1

∑
M2≥1

∥∥vM2

∥∥
X1/2,0

for any dyadic N ≥ 1.

In the region Ω22b ∩ Γc
2, we decompose u and v into dyadic frequency pieces in

τ + k2 and apply Lemma 3.3 to each one, obtaining∥∥BΩ22b∩Γc
2
(uN , v)

∥∥
X−1/2,0 . N−1/2

∑
M1≥1

∑
M2≥1

∥∥BΩ22b∩Γc
2
(P{〈τ+k2〉∼M1}uN , vM2)

∥∥
L2

t,x

. N−1
∑

M1≥1

∑
M2≥1

M
1/2
1 M

1/2
2

∥∥P{〈τ+k2〉∼M1}uN

∥∥
L2

t,x

∥∥P{N〈k〉∼M2}vM2

∥∥
L2

t,x
.
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From the Cauchy-Schwarz inequality, we see that

N−1/2
∑

M1≥1

M
1/2
1

∥∥P{〈τ+k2〉∼M1}uN

∥∥
L2

t,x

.
( ∑

M1≥1

M−1
1

)1/2( ∑
M1≥1

N−1M2
1

∥∥P{〈τ+k2〉∼M1}uN

∥∥2

L2
t,x

)1/2

∼
∥∥uN

∥∥
X−1/2,1 ,

while we have

N−1/2
∑

M2≥1

M
1/2
2

∥∥P{N〈k〉∼M2}vM2

∥∥
L2

t,x
.

∑
M2≥1

∥∥vM2

∥∥
X1/2,0 ,

which concludes the estimate.

In Ω22b ∩ Γ2, we decompose only u and apply Lemma 3.3, then∥∥BΩ22b∩Γ2(uN , v)
∥∥

X−1/2,0 . N−1/2
∑

M1≥1

∥∥BΩ22b∩Γ2(P{〈τ+k2〉∼M1}uN , v)
∥∥

L2
t,x

. λ−1/2N−1/2
∑

M1≥1

M
1/2
1

∥∥P{〈τ+k2〉∼M1}uN

∥∥
L2

t,x
·
∥∥v

∥∥
L2

t,x
.

∥∥uN

∥∥
X−1/2,1

∥∥v
∥∥

X1/2,0 ,

as desired. (Since ṽ is restricted to the region 〈τ + k2〉 ∼ N〈k〉, we can apply the

second estimate of Lemma 3.3 with M2 = N2. However, we see from the proof of

Lemma 3.3 that such restriction is actually not needed.)

Remark 5.1. Since 〈τ1 − τ + (k1 − k)2〉 ∼ L1 is the biggest in Ω22b, it seems natural

to apply Lemma 3.4 (with u and v replaced by v̄ and u, respectively) rather than

Lemma 3.3. However, Lemma 3.4 will provide only |k1 − k|1/2 gain of regularity,

which is not enough in this case. We have used Lemma 3.3 to obtain N1/2 gain

of regularity, but then we need a little stronger structure than the simple X1/2,0

in order to sum up the dyadic frequency pieces in the estimate without any loss

of regularity. It is only here that such ‘`1-Besov’ structure in the W−1/2 norm is

essentially needed.

Finally, we treat Ω22c. It holds from (4.1) that 〈τ1 − τ + (k1 − k)2〉 ∼ 〈τ + k2〉 À
〈k〉〈k1 − k〉, which implies

FΛ−1BΩ22c(u, v) ¿ FBΩ22c(J
−1u, J−1v),

similarly to the case of Ω23. It is then enough to evaluate∑
M≥1

∥∥P{〈τ+k2〉∼M}BΩ22c(u, v)
∥∥

X1/2,−1 +
∥∥Λ−1BΩ22c(u, v)

∥∥
Y −1/2

.
∑

M≥1

∥∥BΩ22c(J
−1/2u, J−1P{〈τ+k2〉∼M}v)

∥∥
X0,0 +

∥∥FBΩ22c(J
−3/2u, J−1v)

∥∥
`2L1 .

Applying the Young and the Hölder inequalities to each term, we have the bound∥∥J̃−1/2u
∥∥

`2L1

∑
M≥1

∥∥FJ−1P{〈τ+k2〉∼M}v
∥∥

`1L2 +
∥∥J̃−3/2u

∥∥
`1L1

∥∥J̃−1v
∥∥

`2L1

.
∥∥u

∥∥
Y −1/2

∑
M≥1

∥∥P{〈τ+k2〉∼M}v
∥∥

X−1/2+ε,0 +
∥∥u

∥∥
Y −1+ε

∥∥v
∥∥

Y −1

for any ε > 0, which easily implies the claim.

Estimate in Ω1
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Now |k1 − k| is comparable to |k|, and |k1| can be very small. If we consider a

similar decomposition

Ω11 :=
{

(τ, k, τ1, k1) ∈ Ω1

∣∣ |τ1 − τ + (k1 − k)2| & |k1 − k|
}
,

Ω12 :=
{

(τ, k, τ1, k1) ∈ Ω1

∣∣ |τ1 + k2
1| & |k1|

}
,

Ω13 := Ω1 \ (Ω11 ∪ Ω12),

then Ω13 is treated in the same manner as Ω23. In Ω11, we imitate the estimate for

Ω21, in turn decomposing v into dyadic pieces in k.

For Ω12, we again perform a similar decomposition

Ω12a := Ω12 ∩ {〈τ1 − τ + (k1 − k)2〉 ¿ 〈k1 − k〉, 〈k1〉 . 〈τ1 + k2
1〉 ¿ 〈k〉〈k1 − k〉},

Ω12b := Ω12 ∩ {〈τ1 − τ + (k1 − k)2〉 ¿ 〈k1 − k〉, 〈τ1 + k2
1〉 ∼ 〈k〉〈k1 − k〉},

Ω12c := Ω12 ∩ {〈τ1 − τ + (k1 − k)2〉 ¿ 〈k1 − k〉, 〈τ1 + k2
1〉 À 〈k〉〈k1 − k〉}.

The argument for Ω12a or Ω12c is the same, so we focus on the case of Ω12b. If

we localize v (and thus uv̄) to the frequency 〈k〉 ∼ N , we see that u has very high

modulation 〈τ1 + k2
1〉 ∼ N2, and that it is risky to employ Lemma 3.3 as for Ω22b.

Rather, it is natural here to use Lemma 3.5, and fortunately it will provide enough

gain of regularity. It will turn out that the stronger (Besov) structure of W−1/2 is

not necessary here.

Lemma 3.5 yields 〈k − (k1 − k)〉1/2 gain of regularity, so we further divide Ω12b as

Ω12b−0 :=
{

(τ, k, τ1, k1) ∈ Ω12b

∣∣ 〈k − (k1 − k)〉 ¿ 〈k〉
}
,

Ω12b−1 :=
{

(τ, k, τ1, k1) ∈ Ω12b

∣∣ 〈k − (k1 − k)〉 ∼ 〈k〉
}
.

In Ω12b−0, we can exploit the property 〈k〉 ∼ 〈k1〉 ∼ 〈k1 − k〉. Then, the estimate

is much easier; for instance, the argument for Ω11 or Ω21 is also sufficient here.

We next see the estimate in Ω12b−1 ∩ ∆c
2, where ∆2 is as in Lemma 3.5. Since

〈τ + k2〉 . 〈k〉〈k1 − k〉 ∼ 〈k〉2, we do not need to control the Y −1/2 norm of Λ−1(uv̄).

By Lemma 2.2 (θ = 3
4
), it suffices to estimate∥∥P{〈τ+k2〉.〈k〉}BΩ12b−1∩∆c

2
(u, v)

∥∥
X−1/2,0

+
∥∥P{〈k〉.〈τ+k2〉.〈k〉2}BΩ12b−1∩∆c

2
(u, v)

∥∥
X1/4,−3/4 ,

thus we will show

N−1/2
∑

M.N

∥∥P{〈τ+k2〉∼M}BΩ12b−1∩∆c
2
(u, vN)

∥∥
L2

t,x

+ N1/4
∑

N.M.N2

M−3/4
∥∥P{〈τ+k2〉∼M}BΩ12b−1∩∆c

2
(u, vN)

∥∥
L2

t,x
.

∥∥u
∥∥

X1/2,0

∥∥vN

∥∥
X−1/2,1

for each dyadic N ≥ 1, where vN := P{〈k〉∼N}v. Note that Lemma 3.5 now produces

the N1/2 gain of regularity. Decomposing v with respect to τ + k2 and applying

Lemma 3.5, we bound the left-hand side by(
N−1

∑
M.N

M1/2 + N−1/4
∑

N.M.N2

M−1/4
)∥∥u

∥∥
L2

t,x

∑
M2≥1

M
1/2
2

∥∥P{〈τ+k2〉∼M2}vN

∥∥
L2

t,x

.
∥∥u

∥∥
L2

t,x
· N−1/2

∑
M2≥1

M
1/2
2

∥∥P{〈τ+k2〉∼M2}vN

∥∥
L2

t,x
.

∥∥u
∥∥

X1/2,0

∥∥vN

∥∥
X−1/2,1 ,
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as desired.

Finally, in Ω12b−1 ∩ ∆2 we decompose v again and use Lemma 3.5 to obtain∥∥BΩ12b−1∩∆2(u, vN)
∥∥

X−1/2,0 . λ−1/2
∥∥u

∥∥
L2

t,x
N−1/2

∑
M2≥1

M
1/2
2

∥∥P{〈τ+k2〉∼M2}vN

∥∥
L2

t,x
,

which is sufficient.

Estimate in Ω3

We begin with the same division of domain as before:

Ω31 :=
{

(τ, k, τ1, k1) ∈ Ω3

∣∣ |τ1 + k2
1| & |k1|

}
,

Ω32 :=
{

(τ, k, τ1, k1) ∈ Ω3

∣∣ |τ1 − τ + (k1 − k)2| & |k1 − k|
}
,

Ω33 := Ω3 \ (Ω31 ∪ Ω32).

Ω31 and Ω32 are almost symmetric. Consider Ω31. We first deal with the Y −1/2

norm, which is easily handled with the Hölder inequality followed by the Young:∥∥Λ−1P{〈τ+k2〉À〈k〉2}BΩ31(u, v)
∥∥

Y −1/2 .
∥∥Λ−3/4(J1/2uJ−1/2v)

∥∥
Y −1

.
∥∥F(J1/2uJ−1/2v)

∥∥
`∞L2 .

∥∥u
∥∥

X1/2,0

∥∥v
∥∥

Y −1/2 .

To estimate the remainder of the W−1/2 norm, a further decomposition is required:

Ω31a :=
{

(τ, k, τ1, k1) ∈ Ω31

∣∣ |τ1 − τ + (k1 − k)2| . |k1 − k|
}
,

Ω31b :=
{

(τ, k, τ1, k1) ∈ Ω31

∣∣ |τ1 − τ + (k1 − k)2| & |k1 − k|
}
.

In Ω31a we have to measure v in X−1/2,1, so the 〈k1 − k〉1/2 gain of regularity

is essential, which we can generate from Lemma 3.5. Note that 〈k − (k1 − k)〉 ∼
〈k1 − k〉 in Ω3. For the estimate in Ω31a ∩ ∆c

2, we use Lemma 2.2 with θ > 1
2

and

Lemma 3.5 as follows:∥∥BΩ31a∩∆c
2
(u, v)

∥∥
Xθ−1/2,−θ .

∑
M≥1

∥∥P{〈τ+k2〉∼M}BΩ31a∩∆c
2
(Jθ−1/2u, v)

∥∥
X0,−θ

.
∑

M≥1

∑
M2≥1

M1/2−θM
1/2
2

∥∥u
∥∥

Xθ−1/2,0

∥∥P{〈τ+k2〉∼M2}v
∥∥

X−1/2,0 .
∥∥u

∥∥
X1/2,0

∥∥v
∥∥

X−1/2,1 .

At the last inequality we have used the Cauchy-Schwarz inequality in M2. In Ω31a ∩
∆2, we have∥∥BΩ31a∩∆2(u, v)

∥∥
X−1/2,0 .

∥∥BΩ31a∩∆2(J
1/2u, J−1/2v)

∥∥
X0,0

. λ−1/2
∥∥u

∥∥
X1/2,0

∑
M2≥1

M
1/2
2

∥∥P{〈τ+k2〉∼M2}v
∥∥

X−1/2,0 .
∥∥u

∥∥
X1/2,0

∥∥v
∥∥

X−1/2,1 .

It remains to treat Ω31b. Here, we may measure both u and v in X1/2,0. From

Lemma 2.2 with θ = 1
2

+ ε (0 < ε ¿ 1), it suffices to bound∥∥BΩ31b
(u, v)

∥∥
Xε,−1/2−ε .

∥∥BΩ31b
(Jεu, v)

∥∥
X0,−1/2−ε .

Using the Hölder and the Young inequalities, we evaluate the above by∥∥FBΩ31b
(Jεu, v)

∥∥
`2L∞ .

∥∥J̃εu
∥∥

`4/3L2

∥∥ṽ
∥∥

`4/3L2 .
∥∥u

∥∥
X1/2,0

∥∥v
∥∥

X1/2,0 ,

as required.
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For Ω32 we just have to use Lemma 3.4 (with u and v replaced with v̄ and u,

respectively) instead of Lemma 3.5 and follow the above argument for Ω31.

Now, we treat the remaining region Ω33, where we have to estimate∑
M≥1

∥∥P{〈τ+k2〉∼M}BΩ33(u, v)
∥∥

X1/2,−1 +
∥∥Λ−1BΩ33(u, v)

∥∥
Y −1/2 .

The Y −1/2 norm is treated in the same way as for the case of s > −1
2
. Since

〈k1〉 ∼ 〈k1 − k〉 and 〈τ + k2〉 ∼ 〈k〉〈k1 − k〉 & 〈k1 − k〉, after decomposing u and v

in k we only have to show that∑
M&N

(
M

N

)1/2

M−1
∥∥P{〈τ+k2〉∼M}(uNvN)

∥∥
X0,0 . N−1

∥∥uN

∥∥
X0,1

∥∥vN

∥∥
X0,1

for each dyadic N ≥ 1, where uN := P{〈k〉∼N}u and similarly for vN . This estimate

follows easily from Lemma 3.1.

Estimate in Ω4

We shall prove that∥∥Λ−1P{|k|∼N}BΩ4(u, v)
∥∥

W−1/2 . N−1/2
∥∥u

∥∥
W−1/2

∥∥v
∥∥

W−1/2 (5.1)

for dyadic N ∈ [λ−1, 1]. The desired estimate will follow by summing (4.2) over N .

We fix N and again divide Ω4 as follows:

Ω41 :=
{

(τ, k, τ1, k1) ∈ Ω4

∣∣ |τ1 + k2
1| & |k1|

}
,

Ω′
41 :=

{
(τ, k, τ1, k1) ∈ Ω4

∣∣ |k1| & |τ1 + k2
1| & N |k1|

}
,

Ω42 :=
{

(τ, k, τ1, k1) ∈ Ω4

∣∣ |(τ1 − τ) + (k1 − k)2| & |k1 − k|
}
,

Ω′
42 :=

{
(τ, k, τ1, k1) ∈ Ω4

∣∣ |k1 − k| & |(τ1 − τ) + (k1 − k)2| & N |k1 − k|
}
,

Ω43 := Ω4 \ (Ω41 ∪ Ω′
41 ∪ Ω42 ∪ Ω′

42),

then the previous argument for s > −1
2

also works in each region, except for the

estimate of the X1/2,0 norm in Ω43.

To conclude the proof, it is sufficient to decompose u and v into dyadic pieces in

k and show that∑
M≥1

∥∥P{〈τ+k2〉∼M}P{|k|∼N}BΩ43(uN1 , vN1)
∥∥

X1/2,−1 . N−1/2
∥∥uN1

∥∥
X−1/2,1

∥∥vN1

∥∥
X−1/2,1

for dyadic N1 ≥ 1. Observe again that 〈τ + k2〉 ≥ |τ + k2| ∼ N |k1| ∼ NN1, which

implies ∑
M≥1

∥∥P{〈τ+k2〉∼M}P{|k|∼N}BΩ43(uN1 , vN1)
∥∥

X1/2,−1

∼
∥∥P{〈τ+k2〉∼max{1,NN1}}P{|k|∼N}BΩ43(uN1 , vN1)

∥∥
X1/2,−1 .

Therefore, the summation over M essentially consists of just one M , and we may

estimate the usual X1/2,0 norm instead of the stronger Besov-type X1/2,0 norm. Now,

the previous argument for s > −1
2

works.

When the nonlinearity uv̄ is replaced by uv or ūv̄, we use the algebraic relation

(4.3) for uv or (4.4) for ūv̄, and also replace BΩ(u, v) with B′
Ω(u, v) or B′′

Ω(u, v),

respectively. Note that for these nonlinearities the two cases of Ω1 and Ω2 are
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completely symmetric and we just have to consider any one of them, and also that

similarly to the case of s > −1
2
, we do not need to separate Ω4 from Ω3, so there

occurs no loss in λ.

In fact, the above proof for uv̄ has to be reconsidered just in the cases where we

have used one of modified bilinear L4 estimates (Lemma 3.2–3.5). For other cases,

modification of the argument is trivial.

For uv, we consider the region corresponding to Ω0∪Ω2∪Ω3, then the proof should

be changed in treating Ω22b, Ω31 and Ω32. For the first case, we use Lemma 3.2

instead of Lemma 3.3 and follow the above proof. Note that we have to consider

the region 〈k1 − (k − k1)〉 ¿ 〈k1〉 separately, where 〈k − k1〉 ∼ 〈k1〉 holds and we

can imitate the above proof in Ω12b−0. The last two cases are symmetric, where we

may follow the above proof for Ω31, using Lemma 3.4 instead of Lemma 3.5.

Consider ūv̄ next. Now, we treat the region corresponding to Ω0 ∪ Ω1 ∪ Ω3, and

focus on the proof in the cases of Ω12b, Ω31 and Ω32. In Ω12b, however, the same

argument as above (with Lemma 3.5) is applicable. In the remaining cases are

symmetric and we can apply Lemma 3.5 again to conclude the proof.

This is the end of the proof for Proposition 2.5. ¤

6. Ill-posedness for s < −1
2

In this section we prove Theorem 1.1 (II). The scaling argument will again play

a major role in the proof of ill-posedness. Let λ ≥ 1 be a large spatial period to

be chosen later, and consider the rescaling equation (2.1) first (for a while we omit

the superscript λ). We observe that the nonlinear interaction of ω2
λ(uū) shows bad

behavior below H−1/2 in the first nonlinear iterate.

Lemma 6.1. Let λ À 1 and 0 < t0 ≤ 1. Suppose that N ∈ Z∗
λ satisfies

N > 0,
1

2Nt0
¿ 1

λ
,

2Nt0
λ

∈ [
π

2
,
3π

2
] mod 2π. (6.1)

When Zλ = Tλ, define the 2πλ-periodic function φλ,N by

Fφλ,N(k) =

{
1, k = N or N + λ−1,

0, otherwise.

When Zλ = R, define φλ,N on R by

Fφλ,N(ξ) =

{
1, ξ ∈ [N,N + λ−1

10
] ∪ [N + λ−1, N + 11λ−1

10
],

0, otherwise.

Then, for any s it holds that ∥∥φλ,N

∥∥
Hs(Zλ)

∼ λ−1/2N s, (6.2)∥∥A2(φλ,N)(t0)
∥∥

Hs(Zλ)
& λ−1/2N−1, (6.3)
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where

A2(φ)(t) :=
i

2

∫ t

0

ei(t−t′)∂2
xω2

λ

[
eit′∂2

xφ · eit′∂2
xφ

]
dt′.

Proof. (6.2) is easily derived from the definition.

For (6.3), consider the case of Tλ first. It suffices to show that∣∣FxA2(φλ,N)(t0, λ
−1)

∣∣ & N−1.

An explicit calculation then implies that

FxA2(φλ,N)(t0, λ
−1) = C

1

λ

∫ t0

0

e−2iλ−1Nt′ dt′ = C ′ 1

N
(e−2iλ−1Nt0 − 1),

where C,C ′ ∈ C is a constant (depending on λ) such that |C|, |C ′| ∼ 1. Therefore,

the claim follows from (6.1).

Next, consider the case Zλ = R. Again by some calculation, we see that for
9λ−1

10
≤ ξ ≤ 11λ−1

10

FxA2(φλ,N)(t0, ξ) = C
λ2ξ2

1 + λ2ξ2

∫
R
Fφλ,N(ξ′)Fφλ,N(ξ′ − ξ)

∫ t0

0

eit′{ξ2−ξ′2+(ξ′−ξ)2}dt′ dξ′

= C
λ2ξ2

1 + λ2ξ2

∫ N+ 11
10

λ−1

N+λ−1

Fφλ,N(ξ′ − ξ)
e−2it0ξ(ξ′−ξ) − 1

ξ(ξ′ − ξ)
dξ′.

In particular, for λ−1 ≤ ξ ≤ 21λ−1

20
,

|FxA2(φλ,N)(t0, ξ)| &
∣∣∣ ∫ N+ 11

10
λ−1

N+ξ

<
[e−2it0ξ(ξ′−ξ) − 1

ξ(ξ′ − ξ)

]
dξ′

∣∣∣
& 1

λ−1N

∫ N+ 11
10

λ−1

N+ξ

(
1 − cos(2t0ξ(ξ

′ − ξ))
)
dξ′

≥ 1

λ−1N

∫ N+ 1
20

λ−1

N

(
1 − cos(2t0ξξ

′)
)
dξ′.

Observe that the value of 2t0ξξ
′ varies over many periods while (ξ, ξ′) moves on

[λ−1, 21
20

λ−1]× [N,N + 1
20

λ−1], since we have assumed t0N
λ

À 1. We split the interval

[λ−1, 21
20

λ−1] into subintervals {Ij} of length 1
100t0N

≤ |Ij| ≤ 1
50t0N

, then 2t0ξξ
′ varies

at most over 1
10

periods on each interval (ξ, ξ′) ∈ Ij × [N,N + 1
20

λ−1]. We only pick

up intervals Ij such that cos(2t0ξξ
′) ≤ 1

2
on Ij × [N,N + 1

20
λ−1], and obtain∥∥A2(φλ,N)(t0)

∥∥
Hs(R)

&
∥∥FxA2(φλ,N)(t0)

∥∥
L2([λ−1, 21

20
λ−1])

& 1

N
· λ−1/2. ¤

Now, fix t0 ∈ (0, 1]. For n ∈ N, we choose Nn ∈ Z∗
λ satisfying (6.1) and Nn → ∞

(n → ∞). Let us define

u0n := δN1/2
n φλ,Nn ,

where δ > 0 is a small parameter to be chosen later, which is independent of λ. Note

that (6.2) implies ‖u0n‖H−1/2 ∼ δλ−1/2, so we see from the proof of Theorem 1.1 (I)
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in Section 2 that there exists a solution un(t) to (2.1) on the time interval [−1, 1],

which is unique in a closed ball of W
−1/2
1 , if λ À 1 and δ ¿ 1.

Also define

u1n(t) := eit∂2
xu0n, u2n(t) := A2(u0n)(t) =

i

2

∫ t

0

ei(t−t′)∂2
xω2

λ

[
u1nu1n

]
(t′) dt′,

and wn := un −
(
u1n + u2n

)
. Then, wn satisfies the integral equation

wn(t) = −iλ−2

∫ t

0

ei(t−t′)∂2
x
1
2

{(
u1n + u2n + wn

)
−

(
u1n + u2n + wn

)}
(t′) dt′

+ i

∫ t

0

ei(t−t′)∂2
x
ω2

λ

4

{
(u1n + u2n + wn)2 + (u1n + u2n + wn)

2
}

(t′) dt′

+ i

∫ t

0

ei(t−t′)∂2
x
ω2

λ

2

{
u1n(u2n + wn) + u1n(u2n + wn) + (u2n + wn)(u2n + wn)

}
(t′) dt′.

On the other hand, estimates for LWP (Proposition 2.5, Lemma 2.4) in H−1/2 yield

that ∥∥u1n

∥∥
W

−1/2
1

.
∥∥u0n

∥∥
H−1/2 ∼ δλ−1/2,∥∥u2n

∥∥
W

−1/2
1

. λ1/2
∥∥u1n

∥∥2

W
−1/2
1

. δ2λ−1/2

for any n. Therefore, we can deduce from the above integral equation that∥∥wn

∥∥
W

−1/2
1

. λ−2
∥∥u1n + u2n + wn

∥∥
W

−1/2
1

+
∥∥u1n + u2n + wn

∥∥2

W
−1/2
1

+ λ1/2
(∥∥u1n

∥∥
W

−1/2
1

∥∥u2n + wn

∥∥
W

−1/2
1

+
∥∥u2n + wn

∥∥2

W
−1/2
1

)
. λ−2

(
δλ−1/2 +

∥∥wn

∥∥
W

−1/2
1

)
+

(
δλ−1/2 +

∥∥wn

∥∥
W

−1/2
1

)2

+ λ1/2
{
δλ−1/2(δ2λ−1/2 +

∥∥wn

∥∥
W

−1/2
1

) + (δ2λ−1/2 +
∥∥wn

∥∥
W

−1/2
1

)2
}

. δλ−5/2 + δ2λ−1 + δ3λ−1/2 + (λ−2 + δ)
∥∥wn

∥∥
W

−1/2
1

+ λ1/2
∥∥wn

∥∥2

W
−1/2
1

.

If δ and λ−1 are small enough, it follows that

λ1/2
∥∥wn

∥∥
W

−1/2
1

. (δλ−2 + δ2λ−1/2 + δ3) + λ−1/2
(
λ1/2

∥∥wn

∥∥
W

−1/2
1

)2
.

It is easily verified that the above estimate also holds with the same constant

when we replace u0n with θu0n, 0 ≤ θ ≤ 1 in the definition of un, u1n, u2n and wn.

It follows from the LWP results in H−1/2 that for each n,

[0, 1] 3 θ 7→
∥∥wn(θ)

∥∥
W

−1/2
1

is continuous and wn(0) = 0. Therefore, we conclude that

sup
n

∥∥wn

∥∥
W

−1/2
1

. δλ−5/2 + δ2λ−1 + δ3λ−1/2,

and thus

sup
n

sup
−1≤t≤1

∥∥wn(t)
∥∥

H−1/2 . δλ−5/2 + δ2λ−1 + δ3λ−1/2,

whenever λ is sufficiently large.
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Let s < −1
2
. Combining the above with (6.2) and (6.3), we see that∥∥un(t0)

∥∥
Hs ≥

∥∥u2n(t0)
∥∥

Hs −
∥∥wn(t0)

∥∥
H−1/2 −

∥∥u1n(t0)
∥∥

Hs

≥ C−1δ2λ−1/2 − C
(
δλ−5/2 + δ2λ−1 + δ3λ−1/2

)
− Cδλ−1/2N1/2+s

n

for any n. Choosing δ sufficiently small, and then λ sufficiently large, we have∥∥un(t0)
∥∥

Hs ≥ C−1δ2λ−1/2 − Cδλ−1/2N1/2+s
n .

Therefore, we have shown that

lim
n→∞

∥∥uλ
0n

∥∥
Hs(Zλ)

= 0, lim inf
n→∞

∥∥uλ
n(t0)

∥∥
Hs(Zλ)

& δ2λ−1/2.

Note that δ, λ are independent of the choice of t0. Rescaling back to the original

equation (1.4), we obtain

lim
n→∞

∥∥u0n

∥∥
Hs(Z)

= 0, lim inf
n→∞

∥∥un(λ−2t0)
∥∥

Hs(Z)
&δ,λ 1,

which establishes Theorem 1.1 (II) with T0 = λ−2.

Appendix A. Proof of Proposition 2.6

Here, we give a proof of Proposition 2.6. Our argument is originated in the work

of Muramatu and Taoka [19] who considered the Cauchy problem for quadratic NLS

equations in some Besov type function spaces.

We now prepare mixed `1-Besov spaces Bs,b
2,1, which is the completion of S(R×Z)

with respect to the norm∥∥v
∥∥

Bs,b
2,1

:=
∞∑

j=0

∞∑
k=0

2sj2bk
∥∥pj(ξ)pk(τ)ṽ

∥∥
L2

τ,ξ(R×Z∗)
,

where the dyadic decomposition pj is defined by

p0 := ψ, pj(ξ) := ψ(2−jξ) − ψ(2j−1ξ) (j = 1, 2, . . . )

and ψ is the bump function given in Section 2. We see that∥∥v1(t)v2(x)
∥∥

Bs,b
2,1

=
∥∥v1

∥∥
Bb

2,1(R)

∥∥v2

∥∥
Bs

2,1(Z)
.

Then, our theorem is reduced to the following result given by Muramatu and

Taoka.

Theorem A.1 ([19]). Let s ∈ R and 1
2
≤ b < 1. Assume that f ∈ S(R×Z) satisfies

f(0, x) ≡ 0. Then, we have

lim
T↘0

∥∥f
∥∥

Bs,b
2,1,T

= 0.

We shall derive our theorem from Theorem A.1.
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Proof of Proposition 2.6. Assume all the condition on X s and u ∈ X s in Propo-

sition 2.6. First, fix an arbitrary ε > 0 and a global-in-time extension of u ∈ X s
T

denoted by U . Then, from the density property of X s, there exists a smooth function

V on R × Z satisfying ∥∥U − V
∥∥
X s ≤ ε. (A.1)

We also fix such V . Since V is smooth,

e−it∂2
x
(
V (t) − ψ(t)eit∂2

xV (0)
)

= e−it∂2
xV (t) − ψ(t)V (0)

is smooth and vanishes at t = 0. Using the embedding Xs′,b′ ↪→ X s with 1
2
≤ b′ < 1

and the fact ∥∥eit∂2
xv(t)

∥∥
Xs,b =

∥∥v
∥∥

Hb
t (Hs

x)
.

∥∥v
∥∥

Bs,b
2,1

,

we have ∥∥V (t) − ψ(t)eit∂2
xV (0)

∥∥
X s

T
.

∥∥e−it∂2
xV (t) − ψ(t)V (0)

∥∥
Bs′,b′

2,1,T

.

Applying Theorem A.1, we see that

lim
T↘0

∥∥V (t) − ψ(t)eit∂2
xV (0)

∥∥
X s

T
= 0. (A.2)

We next use the embedding Xs,b ↪→ X s with b > 1
2

to have∥∥ψ(t)eit∂2
xV (0)

∥∥
X s .

∥∥V (0)
∥∥

Hs(Z)
=

∥∥(U − V )(0)
∥∥

Hs(Z)
≤ sup

t

∥∥(U − V )(t)
∥∥

Hs(Z)
.

Here, we have used U(0) = 0. From the embedding X s ↪→ Ct(R; Hs(Z)) and (A.1),

we conclude that ∥∥ψ(t)eit∂2
xV (0)

∥∥
X s . ε. (A.3)

Combining (A.1)–(A.3), we obtain

lim sup
T↘0

∥∥u
∥∥
X s

T
. ε.

Since ε is arbitrary, the claim follows. ¤

In the rest of this section, we shall again describe the proof of Theorem A.1. To

do this, the following difference norm of Bs,b
2,1 will be useful.

Lemma A.2. Let s ∈ R and 0 < b < 1. Then, we have∥∥f
∥∥

Bs,b
2,1

∼
∞∑

j=0

2sj
∥∥fj

∥∥
L2(R×Z)

+
∞∑

j=0

2sj

∫
R
|r|−b

∥∥fj(t + r, x) − fj(t, x)
∥∥

L2(R×Z)

dr

|r|
,

where fj(t, x) = Pjf(t, x) := F−1
ξ pj(ξ)Fxf(t, ξ).

Note that the usual Besov norm has a similar representation∥∥f
∥∥

Bb
2,1(R)

∼
∥∥f

∥∥
L2(R)

+

∫
R
|r|−b

∥∥f(· + r) − f(·)
∥∥

L2(R)

dr

|r| (A.4)
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for 0 < b < 1. From definition of the Bs,b
2,1 norm, it suffices to show

∞∑
k=0

2bk
∥∥fjk

∥∥
L2(R×Z)

∼
∥∥fj

∥∥
L2(R×Z)

+

∫
R
|r|−b

∥∥fj(t + r, x) − fj(t, x)
∥∥

L2(R×Z)

dr

|r|

for each j, where fj,k := F−1
t,x pj(ξ)pk(τ)f̃ . This equivalence can be verified in the

same way as the proof for (A.4). Thus, we omit the proof and refer to [19], Theo-

rem 8.1.

Using Lemma A.2, we can verify a similar representation for the restricted norm.

Lemma A.3. Let s ∈ R and 1
2
≤ b < 1. Define

GT (f ; ρ) :=
∞∑

j=0

2sj
∥∥fj(t + ρ, x) − fj(t, x)

∥∥
L2(IT,ρ×Z)

,

IT,ρ := [−T, T ] ∩ [−T − ρ, T − ρ].

for T > 0, f ∈ S(R × Z), and ρ ∈ R. Then, we have∫ 2T

−2T

|ρ|−bGT (f ; ρ)
dρ

|ρ|
.

∥∥f
∥∥

Bs,b
2,1,T

(A.5)

.
∫ 2T

−2T

|ρ|−bGT (f ; ρ)
dρ

|ρ|
+

∥∥f(0, ·)
∥∥

Bs
2,1

. (A.6)

for any f ∈ S(R × Z) and T ∈ (0, 1].

Assume Lemma A.3 for now, then it suffices for the proof of Theorem A.1 to show

that

lim
T↘0

∫ 2T

−2T

|ρ|−bGT (f ; ρ)
dρ

|ρ|
= 0

for f ∈ S(R × Z). However, we observe that GT (f ; ρ) ≤ G1(f ; ρ) for any f and ρ.

Eq. (A.5) shows that ρ−b−1G1(f ; ρ) is integrable on ρ ∈ (−2, 2), so we conclude that∫ 2T

−2T

|ρ|−bGT (f ; ρ)
dρ

|ρ|
≤

∫ 2T

−2T

ρ−bG1(f ; ρ)
dρ

ρ
→ 0 (T → 0),

as desired.

It remains to prove Lemma A.3. The most important problem is what function

in Bs,b
2,1 we should choose as a global-in-time extension of f

∣∣
t∈[−T,T ]

∈ Bs,b
2,1,T . In this

point of view, the following representation lemma plays a great role.

Lemma A.4 ([18]). Let ω ∈ C∞(R) be a non-negative function satisfying

supp ω ⊂ [−1, 1],

∫
R

ω(z) dz = 1.

Define the following functions:

K(t, z) := zω(z − t), M(t, z) := ∂zK(t, z),
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and also

K1(t, z) := K(t, z), K2(t, z) := K(t, z), K3(t, z) := M(t, z),

L1(t, z) := −∂tM(t, z), L2(t, z) := ∂zM(t, z), L3(t, z) := M(t, z).

Let T > 0 and f ∈ S(R). Then, the following identities hold for any t ∈ [−T, T ]:

f(t) =

∫ T

0

∫
R

1
µ
M(

t

T
,
t − t1

µ
)f(t1) dt1

dµ

µ
+ f0 (A.7)

=
3∑

i=1

∫ T

0

∫
R

1
µ
Ki(

t

T
,
t − t1

µ
)fi(µ, t1) dt1

dµ

µ
+ f0, (A.8)

where

f0 :=

∫
R

1
T

ω(
−t1
T

)f(t1, x) dt1,

f1(µ, t1) :=

∫ T

µ

∫
R

1
ν
L1(

t1
T

,
t1 − t2

ν
)f(t2) dt2

−µ

T

dν

ν
,

f2(µ, t1) :=

∫ T

µ

∫
R

1
ν
L2(

t1
T

,
t1 − t2

ν
)f(t2) dt2

µ

ν

dν

ν
,

f3(µ, t1) :=

∫ µ

0

∫
R

1
ν
L3(

t1
T

,
t1 − t2

ν
)f(t2) dt2

dν

ν
.

Proof. For (µ, t) ∈ (0,∞) × R, define

h(µ, t) :=

∫
R

1
µ
ω(

t − t1
µ

− t

T
)f(t1) dt1, H(µ, t) :=

∫
R

1
µ
M(

t

T
,
t − t1

µ
)f(t1) dt1.

Note that h(T, t) = f0. Since
∫

R
1
µ
ω( t−t1

µ
− t

T
) dt1 = 1, we have

h(µ, t) − f(t) =

∫
R

1
µ
ω(

t − t1
µ

− t

T
){f(t1) − f(t)} dt1

= −
∫

R
ω(z − t

T
){f(t − µz) − f(t)} dz.

We observe that supp ω(· − t
T
) ⊂ [−2, 2] for any t ∈ [−T, T ], so the Lebesgue

convergence theorem implies that h(µ, t) → f(t) as µ → 0 uniformly in t ∈ [−T, T ].

On the other hand, observe that ∂µ

(
1
µ
ω( t−t1

µ
− t

T
)
)

= − 1
µ2 M( t

T
, t−t1

µ
), then

∂µh(µ, t) = − 1
µ
H(µ, t).

Thus, we have

f0 − f(t) = −
∫ T

0

H(µ, t)
dµ

µ
,
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which shows (A.7). We substitute (A.7) into itself to have

f(t) =f0 + f0

∫ T

0

∫
R

1
µ
M(

t

T
,
t − t1

µ
) dt1

dµ

µ

+

∫ T

0

∫
R

1
µ
M(

t

T
,
t − t1

µ
)

∫ T

µ

∫
R

1
ν
M(

t1
T

,
t1 − t2

ν
)f(t2) dt2

dν

ν
dt1

dµ

µ

+

∫ T

0

∫
R

1
µ
M(

t

T
,
t − t1

µ
)

∫ µ

0

∫
R

1
ν
M(

t1
T

,
t1 − t2

ν
)f(t2) dt2

dν

ν
dt1

dµ

µ
.

The second term vanishes because
∫

R M(t, z) dz = 0. We next observe that

∂t1K(
t

T
,
t − t1

µ
) = − 1

µ
M(

t

T
,
t − t1

µ
).

Then, after an integration by parts with respect to t1, the third term becomes∫ T

0

∫
R

K(
t

T
,
t − t1

µ
)∂t1

[ ∫ T

µ

∫
R

1
ν
M(

t1
T

,
t1 − t2

ν
)f(t2) dt2

dν

ν

]
dt1

dµ

µ

=

∫ T

0

∫
R

1
µ
K(

t

T
,
t − t1

µ
)

∫ T

µ

∫
R

µ

ν

[−1
T

L1 +
1
ν
L2

]
(
t1
T

,
t1 − t2

ν
)f(t2) dt2

dν

ν
dt1

dµ

µ
.

Collecting the above, we obtain (A.8). ¤
We prepare one more lemma.

Lemma A.5. Let 0 < T ≤ 1.

(i) Assume that K∗ : R × R → R is a smooth function satisfying

(t, z) ∈ supp K∗ ⇒ |t − z| ≤ 1.

For (µ, t, x) ∈ (0, T ) × R × Z and g : (0, T ) → S(R × Z), define

HK(g; µ, t, x) :=

∫
R

1
µ
ψ(

t

T
)K∗(

t

T
,
t − t1

µ
)g(µ, t1, x) dt1,

where ψ is the same bump function as before. Then, we have∥∥HK(g; µ)
∥∥

L2(R×Z)
.

∥∥g(µ)
∥∥

L2(R×Z)
, (A.9)∥∥HK(g; µ, t + r, x) − HK(g; µ, t, x)

∥∥
L2

t,x(R×Z)
. min{1, |r|

µ
}
∥∥g(µ)

∥∥
L2(R×Z)

(A.10)

for any 0 < µ < T and r ∈ R. The implicit constants depend only on K∗.

(ii) Assume that L∗ : R×R → R is a smooth function satisfying
∫

R L∗(t, z) dz ≡ 0

and

(t, z) ∈ supp L∗ ⇒ |t − z| ≤ 1.

For (ν, t1, x) ∈ (0, T ) × R × Z and g ∈ S(R × Z), define

HL(g; ν, t1, x) :=

∫
R

1
ν
ψ(

t1
5T

)L∗(
t1
T

,
t1 − t2

ν
)g(t2, x) dt2.

Then, we have∥∥HL(g; ν)
∥∥

L2(R×Z)
.

∫
R

1
ν
1[−11ν,11ν](ρ)

∥∥g(t1 + ρ, x) − g(t1, x)
∥∥

L2
t1,x(R×Z)

dρ (A.11)
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for any 0 < ν < T . The implicit constant depends only on L∗.

Note that the functions K1, K2, K3 defined in Lemma A.4 satisfy the condition

for K∗. Also, L1, L2, and L3 all meet the condition for L∗.

For the proof of Lemma A.5, we recall the following.

Lemma A.6. Suppose that a smooth function k on R × R satisfies

sup
t

∫
R
|k(t, t1)| dt1 ≤ C0, sup

t1

∫
R
|k(t, t1)| dt ≤ C0 (A.12)

for some C0 > 0. Then, for any f ∈ S(R × Z), we have∥∥ ∫
R

k(t, t1)f(t1, x) dt1
∥∥

L2
t,x(R×Z)

≤ C0

∥∥f
∥∥

L2(R×Z)
.

Proof. We use the Minkowski and the Cauchy-Schwarz inequalities to obtain∥∥∫
R

k(t, t1)f(t1, x) dt1
∥∥2

L2
t,x(R×Z)

≤
∫

R

( ∫
R
|k(t, t1)|

∥∥f(t1)
∥∥

L2
x(Z)

dt1

)2

dt

≤
∫

R

( ∫
R
|k(t, t1)| dt1

)( ∫
R
|k(t, t1)|

∥∥f(t1)
∥∥2

L2
x(Z)

dt1

)
dt

≤ sup
t

∫
R
|k(t, t1)| dt1 ·

∫
R

∥∥f(t1)
∥∥2

L2
x(Z)

( ∫
R
|k(t, t1)| dt

)
dt1

≤ C2
0

∥∥f
∥∥2

L2(R×Z)
. ¤

Proof of Lemma A.5. (i) Put k(t, t1) = 1
µ
ψ( t

T
)K∗(

t
T
, t−t1

µ
). From changes of vari-

ables, we see that ∫
R
|k(t, t1)| dt1 ≤

∫
R
|K∗(

t

T
, z)| dz . 1,∫

R
|k(t, t1)| dt ≤

∫
R

ψ(
t1 + µz

T
)|K∗(

t1 + µz

T
, z)| dz .

∫
R
1[−3,3](z) dz . 1.

(Note that | t1+µz
T

| ≤ 2 and | t1+µz
T

− z| ≤ 1 imply |z| ≤ 3.) Then, (A.9) follows from

Lemma A.6.

Also, for (A.10), it suffices to verify that

k(t, t1) =
1
µ
ψ(

t + r

T
)K∗(

t + r

T
,
t + r − t1

µ
) − 1

µ
ψ(

t

T
)K∗(

t

T
,
t − t1

µ
)

satisfies (A.12) with C0 . min{1, |r|
µ
}. The triangle inequality and the above argu-

ment imply that C0 . 1 for any r ∈ R. On the other hand, an application of the

mean value theorem followed by change of variables shows that C0 . |r|
µ

if |r| ≤ µ,

as desired.

(ii) We first see that

HL(g; ν, t1, x) =

∫
R

1
ν
ψ(

t1
5T

)L∗(
t1
T

,
−ρ

ν
)g(t1 + ρ, x) dρ.
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The term 0 ≡ −
∫

R
1
ν
ψ( t1

5T
)L∗(

t1
T
, −ρ

ν
)g(t1, x) dρ is added and we have

HL(g; ν, t1, x) =

∫
R

1
ν
ψ(

t1
5T

)L∗(
t1
T

,
−ρ

ν
)
{
g(t1 + ρ, x) − g(t1, x)

}
dρ.

Then, it is sufficient to show that∣∣ t1
5T

∣∣ ≤ 2,
∣∣ t1
T

+
ρ

ν

∣∣ ≤ 1 (A.13)

implies

−11ν ≤ ρ ≤ 11ν, t1 ∈ IT,ρ = [−T, T ] ∩ [−T − ρ, T − ρ]. (A.14)

It follows from (A.13) that∣∣ρ

ν

∣∣ ≤ ∣∣ t1
T

+
ρ

ν

∣∣ +
∣∣ t1
T

∣∣ ≤ 11,

and we have the first one in (A.14). It remains to prove
∣∣ t1+ρ

T

∣∣ ≤ 1, for which we

divide the analysis corresponding to the sign of t1 and ρ. If t1, ρ ≥ 0, then we have

0 ≤ t1 + ρ

T
≤ t1

T
+

ρ

ν
≤ 1.

If t1 ≤ 0 ≤ ρ, then

−1 ≤ t1
T

≤ t1 + ρ

T
≤ t1

T
+

ρ

ν
≤ 1.

The remaining cases are reduced to the above two cases. ¤

Finally, we shall prove Lemma A.3 and conclude this appendix.

Proof of Lemma A.3. Let F be any extension of f
∣∣
t∈[−T,T ]

∈ Bs,b
2,1,T . Then, we use

Lemma A.2 to see that∫ 2T

−2T

|ρ|−bGT (f ; ρ)
dρ

|ρ|
≤

∫
R
|ρ|−bG∞(F ; ρ)

dρ

|ρ|
.

∥∥F
∥∥

Bs,b
2,1

.

Taking infimum over F , we obtain (A.5).

For (A.6), we first estimate ‖f(0, x)‖Bs,b
2,1,T

. Choosing ψ(t)f(0, x) as an extension

of 1[−T,T ](t)f(0, x) ∈ Bs,b
2,1,T , we have∥∥f(0, x)

∥∥
Bs,b

2,1,T
≤

∥∥ψ
∥∥

Bb
2,1(R)

∥∥f(0, ·)
∥∥

Bs
2,1(Z)

.
∥∥f(0, ·)

∥∥
Bs

2,1(Z)
.

Therefore, it remains to show∥∥f(t, x) − f(0, x)
∥∥

Bs,b
2,1,T

.
∫ 2T

−2T

|ρ|−bGT (f ; ρ)
dρ

|ρ|
.

We note that the integral in the right-hand side with respect to ρ can be replaced

with
∫

R, because IT,ρ = ∅ if |ρ| > 2T .
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From the representation formula (A.8), we have the following identity for (t, x) ∈
[−T, T ] × Z:

f(t, x) − f(0, x) =
3∑

i=1

∫ T

0

∫
R

1
µ
Ki(

t

T
,
t − t1

µ
)fi(µ, t1, x) dt1

dµ

µ

−
3∑

i=1

∫ T

0

∫
R

1
µ
Ki(0,

−t1
µ

)fi(µ, t1, x) dt1
dµ

µ
,

f1(µ, t1, x) :=

∫ T

µ

∫
R

1
ν
L1(

t1
T

,
t1 − t2

ν
)f(t2, x) dt2

−µ

T

dν

ν
,

f2(µ, t1, x) :=

∫ T

µ

∫
R

1
ν
L2(

t1
T

,
t1 − t2

ν
)f(t2, x) dt2

µ

ν

dν

ν
,

f3(µ, t1, x) :=

∫ µ

0

∫
R

1
ν
L3(

t1
T

,
t1 − t2

ν
)f(t2, x) dt2

dν

ν
.

Then, we use the following function as an extension of f(t, x) − f(0, x)
∣∣
t∈[−T,T ]

∈
Bs,b

2,1,T :

3∑
i=1

∫ T

0

∫
R

1
µ
ψ(

t

T
)Ki(

t

T
,
t − t1

µ
)ψ(

t1
5T

)fi(µ, t1, x) dt1
dµ

µ

−
3∑

i=1

∫ T

0

∫
R

1
µ
ψ(t)Ki(0,

−t1
µ

)ψ(
t1
5T

)fi(µ, t1, x) dt1
dµ

µ
.

(A.15)

We see from the support property of ψ and Ki that the above function is actually

equal to f(t) − f(0) on [−T, T ].

We now estimate the first three terms in (A.15), which is simply written as

3∑
i=1

∫ T

0

Fi(µ, t, x)
dµ

µ
, Fi(µ, t, x) :=

∫
R

1
µ
ψ(

t

T
)Ki(

t

T
,
t − t1

µ
)ψ(

t1
5T

)fi(µ, t1, x) dt1.

Applying Lemma A.2, we reduce the estimate of ‖Fi(µ)‖Bs,b
2,1

to that of

∞∑
j=0

2sj
∥∥PjFi(µ)

∥∥
L2(R×Z)

, (A.16)

∞∑
j=0

2sj

∫
R
|r|−b

∥∥PjFi(µ, t + r, x) − PjFi(µ, t, x)
∥∥

L2
t,x(R×Z)

dr

|r|
. (A.17)

For (A.16), we apply Lemma A.5 (i) to bound ‖PjFi(µ)‖L2(R×Z) by∥∥ψ(
t1
5T

)Pjfi(µ, t1, x)
∥∥

L2
t1,x(R×Z)

,
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which is then estimated with Lemma A.5 (ii) by∫ T

µ

∫
R

1
ν
1[−11ν,11ν](ρ)

∥∥Pjf(t1 + ρ) − Pjf(t1, x)
∥∥

L2
t1,x(IT,ρ×Z)

dρ
µ

T

dν

ν
,∫ T

µ

∫
R

1
ν
1[−11ν,11ν](ρ)

∥∥Pjf(t1 + ρ) − Pjf(t1, x)
∥∥

L2
t1,x(IT,ρ×Z)

dρ
µ

ν

dν

ν
,∫ T

µ

∫
R

1
ν
1[−11ν,11ν](ρ)

∥∥Pjf(t1 + ρ) − Pjf(t1, x)
∥∥

L2
t1,x(IT,ρ×Z)

dρ
dν

ν
.

Therefore, (A.16) is bounded by∫ T

µ

∫
R

1
ν
1[−11ν,11ν](ρ)GT (f ; ρ)

dρ

|ρ|
|ρ|µ

T

dν

ν
,∫ T

µ

∫
R

1
ν
1[−11ν,11ν](ρ)GT (f ; ρ)

dρ

|ρ|
|ρ|µ

ν

dν

ν
,∫ T

µ

∫
R

1
ν
1[−11ν,11ν](ρ)GT (f ; ρ)

dρ

|ρ|
|ρ|dν

ν
.

We next compute the integral with respect to ν. For the first and the second one,

we have∫ T

µ

1
ν
1[−11ν,11ν](ρ)|ρ|µ

T

dν

ν
≤

∫ T

µ

1
ν
1[−11ν,11ν](ρ)|ρ|µ

ν

dν

ν
. min{ µ

|ρ|
,
|ρ|
µ
}.

Similarly, we obtain the bound 1[−11,11](
|ρ|
µ

) for the last one. Collecting these results,

we have

(A.16) .
∫

R

(
min{ µ

|ρ|
,
|ρ|
µ
} + 1[−11,11](

|ρ|
µ

)
)
GT (f ; ρ)

dρ

|ρ|
.

In the same manner, Lemma A.5 implies that

(A.17) .
∫

R

(
min{ µ

|ρ|
,
|ρ|
µ
} + 1[−11,11](

|ρ|
µ

)
) ∫

R
|r|−b min{1, |r|

µ
} dr

|r|
GT (f ; ρ)

dρ

|ρ|

. µ−b

∫
R

(
min{ µ

|ρ|
,
|ρ|
µ
} + 1[−11,11](

|ρ|
µ

)
)
GT (f ; ρ)

dρ

|ρ|
.

Then, we calculate the integral with respect to µ,∫ T

0

(
1 + µ−b

)(
min{ µ

|ρ|
,
|ρ|
µ
} + 1[−11,11](

|ρ|
µ

)
)

dµ

µ

.
∫ |ρ|

0

µ−b dµ

|ρ|
+

∫ ∞

|ρ|
µ−b−2|ρ| dµ +

∫ ∞

|ρ|/11

µ−b−1dµ . |ρ|−b,

and complete the estimate for the first three terms in (A.15).
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The second three terms in (A.15) are much easier to treat. Let us estimate the

term including f1, for instance. First, we have∥∥∫ T

0

∫
R

1
µ
ψ(t)K1(0,

−t1
µ

)ψ(
t1
5T

)f1(µ, t1, x) dt1
dµ

µ

∥∥
Bs,b

2,1

=
∥∥ψ

∥∥
Bb

2,1(R)

∥∥∫ T

0

∫
R

1
µ
K1(0,

−t1
µ

)ψ(
t1
5T

)f1(µ, t1, x) dt1
dµ

µ

∥∥
Bs

2,1(Z)

.
∞∑

j=0

2sj

∫ T

0

∫
R

1
µ

∣∣K1(0,
−t1
µ

)
∣∣∥∥ψ(

t1
5T

)Pjf1(µ, t1, x)
∥∥

L2
x(Z)

dt1
dµ

µ
.

We apply the Cauchy-Schwarz inequality in t1 to bound it by
∞∑

j=0

2sj

∫ T

0

1
µ

( ∫
R

∣∣K1(0,
−t1
µ

)
∣∣2 dt1

)1/2∥∥ψ(
t1
5T

)Pjf1(µ, t1, x)
∥∥

L2
t1,x(R×Z)

dµ

µ
.

On the other hand, a simple calculation shows that

1
µ

( ∫
R

∣∣K1(0,
−t1
µ

)
∣∣2 dt1

)1/2

. µ−1/2 . µ−b.

Thus, we obtain exactly the same quantity as that we have estimated above. The

other two terms are treated in the same way, and the proof is completed. ¤
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