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Abstract. In this expository paper, we pay attention to a new kind of oscillations of solutions of
the second-order differential equations on the finite interval. It is the so-called rectifiable, unrec-
tifiable and fractal oscillations ofreal functions and solutions ofdifferential equations introduced
in PaSi\v{c} [S], [9] and Wong [15], and continued to study in [4], [6], [10], [11], [12], and [16].

1. Motivation for the oscillations near $x=0$

We consider famous Euler linear differential equation,

$y”+\lambda x^{-2}y=0,$ $x\in(0,\infty),$ $\lambda>0$ . (1)

DEFINITION 1. A function $y(x)$ oscillates near $x=0$ if there is a decreasing se-
quence $a_{n}\in(0,1]$ such that $a_{n}\searrow 0$ and $y(a_{n})=0$ . A fimction $y(x)$ oscillates near
$x=\infty$ ifthere is an increasing sequence $a_{n}\in[T,\infty)$ , for some $T>0$ , such that $a_{n}arrow\infty$ .
The following basic facts on the equation (1) are very well known:

$\bullet$ if $\lambda>1/4$ , then all solutions $y(x)$ of (1) are given by the formula

$y(x)=c_{1}\sqrt{x}\cos(p\ln x)+c_{2}\sqrt{x}\sin(\rho\ln x)$ ,

where $\rho=\sqrt{\lambda-1}/4$ ;
$\bullet$ $y(x)$ are oscillating near both $x=0$ and $x=\infty$ , see Figures 1 and2 below:

Figure 1: oscillations near $x=0$
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Figure 2: oscillations near $x=\infty$

2. Definition of the rectiflable and unrectifiable oscillations on $[0,1]$

Let $G(y)\subseteq \mathbb{R}^{2}$ denote the graph of a mnction $y:[0,1]arrow \mathbb{R}$ , defined by

$G(y)=\{(x,y)\in \mathbb{R}^{2} : x\in[0,1],y=y(x)\}$ .

Its length is defined by:

length $G(y)= \sup\sum_{i=1}^{m}||(t_{i},y(t_{i})-(t_{i-1},y(t_{i-1}))||_{2}$ ,

where $0=t_{0}<t_{1}<\cdots<t_{m}=1$ is a partition ofthe unit interval. Ofcourse, in the case
when $y\in C^{1}((0,1])$ , then the length of $G(y)$ can be calculated by the formula,

length $G(y)= \lim_{\deltaarrow 0}\int_{\delta}^{1}\sqrt{1+y^{\prime 2}(x)}dx$ .

DEFINITION 2. A Rmction $y(x)$ is rectifiable oscillatory on $[0,1]$ if $y(x)$ oscil-
lates near $x=0$ and length $G(y)<\infty$ . A $fi\iota nctiony(x)$ is unrectifiable oscillatory on
$[0,1]$ if $y(x)$ oscillates near $x=0$ and length $G(y)=\infty$ .

EXAMPLE 1. All solutions ofthe Euler equation

$y”+\lambda x^{-2}y=0,$ $x\in(0,1],$ $\lambda>1/4$ ,

are rectifiable oscillatory on $[0,1]$ , where $y(x)$ are explicitly given by:

$y(x)=c_{1}\sqrt{x}\cos(\rho\ln x)+c_{2}\sqrt{x}\sin(p\ln x),$ $\rho=\sqrt{\lambda-1}/4$ .

EXAMPLE 2. All solutions $y(x)$ ofthe linear equation,

$y”+\lambda x^{-4}y=0,$ $x\in(0,1],$ $\lambda>0$ ,

are unrectffiable oscillatory on $[0,1]$ , where $y(x)$ are explicitly given by:

$y(x)=c_{1}x\cos(\sqrt{\lambda}/x)+c_{2}x\sin(\sqrt{\lambda}/x)$ .
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3. Rectifiable and unrectiflable oscillations of linear differential equations

According to Examples 1 and 2, it is namraly to pose the following questions:
what is about the rectffiable and unrectffiable oscillations of the linear second-order
differential equation ofEuler type:

$y”+\lambda x^{-\sigma}y=0,$ $x\in(0,1]$ , (2)

where $\lambda>0$ and $\sigma\geq 2$ ? Does it depend on the values of $\sigma$ ? In particular for $\sigma=2$

and $\sigma=4$ , the answer is given in Examples 1 and 2. However, a complete answer to
this question is given in the following result.

THEOREM 1. We have:
(i) if $2\leq\sigma<4$ , then all solution ofEq. (2) are rectifiable oscillatory on $[0,1]$ ;
(ii) if $\sigma\geq 4$ , then all solution ofEq. (2) are unrectifiable oscillatory on $[0,1]$ .

The proof of Theorem 1 was published in [8] and [15]. Precisely, Theorem 1
in [8] was considered where the following properties of solutions $y(x)$ of Eq. (2) are
presumed:

$|y(x)|\leq cx^{\sigma/4}$ and $|y^{f}(x)|\leq cx^{-\sigma/4}$ near $x=0$ .

In [15], the previous statement is verified for all solutions of the equation Eq. (2), see
also Lemma 4 below.

The proofofTheorem 1 is based on the following two lemmas.

LEMMA 1. (see [8]) Let $y\in C([0,1])$ oscillate near $x=0$ . Let $s_{n}\in(0,1]$ be a
decreasing sequence, $s_{n^{\backslash }\searrow}0$ and $y^{f}(s_{n})=0$ . Then we have:

length $G(y)<\infty$ ifand only if $\sum_{n=1}^{\infty}|y(s_{n})|<\infty$ .

LEMMA 2. Let $y(x)$ be a solution of Eq. (2). Let $s_{n}\in(0,1]$ be a decreasing
sequence, $s_{n}\searrow 0$ and $y’(s_{n})=0$ . Then there are two positive constants $c_{1}$ and $c_{2}$

such that:
(i) (see [15])

$c_{1}s_{n}^{\sigma/4}\leq|y(s_{n})|\leq c_{2}s_{n}^{\sigma/4}(i. e. |y(s_{n})|\sim s_{n}^{\sigma/4})$,

(ii) (see [8])

$c_{1}n^{-2/(\sigma-2)}\leq s_{n}\leq c_{2}n^{-2/(\sigma-2)}(i. e. s_{n}\sim n^{-2/(\sigma-2)})$ .

Involving the precise asymptotic behaviour of $s_{n}$ and $|y(s_{n})|$ from Lemma 2 into Lemma
1, we get the proofofTheorem 1.

The result of Theorem 1 could be generalized to the general linear differential
equations:

$y”+f(x)y=0,$ $x\in(0,1]$ , (3)
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where $f\in C^{2}((0,1])$ satisfies:

$f(x)>0$ and $f’(x)<0$ on $(0,1],$ $f(O+)=\infty$ , (4)

$\sqrt{f}\not\in L^{1}(0,1)$ and $f^{-1/4}(f^{-\iota/4})’’\in L^{1}(0,1)$ . (5)

THEOREM 2. Let $f(x)$ satisff the conditions (4) and (5). Then all solutions of
Eq. (3) oscillate near $x=0$ . Moreover

length $G(y)<\infty\iota f$and only if $\int_{0+}^{1}\sqrt[4]{f(x)}dx<\infty$ .

The proof of Theorem 2 was published in [4]. It is based on the following three
lemmas.

LEMMA 3. (see the book [1]) Let $y\in C([0,1])$ . Then we have:

length $G(y)<\infty$ ifand on$ly$ if $\int_{0+}^{1}|/(x)|dx<\infty$ .

LEMMA 4. (see [15]) Let $f(x)$ satisff (4) and (5). There is a positive constant
$c$ such thatfor all solutions ofEq. (3) we have:

$|y(x)| \leq\frac{c}{\sqrt[4]{f(x)}}$ and $|y’(x)|\leq c\sqrt[4]{f(x)}$ nearx $=0$ .

LEMMA 5. Let $y(x)$ be a solution of Eq. (3). Let $s_{n}\in(0,1]$ be a decreasing
sequence, $s_{n}\searrow 0$ and $y’(s_{n})=0$ . There are $c_{1}>0$ and $n_{0}\in \mathbb{N}$ such that

$\frac{c_{1}}{\sqrt[4]{f(s_{n})}}\leq[\gamma(s_{n})|,$
$\forall n\geq n_{0}$ and $\int_{s_{n}}^{1}\sqrt{f(x)}dx\sim n$ as $narrow\infty$ .

It is not difficult to check that the fimction $f(x)=x^{-\sigma},$ $x\in(0,1]$ and $\sigma>2$ ,
satisfies the conditions (4) and (5). Moreover,

$\int_{0+}^{1}\sqrt[4]{f(x)}dx<\infty$ if and only if $\sigma<4$ .

Hence, Theorem 1 is an easy consequence ofTheorem 2.

4. Some consequences of Theorem 2

Accordin$g$ to Theorem 2, we are able to establish the rectffiable and unrectifiable
oscillations for some classes of linear differential equations which are different than the
Euler type Eq. (2).

133



COROLLARY 1. Let $f(x)$ satisff the conditions (4) and (5). Let $f(x)\sim x^{-\sigma}$

near $x=0$ . Then we have:
(i) if $2\leq\sigma<4$ , then all solution $ofy”+f(x)y=0,$ $x\in(0,1]$ , are rectifiable oscillatory
on the interval $[0,1]$ ;
(ii) if $\sigma\geq 4$ , then all solution of$y”+f(x)y=0,$ $x\in(0,1]$ , are unrectifiable oscillatory
on the interval $[0,1]$ .

COROLLARY 2. We consider thefollowing chirp ’s equation

$y”+x^{-2}[\beta^{2}x^{-2\beta}+(1-\beta^{2})/4]y=0,$ $x\in(0,1]$ . (6)

Then we have:
(i) if $0<\beta<1$ , then all solution ofEq. (6) are rectifiable oscillatory on $[0,1]$ ;
(ii) if $\beta\geq 1$ , then all solution ofEq. (6) are unrectifiable oscillatory on $[0,1]$ .

COROLLARY 3. (see Wong [15]) We consider thefollowing linear equation

$y”+\lambda x^{-4}e^{\frac{2}{X}}y=0,$ $x\in(0,1],$ $\lambda>0$ . (7)

Then all solution ofEq. (7) are unrectifiable oscillatory on $[0,1]$ .

5. On Hartman-Wintner conditions

Let us recall that the Hamnan-Winmer conditions (5) plays the esential role in the
proof of Theorem 2. Therefore, it is worthile to find the answer to the following open
question: does it possible to construct the coefficient $f(x)$ satisfying (4) and the first
Hartman-Wintner condition ffom (5) but does not satisfy the second one ffom (5) ?
That is to say, we would like to find $f(x)$ with the following properties:

$f(x)>0$ and $f’(x)<0$ on $(0,1],$ $f(O+)=\infty$ , (8)

$\sqrt{f}\not\in L^{1}(0,1)$ and $f^{-1/4}(f^{-1/4})’’\not\in L^{1}(0,1)$ . (9)

In the solving ofthis problem, we find that the following lemma could be of some
interest.

LEMMA 6. Let $f(x)$ satisff (8) and the secondHartman-Vflntner conditionfrom
(5). Then $f(x)$ must satisfi the first Hartman-Wmtner condition fivm (9) and the
following two:

$\lim_{xarrow 0}\Gamma^{3}2(x)f(x)=0$ and $[\Gamma^{3}2f]’\in L^{1}(0,1)$ .

In order to prove this lemma, we suggest reader to follow a method presented in the
proofof [11, Lemma 2].
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6. Coexistence of the rectiflable and unrectifiable oscillations

According to Theorem 2, we observe the following consequence.

COROLLARY 4. Let $f(x)$ satisfy the condition (4) and (5). Let $y_{1}(x)$ and $y_{2}(x)$

be two linearly independent solutions of$y”+f(x)y=0,$ $x\in(0,1]$ . Then $y_{1}(x)$ and
$y_{2}(x)$ are both rectifiable oscillatory on $[0,1]$ at the same time.

Hence it is reasonable to pose the following question: it is possible to constmct
the coefficient $f(x)$ satisfying (8) and (9) such that $y_{1}(x)$ is rectffiable and at the same
time $y_{2}(x)$ is unrectffiable oscillatory on the interval $[0,1]$ ?

The answer is yes and it could be found in the last section of [4].

7. Rectifiable and unrectifiable oscillations of solutions of the half-linear
differential equations

In this section, we consider half-linear differential equation,

$(|y’|^{p-2}y’)’+f(x)|y|^{p-2}y=0,$ $x\in(0,1]$ , (10)

where $f(x)$ besides (4) satisfies the following Hartman-Wintner type conditions gen-
eralizing the related ones in (5) from $p=2$ to $p>1$ :

$f^{\frac{1}{p}}\not\in L^{1}(0,1)$ and $f^{-\frac{1}{pq}}[f^{-2^{1}}p]’’\in L^{1}(0,1)$ . (11)

In particular for $p=2$ , obviously Eq. (10) becames the linear equation Eq. (3) consid-
ered in previous sections. The following result is a natural generalization ofTheorem 2
from linear to the half-linear equations.

THEOREM 3. Let $f(x)>0$ and $f’(x)<0$ on $(0,1],$ $f(O+)=\infty$ andsatisfy (11).
Then all solutions ofEq. (10) oscillate near $x=0$ . Moreover,

length $G(y)<\infty\iota f$and only $\iota f\int_{0+}^{1}f^{\frac{1}{p^{2}}}(x)dx<’\infty$ .

The proof of Theorem 3 has been published in [11]. It is based on the follwing
two steps.

First step. Every solution $y(x)$ ofEq. (10) could be written in the form:

$y(x)=(p-1)^{\frac{1}{pq}}\Gamma^{\frac{1}{pq}}(x)\nabla^{\frac{1}{p}}(x)w(\varphi(x))$ ,

$|/|^{p-2}y’=-(p-1)^{-\frac{1}{pq}}f^{\frac{1}{pq}}(x)\nabla^{\frac{1}{q}}(x)|w’(\varphi(x))|^{p-2}w^{f}(\varphi(x))$ ,

where the fimction $w=w(t),$ $t>0$ , is the so-called generalized sine hnction,

$(|w’(x)|^{p-2}w’(x))’+(p-1)|w(x)|^{p-2}w(x)=0,$ $w(O)=0,$ $w’(0)=1$ ,
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$|\sqrt{}(t)|^{p}+|w(t)|^{p}\equiv 1$ for all $t>0$ .
Second step. It is important to show that the ffinctions $V(x)$ and $\varphi(x)$ satis$\theta$ the

equations:

$\varphi’(x)=\frac{-1}{(p-1)^{\frac{1}{p}}}f^{\frac{1}{p}}(x)+\frac{1}{p}\frac{f(x)}{f(x)}|\sqrt{}(\varphi(x))|^{p-2}w’(\varphi(x))w(\varphi(x))$
,

$V’(x)=[(p-1)^{\frac{1}{p}}\Gamma^{\frac{1}{p}}(x)]’|y’|^{p}+[(p-1)^{-\frac{1}{q}}f^{\frac{1}{q}}(x)]’|y|^{p}$,

and the following asymptotic conditions:

$\varphi’(x)<0$ for all $x\in(0,1]$ and $\lim_{xarrow 0+}\varphi(x)=\infty$ ,

$0< \lim_{xarrow 0+}\nabla(x)<+\infty$ .

Now, according to the previous two steps and by using the same geometric lemmas
as in the ofTheorem 2, one can derive the proofofTheorem 3.

8. Further generalization: two-point oscillations

In this section, we present the oscillations of solutions ofthe $D\ddot{m}chlet$ problem on
the unit interval which was introduced in [12].

DEFINITION 3. A fimction $y(x)$ is two-point oscillatory on $[0,1]$ if$y(x)$ oscillates
at the same time near $x=0$ and $x=1$ . That is, if there is a decreasing sequence
$a_{n}\in$ $(0,1]$ and increasing sequence $b_{n}\in[0,1)$ such that: $a_{n}\searrow 0,$ $b_{n}\nearrow 1$ , and $y(a_{n})=$

$y(b_{n})=0$ , see figure below:

Figure 3: two-point oscillations with higher density near $x=0$ and $x=1$

The main motivation to study this kind of oscillations we obtain ffom the oscilla-
tions ofthe so-called Riemann-Weber version ofEuler linear differential equation,

$y”+x^{-2}( \frac{1}{4}+\frac{\lambda}{|\ln x|^{2}})y=0,$ $x\in(0,1),$ $\lambda>0$ . (12)

About this equation it is known:
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$\bullet$ if $\lambda>1/4$ , then all solutions $y(x)$ of (12) are given by the fonnula:

$y(x)=\sqrt{x\ln\frac{1}{x}}[c_{1}\cos$ ( $p$ ln ln $\frac{1}{x}$ ) $+c_{2}\sin$ ($p$ ln ln $\frac{1}{x}$ ) $]$ ,

where $p=\sqrt{\lambda-1}/4$ ;

$\bullet$ $y(x)$ are oscillating near $x=0$ and $x=1$ at the same time.

9. The existence of two-point oscillations

We start with two linearly independent fimctions $y_{1}(x)$ and $y_{2}(x)$ in the form:

$y1(x)=|q’(x)|^{-}2\cos q(x)1$ and $y_{2}(x)=|q’(x)|^{-z}\sin q(x)l$ .

It is not difficult to see that the equation which corresponds to the hndamental set of
solutions $y(x)=c_{1}y_{1}(x)+c_{2}y_{2}(x)$ , it is:

$y”+[ \frac{1}{2}S(q’)(x)+(q’)^{2}(x)]y=0,$ $x\in(O, 1)$ , (13)

where $S(q’)(x)$ denotes as usual the Schwarzian derivative of $q(x)$ defined by

$S(q’)(x)= \frac{q’’’(x)}{q’(x)}-\frac{3}{2}[\frac{q’’(x)}{q’(x)}]^{2},$ $x\in(0,1)$ .

THEOREM 4. Let $q(x)$ satisff thefollowing condition:

$q\in C^{3}(0,1)$ , (14)

$|q(0+)|=|q(1-)|=+\infty$ and $|q^{f}(0+)|=|q^{f}(1-)|=+\infty$, (15)

$q’(x)<0$ for all $x\in(O, 1)$ and $S(q’)\in C(O, 1)$ . (16)

Then all solutions ofEq. (13) are two-point oscillatory on $(0,1)$ . Moreover, for any
function $f\in C(O, 1)$ such that

$f(x) \geq[\frac{1}{2}S(q’)(x)+(q’)^{2}(x)],$ $x\in(O, 1)$ ,

then all solutions ofthe equation $y”+f(x)y=0,$ $x\in(0,1)$ , are two-point oscillatory
on $[0,1]$ .

The proofof this theorem has been published in [12].
Some classes ofthe frequences $q(x)$ which satis$\theta(14),$ (15), and (16) are given

in the following pictures:
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a logarithmic class: $q(x)=\rho$ lnln $\frac{1}{X},$
$\rho=\sqrt{\lambda-\frac{1}{4}}$ a polynomial class: $q(x)= \frac{1-2r}{(x-x^{2})^{\beta}},$ $\beta>0$

10. Some consequences of Theorem 4

COROLLARY 5. Let $\rho=\sqrt{\lambda-\frac{1}{4}}$ and $\lambda>\frac{1}{4}$ . Then all solutions ofRiemann-

Weber equation (13) are two-point oscillatory on $[0,1]$ .

Proof. The fimction $q(x)=p$ lnln $\frac{1}{X}$ satisfies the conditions (14), (15), and (16).

Moreover,
$\frac{1}{2}S(q’)(x)+(q^{f})^{2}(x)=x\urcorner 1(\frac{1}{4}+\frac{\lambda}{|\ln x|^{2}})$ ,

and thus:

$y”+ \frac{1}{x^{2}}(\frac{1}{4}+\frac{\lambda}{|\ln x|^{2}})y=y’’+[\frac{1}{2}S(q’)(x)+(q’)^{2}(x)]y=0,$ $x\in(0,1)$ .

Hence by Theorem 4, all solutions of Riemann-Weber equation (13) are two-point
oscillatory on $[0,1]$ . Q. E. D.

COROLLARY 6. Let $c(x)$ be smooth andpositive on $[0,1]$ and let $\sigma>2$ . Then
all solutions ofthe equation;

$y”+ \frac{c(x)}{(x-x^{2})^{\sigma}}y=0,$ $x\in(0,1)$ , (17)

are two-point $oscillato,y$ on $[0,1]$ .

Proof At the first, the ffinction $q(x)= \frac{1-2\mathfrak{r}}{(x-x^{2})^{\beta}},$ $\beta>0$ , satisfies the conditions

(14), (15), and (16). Since $c(x)>0$ and $\sigma>2$ , there is an $\beta>0$ and $m>0$ such
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that $2\beta+2<\sigma$ and

$f(x):= \frac{c(x)}{(x-x^{2})^{\sigma}}\geq\frac{m}{(x-x^{2})^{2\beta+2}}\geq[\frac{1}{2}S(q’)(x)+(q’)^{2}(x)]$ ,

where $q(x)= \frac{1-2\mathfrak{r}}{(x-x^{2})^{\beta}}$ . Hence by Theorem 4, all solutions of Eq. (17) are two-point
oscillatory on $[0,1]$ . Q. E. D.

COROLLARY 7. Let $c(x)$ be a continuousfunction on $[0,1]$ such that $c(x)\geq 1$

for all $x\in(0,1)$ . Then all solutions ofthe equation:

$y”(x)+c(x)e^{\frac{4}{x-x^{2}}}y(x)=0,$
$x\in(O, 1)$ , (18)

are two-point oscillatory on $[0,1]$ .

Proof. The fimction $q(x)=(1-2x)e^{\frac{1}{x-x^{2}}}$ satisfies the conditions (14), (15), and
(16). Now, we have:

$f(x):=c(x)e^{\frac{4}{x-x^{2}}} \geq\frac{e^{\chi-X}=^{2}}{(x-x^{2})^{4}}\geq[\frac{1}{2}S(q’)(x)+(q’)^{2}(x)]$ ,

where $q(x)=(1-2x)e^{\frac{1}{x-x^{2}}}$ . Hence by Theorem 4, all solutions of Eq. (18) are two-
point oscillatory on $[0,1]$ . Q. E. D.

11. Two-point rectifiable and unrectifiable oscillations

DEFINITION 4. A Rmction $y(x)$ is two-point rectifiable oscillatory on $[0,1]$ if
$y(x)$ is two-point oscillatoiy on $[0,1]$ and length $G(y)<\infty$ . A hnction $y(x)$ is two-
point unrectifiable oscillatory on $[0,1]$ if $y(x)$ is two-point oscillatory on $[0,1]$ and
length $G(y)=\infty$ .

THEOREM 5. Let $q(x)$ satisff the previous conditions (14), (15), and (16).
There holds true:

(i) $\iota f(|q’|^{-2}3|q’’|+|q’|^{1}z)\in L^{1}(0,1)$ , then all solutions ofEq. (13) are two-point rectifi-
able oscillatory on $(0,1),\cdot$

(ii) $\iota f|q’(x)|^{-1}$ is increasing near $x=0$ anddecreasing near $x=1$ and the series,

$\sum_{k}|q’(q^{-1^{1}}(k\pi))|^{-z}$ $or$ $\sum_{k}|q’(q^{-1}(-k\pi))|^{-z^{1}}$

is divergent, then all solutions ofEq. (13) are two-point unrectifiable $oscillato,y$ on
$(0,1)$ .

The main consequence ofTheorem 5 is the following.
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COROLLARY 8. Let $c(x)$ be smooth andpositive on $[0,1]$ . We have:

(i) if $\sigma\in(2,4)$ , then equation (17) is two-point rectifiable oscillatory on $[0,1]$ .

(ii) if $\sigma\geq 4$ , then equation (17) is two-point unrectifiable oscillatory on $[0,1]$ .

The proofs ofTheorem 5 and Corollary 8 have been published in [12].

12. Motivation to introduce and study the so-called fractal oscillations

In the application (acoustic, telecomunication, signal processing etc.), a signal is
called chirp if its ffequence is growing up or down in the time:

Figure 4: the $(\alpha,\beta)$ -chirp: $y(x)=x^{\alpha}\cos(x^{-\beta})$ or $y(x)=x^{\alpha}\sin(x^{-\beta})$

On the rectffiable and unrectffiable oscillations ofthe $(\alpha,\beta)$ -chirp one can say the
following.

THEOREM 6. (see the book [14]) Let $y(x)$ be the $(\alpha,\beta)$ -chirp, that is, $y(x)=$
$x^{\alpha}\cos(x^{-\beta})$ or $y(x)=x^{\alpha}\sin(x^{-\beta})$ . Then we have:

lengthG$(y)=\infty$ $\Leftrightarrow$ $\beta\geq\alpha$ .

How to estimate the density of an area filled by a chirp near $x=0$ , see figure
above? In order to give the answer to this question, we need to recall some notions ffom
the ffactal geometry of plane curves like the $\epsilon$ -neighbourhood, Minkowski-Bouligand
dimension (box dimension) and the s-dimensional Minkowski content of the graph
$G(y)$ denoted respectively by $G_{\epsilon}(y),$ $\dim_{M}G(y)$ and $M^{s}(G(y))$ , and defined respec-
tively by:

$G_{\epsilon}(y)=\{(t_{1},t_{2})\in \mathbb{R}^{2} : d((t_{1},t_{2}),G(y))\leq\epsilon\}$ ,

$\dim_{M}G(y)=\lim_{\epsilonarrow 0}(2-\frac{\log|G_{\epsilon}(\gamma)|}{\log\epsilon})$ ,

$W(G(y))= \lim_{\epsilonarrow 0}(2\epsilon)^{s-2}|G_{\epsilon}(y)|,$ $s\in[1,2]$ .

Let us remark that in the general case, in previous definitions it is required the tenn
’ $\lim$ ’ to replace by ’ lim sup‘.
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It is $elemental\gamma$ to obtain the following properties:

(i) $|G_{\epsilon}(y)|arrow 0$ as $\epsilonarrow 0$ and the density ofan area filled by $G(y)$ is equivalent to the
asymptotics of $|G_{\epsilon}(y)|$ as $\epsilonarrow 0$ ;

(ii) $\dim_{M}G(y)=s,$ $0<M^{s}(G(J))<\infty$ $\Leftrightarrow|G_{\epsilon}(y)|\sim\epsilon^{2-s}$ as $\epsilonarrow 0$ .
Now, the density of an area filled by a chirp near $x=0$ , it could be described by

the following result.

THEOREM 7. (see the book [14]) Let $y(x)$ be the $(\alpha,\beta)$ -chirp, that is, $y(x)=$
$x^{\alpha}\cos(x^{-\beta})$ or $y(x)=x^{\alpha}\sin(x^{-\beta})$ . Then we have:

$\dim_{M}G(y)=2-\frac{1+\alpha}{1+\beta}$ and $|G_{\epsilon}(y)|\sim\epsilon^{\frac{1+\alpha}{1+\beta}}$ as $\epsilonarrow 0$ .

Let us remark that the box dimension satisfies the following axiomatic properties.
That is, if $P(\mathbb{R}^{2})$ denotes the partitive set of $\mathbb{R}^{2}$ , then we have:

(i) $\dim_{M}:P(\mathbb{R}^{2})arrow[1,2]$ ;

(ii) if $E\subseteq F$ , then $\dim_{M}(E)\leq\dim_{M}(F)$ (monotonicity);

(iii) $\dim_{M}(E\cup F)=\max\{\dim_{M}(E),\dim_{M}(F)\}$ (finite stability);

(iv) if $f$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ is a bi-Lipschitz transformation, then for all $E\subseteq \mathbb{R}^{2}$ ,
$\dim_{M}(f(E))=\dim_{M}(E)$ (bi-Lipschitz invariance).

13. Fractal oscillations of real functions

Now, we recall the definition of the so-called fractal oscillations of real hnctions
introduced in [9].

DEFINITION 5. Let $s\in[1,2]$ . A hnction $y(x)$ is the $s-dimensionalfi^{d}actal$ oscil-
latory on $[0,1]$ if$y(x)$ oscillates near $x=0$ and $\dim_{M}G(y)=s$ and $0<W(G(y))<\infty$ .
A fUnction $y(x)$ is called to befractal oscillatory on $[0,1]$ ifthere is an $s\in[1,2]$ such
that $y(x)$ is the s-dimensionalfractal oscillatory on $[0,1]$ .

THEOREM 8. (a generalization of Theorem 7) Let $y(x)$ be the $(\alpha,\beta)$ -chirp, that
is, $y(x)=x^{\alpha}\cos(x^{-\beta})$ or $y(x)=x^{\alpha}\sin(x^{-\beta})$ . Then we have:
(i) if $\alpha>\beta>0$ , then $y(x)$ is the l-dimensionalfractal oscillatory on $[0,1],\cdot$

(ii) if $\alpha=\beta>0$ , then $y(x)$ is notfractal oscillatory on $[0,1]$ , since $\dim_{M}G(y)=1$
and $M^{1}(G(y))=\infty$ ;
(iii) $lf0<\alpha<\beta$ , then $y(x)$ is the s-dimensionalfractal oscillatory on $[0,1]$ , where
the dimensional number $s$ satisfies $s=2- \frac{1+\alpha}{1+\beta}$ .

141



14. Fractal oscillations of linear differential equations

Such a kind ofresults presented in Theorem 8, it could be also verified to the case
of all solutions of linear differential equations of second-order.

DEFINITION 6. Let $s\in[1,2]$ be an arbitrarily given real number. A linear equa-
tion $(P):y”+f(x)y=0$ is said to be the s-dimensional ffactal oscillatory on $[0,1]$ , if
all its solutions $y(x)$ are the s-dimensionalfractal oscillatory on $[0,1]$ .

We know that:
$\bullet$ Euler equation

$y”+\lambda x^{-2}y=0,$ $x\in(0,1],$ $\lambda>1/4$ ,

is the l-dimensionalffactal oscillato $y$ on $[0,1]$ ;
$\bullet$ The (2, 3)-chirp equation,

$y”+(9x^{-8}-2x^{-2})y=0,$ $x\in(O, 1]$ ,

is the s-dimensional ffactal oscillatory on $[0,1]$ , where $s=5/4$ .
What is about the ffactal oscillations of the linear second-order differential equa-

tion ofEuler type:
$y”+\lambda x^{-\sigma}y=0,$ $x\in(O, 1]$ , (19)

where $\lambda>0$ and $\sigma\geq 2$ ? Does it depend on the values of $\sigma$ ? The answer is given in
the following result.

THEOREM 9. We have:
(i) $\iota f2\leq\sigma<4$ , then Eq. (19) is the l-dimensionalfractal oscillatory on $[0,1],\cdot$

(ii) if $\sigma=4$ , then Eq. (19) is notfractal oscillatory on $[0,1]$ , since $\dim_{M}G(\gamma)=1$ and
$M^{1}(G(y))=\infty$ ;

(iii) if $\sigma>4$ , then Eq. (19) is the s-dimensionalfiactal oscillatory on $[0,1]$ , where the
dimensional number $s$ satisfies $s= \frac{3}{2}-\frac{2}{\sigma}$ .

REMARK 1. For $\sigma=4$ we have a kind ofthe s-dimensional Minkowski degener-
ation. That is, the equation, $y”+\lambda x^{-4}y=0,$ $x\in(0,1],$ $\lambda>0$ , is not ffactal oscillatory
on $[0,1]$ , since $\dim_{M}G(y)=1$ and $M^{1}(G(y))=\infty$ for all solutions $y(x)$ . That is, $G(y)$

is not $M^{1}$ measurable.

The proofofTheorem 9 has been published in [9].
Next, we consider the linear second-order differential equation:

$y”+f(x)y=0,$ $x\in(0,1]$ , (20)

where $f\in C^{2}((0,1])$ satisfies:

$f(x)>0$ and $f^{f}(x)<0$ on $(0,1],$ $f(O+)=\infty$ , (21)

$\sqrt{f}\not\in L^{1}(0,1)$ and $f^{-1/4}(f^{-1/4})’’\in L^{1}(0,1)$ . (22)
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THEOREM 10. Let $f(x)sa\hslash sff$ the conditions (21) and (22), andlet $f(x)\sim x^{-\sigma}$

near $x=0$ . Then we have:
(i) $\iota f2\leq\sigma<4$ , then Eq. (20) is the l-dimensionalfractal oscillatory on $[0,1],\cdot$

(ii) $lf\sigma=4$ , then Eq. (20) is notffactal oscillatory on the interval $[0,1]$ , since $\dim_{M}G(y)=$
$1$ and $M^{1}(G(y))=\infty$ ;
(iii) $\iota f\sigma>4$ , then Eq. (20) is the s-dimensionalfractal oscillatory on $[0,1]$ , where the
dimensional number $s$ satisfies $s= \frac{3}{2}-\frac{2}{\sigma}$ .

The proofofTheorem 10 has been published in [4].
As a consequence we observe a generalization ofTheorem 8.

COROLLARY 9. We consider the $(\alpha,\beta)$ -chirp equation:

$y”+( \frac{\beta^{2}}{x^{2\beta+2}}+\frac{1-\beta^{2}}{4x^{2}})y=0,$ $x\in(0,1]$ , (23)

where $\alpha=(\beta+1)/2$ . Then we have:
(i) $\iota f0<\beta<1$ , then Eq. (23) is the l-dimensionalfractal oscillatory on $[0,1],\cdot$

(ii) if $\beta=1$ , then Eq. (23) is notfractal oscillatory on $[0,1]$ , since $\dim_{M}G(y)=1$ and
$M^{1}(G(y))=\infty$ ;
(iii) $tf\beta>1$ , then Eq. (23) is the s-dimensionalfractal oscillatory on $[0,1]$ , where the
dimensional number $s$ satisfies $s= \frac{3}{2}-\frac{1}{\beta+1}$ .

15. What is the essences in the fractal oscillations?

The following statements are equivalent:

(i) $y(x)$ is fractal oscillatory on $[0,1]$ ;
(ii) there is an $s\in[1,2]$ such that:

$\dim_{M}G(y)=s$ and $0<M^{\theta}(G(J))<\infty$ ;

(iii) $|G_{\epsilon}(y)|\sim\epsilon^{2-s}$ when $\epsilonarrow 0$ , that is, there are $c_{1},c_{2}>0$ such that:

$c_{1}\epsilon^{2-s}\leq|G_{\mathcal{E}}(J)|\leq c_{2}\epsilon^{2-s}$ for small $\epsilon>0$ .

Hence, in order to prove that an oscillatory ffinction $y(x)$ is the ffactal oscillatory on
$[0,1]$ , we need to estimate $|G_{\mathcal{E}}(y)|$ from below and above by the term $\epsilon^{2-s}$ , for some
$s\in[1,2]$ . Therefore one can observe that the essential tools in the ffactal oscillations
play the following two lemmas.

LEMMA 7. (a lower bound of $|G_{\mathcal{E}}(y)|$ ) Let $y\in C([0,1])$ and let $a_{n}\in(0,1]$ be a
decreasing sequence of consecutive zeros of $y(x)$ such that $a_{n}\searrow 0$ . Then there is a
function $k:(0,\epsilon_{0})arrow N$ for some $q>0,$ $k=k(\epsilon)$ , such that:

$|a_{n}-a_{n+1}|\leq\epsilon$ for all $n\geq k(\epsilon)$ and $\epsilon\in(0,\epsilon_{0})$ , (24)
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$k(\epsilon)$ is increasing and $k(\epsilon)arrow\infty$ as $\epsilonarrow 0$ .
Moreover, for anyfunction $k(\epsilon)$ satisffing (24) and (25), we have

(25)

$\sum_{n=k(\epsilon)^{X}}^{\infty}\max_{\in[a_{n+1}a_{n}]},|y(x)|(a_{n}-a_{n+1})\leq|G_{\epsilon}(y)|$ for small $\epsilon>0$ . (26)

The proof of Lemma 7 was published in [4, Appendix] and in a corresponding integral
form in [7, Section 2].

REMARK 2. Obviously, the term $\max_{x\in[a_{n+1},a_{n}]}|y(x)|$ in (26) could be replaced
by weaker one: $[\gamma(s_{n})|$ , where $s_{n}\in[a_{n+1},a_{n}]$ .

LEMMA 8. (an upper bound of $|G_{\epsilon}(y)|$ ) Let $y\in C([0,1])\cap C^{2}((0,1]),$ $y(O)=0$

and let $a_{n}\in(0,1]$ be a decreasing sequence ofinflexion-points of$y(x)$ such that $a_{n}\searrow$

$0$ . Then there is afunction $m:(0,\epsilon_{0})arrow N$ for some $\mathfrak{g}\in(0,1),$ $m=m(\epsilon)$ , such that:

$|a_{n}-a_{n+1}|\geq 4\epsilon$ for all $n=1,2,$ $\ldots,m(\epsilon)$ and $\epsilon\in(0,\epsilon_{0})$ , (27)

$m(\epsilon)$ is increasing and $m(\epsilon)arrow\infty$ as $\epsilonarrow 0$ . (28)

Next, there is apositive constant $M>0$ such thatfor anyfunction $m(\epsilon)$ satisfiing (27)
and (28), we have

$|G_{\epsilon}(y)| \leq M[\epsilon+a_{m(\epsilon)}\max_{x\in[0,a_{m(\epsilon)}]}|y(x)|]$

$+M[ \epsilon\sum_{n=2^{X}}^{m(\epsilon)}\max_{a_{n}\in[a_{n+1}]},|y(x)|+\epsilon^{2}m(\epsilon)]$ for small $\epsilon>0$ .

The proof of Lemma 7 was published in [7, Section 2] in the special case when the
boundary curves of $G_{\epsilon}(y)$ are regular.

16. Open problem $A$ : fractal oscillations of self-adjont linear differential
equations

In this section, we consider the self-adjont equation:

$(p(x)y’)’+q(x)y=0,$ $x\in(O, 1]$ , (29)

where $y\in C([0,1])\cap C^{2}((0,1])$ and the coefficients $p(x)$ and $q(x)$ satis$\theta$ :

$p\in C^{1}([0,1]),$ $p(x)>0$ and $p’(x)\geq 0$ on $(0,1]$ , (30)

$q\in C^{2}((0,1]),$ $q(x)>0$ and $q’(x)<0$ on $(0,1],$ $q(O+)=\infty$ , (31)

and satisify the following Hartman-Wintner type conditions:

$\sqrt{\frac{q}{p}}\not\in L^{1}(0,1)$ and $\frac{1}{\sqrt[4]{pq}}(p(\frac{1}{\sqrt[4]{pq}})^{f})’\in L^{1}(0,1)$ . (32)

We can propose the following conjecture.
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CONJECTURE 1. Let the functions $p(x)$ and $q(x)$ satisff the conditions (30),
(31) and (32), and let

$p(x)\sim x^{\mu}$ and $q(x)\sim x^{-\sigma}$ near $x=0$ ,

where $\mu\geq 0,$ $\sigma>0,$ $\sigma+\mu>2$ , and $\sigma-\mu>-4$ . Then the equation

$(p(x)y’)’+q(x)y=0,$ $x\in(0,1]$ ,

is the $s-$ dimensionalfractal oscillatory on $[0,1]$ , where the dimensional number $s$

satisfies: $s= \frac{3}{2}+\frac{\mu-2}{\sigma+\mu}$ .

It is clear that Conjecture 1 in particular for $p(x)\equiv 1,$ $q(x)=f(x),$ $\mu=0$ , and
$\sigma=\sigma$ , generalizes both Theorem 9 and Theorem 10 on the fractal oscillations ofthe
equation $y”+f(x)y=0,$ $x\in(0,1]$ .

When Conjecture 1 is verified, then we have the following consequence.

COROLLARY 10. (a conditional consequence of Conjecture 1) Let $f(x)>0$ and
$f(x)<0$ on $(0,1],$ $f(O+)=\infty$ and satisff the Hartman-Wintner type conditions:

$\sqrt{f}\not\in L^{1}(0,1)$ and $f^{-\iota/4}(f^{-1/4})’’\in L^{1}(0,1)$ .

If $\mu\geq 0$ and $f(x)\sim x^{-\sigma},$ $\beta\geq 1$ , then the linear equation:

$y”+\mu x^{-1}y^{f}+f(x)y=0,$ $x\in(O, 1]$ ,

is the s-dimensionalfractal oscillatory on $[0,1]$ , where the dimensional number $s=$
$\frac{3}{2}+\frac{\mu-2}{\sigma}$ .

It is clear that previous conditional consequence of Conjecture 1 in particular for
$\mu=0$ , generalizes both Theorem 9 and Theorem 10 on the fractal oscillations of the
equation $y”+f(x)y=0,$ $x\in(0,1]$ . Also, it motivates a study presented in the following
section.

Some results on the Conjecture 1 will appear in a forthcoming paper [10].

17. Open problem $B$ : fractal oscillations of linear differential equations with
damping term

What kind of asymptotic properties near $x=0$ are proposed to the coefficients
$f(x)$ and $g(x)$ such that the linear equation:

$y”+g(x)y’+f(x)y=0,$ $x\in(0,1]$ ,

is the s-dimensional ffactal oscillatory on $[0,1]$ for some $s\in(1,2]$ ?
A motivation to solve this problem we find in the book [14], which could be for-

mulated in this way: if $0<\alpha<\beta$ , then the $(\alpha,\beta)$ -chirp equation:

.
$y”+ \frac{\beta-2\alpha+1}{x}y’+(\frac{\beta^{2}}{x^{2\beta+2}}-\frac{\alpha(\beta-\alpha)}{x^{2}})y=0,$ $x\in(0,1]$ .

is the s-dimensional ffactal oscillatory on $[0,1]$ , where $s=2- \frac{\alpha+1}{\beta+1}$ .
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18. Open problem $C$ : rectifiable and unrectifiable oscillations of radially
symmetric solutions of some pde’s

Let $N\geq 2$ and let $B=\{x\in \mathbb{R}^{N}:|x|<1\}$ be a unit ball centered at the origin with
its boundary $\partial B$ .

DEFINITION 7. A fimction $u:B\backslash \{0\}arrow \mathbb{R}$ is said to be radially symmetric if
there is a Rmction $y=y(r),$ $y:(0,1]arrow \mathbb{R}$ such that $u(x)=y(|x|),$ $x\in B\backslash \{0\}$ .
A radially symmetric hnction $u:B\backslash \{0\}arrow \mathbb{R}$ is said to be oscillatory near $\partial B$ if cor-
responding fimction $y=y(r)$ oscillates near $r=1$ .
A radially symmetric function $u:B\backslash \{0\}arrow \mathbb{R}$ is said to be s-dimensional fractal
oscillatory near $\partial B$ if corresponding fimction $y=y(r)$ oscillates near $r=1$ and
$\dim_{M}G(y)=s$ and $0<M^{s}(G(y))<\infty$ , for some $s\in[0,1]$ .

EXAMPLE 3. We consider the radially symmetric solutions ofthe Dirichlet prob-
lem:

$\{\begin{array}{l}-\Delta u=\frac{\lambda}{|x|^{2}\ln^{2}|x|}u in B\backslash \{0\}\subseteq \mathbb{R}^{2}, \lambda>1/4,u=0 on\partial B.\end{array}$ (33)

All radially symmetric solutions $u(x)$ of $(3\dot{3})$ are the l-dimensional ffactal oscillatory
near $\partial B$ . It is because:

$u(x)=\sqrt{\ln\frac{1}{|x|}}[c_{1}\cos(p$ ln ln $\frac{1}{|x|})+c_{2}\sin(\rho\ln\ln\frac{1}{|x|})]$ ,

where $x\in B\backslash \{0\}\subseteq \mathbb{R}^{2},\lambda>1/4,$ $\rho=\sqrt{\lambda-1}/4$ , and $c_{1},c_{2}\in \mathbb{R}$ .

EXAMPLE 4. We consider the radially symmetric solutions ofthe $D\ddot{m}chlet$ prob-
lem:

$\{\begin{array}{l}-\Delta u=\frac{\lambda}{|x|^{2}\ln^{4}|x|}u in B\backslash \{0\}\subseteq \mathbb{R}^{2}, \lambda>0,u=0 on\partial B,\end{array}$ (34)

All radially symmetric solutions $u(x)$ of (34) are not ffactal oscillatory near $\partial B$ . It is
because:

$u(x)= \ln|x|[c_{1}\cos(\frac{\sqrt{\lambda}}{\ln|x|})+c_{2}\sin(\frac{\sqrt{\lambda}}{\ln|x|})]$ ,

where $x\in B\backslash \{0\}\subseteq \mathbb{R}^{2},$ $\lambda>0$ and $c_{1},c_{2}\in \mathbb{R}$ .

Now, we consider the one-parameter Dirichlet problem:

$\{\begin{array}{l}-\Delta u=\frac{\lambda}{|x|^{2}(-\ln|x|)^{\sigma}}u in B\backslash \{0\}\subseteq \mathbb{R}^{2}, \sigma\geq 2,u=0 on\partial B,\end{array}$ (35)

where $u\in C^{2}(B\backslash \{0\})\cap C(\overline{B}\backslash \{0\})$ and $\lambda>0$ .
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CONJECTURE 2. (the case when $N=2$ ) We have:
(i) if $2\leq\sigma<4$ , then all radially symmetric solutions $u(x)$ of Eq. (35) are the 1-
$dimensionalf’actal$ oscillatory near $\partial B$ ;
(ii) if $\sigma=4$ , then radially symmetric solutions $u(x)$ ofEq. (35) are notfiactal oscilla-
tory near $\partial B$ , since $\dim_{M}G(y)=1$ and $M^{1}(G(y))=\infty$ ;
(iii) $lf\sigma>4$ , then radially symmetric solutions $u(x)$ ofEq. (35) are the s-dimensional
fractal oscillatory near $\partial B$ , where the dimensional number $s$ satisfies $s= \frac{3}{2}-\frac{2}{\sigma}$ .

Also, we consider the one-parameter $D\ddot{m}chlet$ problem:

$\{\begin{array}{l}-\Delta u=\frac{\lambda(2-N)^{2}}{|x|^{2N-2}(|x|^{2-N}-1)^{\sigma}}u in B\backslash \{0\}\subseteq \mathbb{R}^{N},u=0 on\partial B,\end{array}$ (36)

where $u\in C^{2}(B\backslash \{0\})\cap C(\overline{B}\backslash \{0\}),$ $N\geq 3,$ $\sigma\geq 2$ and $\lambda>0$ .

CONJECTURE 3. (the case when $N\geq 3$ ) We have:
(i) $\iota f2\leq\sigma<4$ , then all radially symmetric solutions $u(x)$ of Eq. (36) are the 1-
dimensionalfractal oscillatory near $\partial B$ ;
(ii) if $\sigma=4$ , then radially symmetric solutions $u(x)$ ofEq. (36) are notfactal oscilla-
tory near $\partial B$ , since $\dim_{M}G(y)=1$ and $M^{1}(G(y))=\infty$ ;
(iii) if $\sigma>4$ , then radially symmetric solutions $u(x)$ ofEq. (36) are the s-dimensional
fractal oscillatory near $\partial B$ , where the dimensional number $s$ satisfies $s= \frac{3}{2}-\frac{2}{\sigma}$ .

For more details about two previous conjecture we propose the forthcoming paper [6].
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