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Nonlinear diffusion and geometry of domain *

Shigeru Sakaguchif
ROE IRERZE - RERTEHERD

1 Introduction

This is based on the author’s recent work with R. Magnanini [MS3]. Let 2 be a C?
domain in RY with N > 2, and let ¢ : R — R satisfy

¢ € C*R), ¢(0)=0, and 0< d; < ¢'(s) < &, for s € R, (1.1)

where §;, d; are positive constants. Consider the unique bounded solution u = u(z, t)
of either the initial-boundary value problem:

du = Ad(u) in Qx (0,400), (1.2)
u=1 on 0% x (0,+00), (1.3)
u=0 on x {0}, (1.4)

or the initial value problem:
Ou= Ap(u) in RN x (0,+00) and u=xq- on RV x {0}, (1.5)

where xqc denotes the characteristic function of the set Q¢ = RV \ Q. By the

maximum principle, we know that

0 < u < 1 either in Q x (0,+00) or in RN x (0, +00). (1.6)
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Here, we have .
/ O e = 1o (L7)
o €

which means that the equation d,u = A¢(u) has the property of infinite speed of
propagation of disturbances from rest. Let ® = ®(s) be the function defined by

d(s) = /1s (—b%g—zd{ for s > 0. (1.8)

Note that if ¢(s) = s, then ®(s) = logs. This is the case corresponding to the heat
equation. Define the distance function d = d(z) by

d(z) = dist(z,00Q) forz € Q. (1.9)

Then, in [MS2] we have a generalization of a result of Varadhan [Va] to the nonlinear

diffusion equation.

Theorem 1.1 ([MS2, Theorem 1.1 and Theorem 4.1]) Let u be the solution of either
problem (1.2)-(1.4) or problem (1.5). Then

lim —4t®(u(z,t)) = d(z)? (1.10)

t—0+

uniformly on every compact set in §.

This theorem gives us an interaction between nonlinear diffusion and geometry

of domain, since the distance function d(z) is deeply related to the geometry of .

Remark. In [MS2], only the case where 0 is bounded is treated. Here, let us
show that Theorem 1.1 holds also when 09 is unbounded.

Take any point zo € Q. For each € > 0, there exist a point 2 € R¥\Q and § > 0
such that |zo — z| < d(zo) + ¢ and B;(z) C RN \ Q, where B;(z) denotes the open
ball in R" with radius § and centered at z.

Consider problem (1.2)-(1.4) first. Let u* = u*(z,t) be bounded solutions of

the following initial-boundary value problems:
Ot = Ag(ut)  in By (zo) x (0, +00), (1.11)

ut =1 on 0By(zq)(z0) x (0, +00), (1.12)
ut =0 on Byq)(zo) % {0}, (1.13)
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and
du~ = Ag(u~) in (RN \m) x (0, +00), (1.14)
v =1 on 9Bjs(z) x (0,+00), (1.15)
u= =0 on (RN \Bs(?)) x {0}, (1.16)

fespectively. Then it follows from the comparison principle that
u™ (o, t) < u(zo,t) < ut(xzo,t) for every t >0, (1.17)
which gives
—4t®(u™ (o, t)) > —4tD(u(zo, t)) > —4tD(u'(zo,t)) for every t > 0.
By [MS2, Theorem 1.1}, letting ¢t — 0% yields that

(d(zo) + €)* > lim sup (—4t®(u(zo, t)) > liﬂégf (—4t®(u(zo, t)) > d(zo)?.

t—0t

This implies (1.10). By a scaling argument, for each 0 < pp < p; < +00, in every
subset E of {z € Q : pp < d(z) < ;} where & > 0 can be chosen independently of
each point z € E, the convergence in (1.10) is uniform.

It remains to consider problem (1.5). Let u* = u*(z,t) be bounded solutions of

the following initial value problems:
dut = Ag(u*) in RN x (0,+00) and u* = xp,, =) on RY x {0}, (1.18)
and
du” = A¢(u~) in RY x (0,400) and u™ = XB; On RY x {0}, (1.19)

respectively. Then by the comparison principle we get (1.17). Thus, with the aid of
[MS2, Theorem 4.1], this gives us the conclusion (1.10) similarly.

Let us state our main theorem which also gives us another interaction between

nonlinear diffusion and geometry of domain.

Theorem 1.2 ([MS3]) Let u be the solution of either problem (1.2)-(1.4) or problem

(1.5). Let o € Q. Assume that Br(zo) C Q and Bg(zo) N O = {yo} for some



Yo € O2. Then we have

tl_ii{i = / u(z,t) dz = c(¢p, N {Ih (—. — K;j yo))} , (1.20)

Br(zo) =

N

where K1(Yo), ..., &n-1(Yo) denote the principal curvatures of O at yo € 9N with
respect to the interior normal direction to 99, and c(¢, N) is a positive constant
depending only on ¢ and N ( Of course, c(¢, N) depends on the problems (1.2)-(1.4)
and (1.5)). When k;(yo) = % for some j € {1,--- , N —1}, the formula (1.20) holds
by setting the right-hand side to be +oo. |

Remark. Notice that we have
1
K;(Yo) < R for every j € {1,--- ,N — 1},

When 02 is bounded and ¢ satisfies either fol ﬂé—gdf < 400 or ¢(s) = s, Theorem
1.2 was proved in [MS1] for problem (1.2)-(1.4). The method of the proof of the
present article will enable us to show the same results also when 05 is unbounded. In
[MS1], the supersolutions and subsolutions to problem (1.2)-(1.4) were constructed
in 2, x (0, 7] for sufficiently small p > 0 and 7 > 0, where

Q,={z€Q : d(z) < p}. (1.21)

In those processes, the property of finite speed of propagation of disturbances from
rest coming from fol ﬂEQdE < +o00 plays a useful role, since on I', x (0, 7] the solution

u equals zero, where we put
={ze€Q : d(z) = p}. (1.22)

Therefore, the estimates on ', x (0, 7] were easy. In the case where ¢(s) = s, both
the linearity of the heat equation and the result of Varadhan [Va] were used in
constructing the supersolutions and subsolutions. Here, by using Theorem 1.1, we

construct the supersolutions and subsolutions.
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2 Outline of the proof of Theorem 1.2

In this section we give an outline of the proof of Theorem 1.2. For the details, see
[MS3]. We distinguish two cases:

(I) 99 is bounded; (II) 09 is unbounded.

Let us show that case (I) implies case (II). We can find two C? domains, say 1, Qs,
having bounded boundaries such that ©;, and R¥ \ Q, are bounded, Bg(zo) C 1 C
Q C ,, and there exists § > 0 satisfying

Bﬁ(yo) NnoN C 601 N 6Q2 and BR(IL‘()) N (RN \ Q,) = {yo} fori = 1, 2. (21)

Let u; = u;(z,t) (i = 1,2) be the two bounded solutions of either problem (1.2)-(1.4)
or problem (1.5) where 2 is replaced by €, Q, respectively. Since Q; C 2 C €2y, it

follows from the comparison principle that
up <u in x (0,+00) and u <wuy; in ©; x (0,+00).

Therefore, it follows that for every ¢ > 0
= / ug(z,t) dz < ¢~ / u(z,t) dr < = / uy(z, t) dz,
Br(zo) Bgr(zo) Bg(zo)

which shows that case (I) implies case (II).

Thus it suffices to consider case (I). We distinguish two cases:

(IBVP) problem (1.2)-(1.4) ; (IVP) problem (1.5).

Let us consider case (IBVP) first. We quote a result from Atkinson and Peletier
[AtP]. It was shown in [AtP] that, for every ¢ > 0, there exists a unique C? solution
fe = fe(€&) of the problem:

($(fF) +5€5=0 in [0,+00), (22)
f0)=c, f6) =0 as € +oo, (23)
f/<0 in [0,400). (2.4)



By writing v, = v.(§) = ¢ (f(£)) for & € [0, +00), we have:

—v(0) = %/ fe(s) ds for ¢ > 0; (2.5)
0

0< fe, < fe; on [0,400) if 0< ¢ < < +00; (2.6)

0> v, (0) > v,(0) if 0<c; < ey <+o0. (2.7)

Furthermore, [AtP, Lemma 4, p. 383] tells us that, for every compact interval I
contained in (0, +00),

—49(fe(£))
52

Note that, if we put w(s,t) = f. (t“%s) for s > 0 and ¢ > 0, then w satisfies the
one-dimensional problem:

— 1 as £ — 4oo uniformly for c € I. (2.8)

dw = 82¢(w) in (0,+00)%, w=c on {0}x(0,400), and w = 0 on (0, 400) x{0}.

Let 0 < & < 3. We can find a sufficiently small 0 < 7. << ¢ and two C? functions
f+ = f+(€) for & > 0 satisfying:

fﬂ:(é) = fl:l:s (\/ 1 F 2778 f) if § 2> e (29)
fi <0 in [0,+00); (2.10)
f- < fi<fy in[0,400); (2.11)
(#(f)f2) + 36f4 = he(O)fs in [0, +00), (2.12)

where hy = hy(€) is defined by

€ if £ 2>,

(2.13)
+n? i €< ..

h+(€) = {

Here, in order to use the function hy also for case (IVP) later, we defined h. (&) for
all £ € R. Then we notice that

hi=—-h_>n? onR and fy — f; ase— 0 uniformly on [0, +00). (2.14)

Set ¥ = ®&~!. Then it follow from (2.8) that there exists & > 1 such that

2

2
¥ (..%_ (1- %)) > f.(6) > U ("Z (1+ 1’2-)) for ¢ >¢ andce L, (2.15)
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where we set I, = [1 — 2¢,1 + 2¢].
Since 052 is of class C? and bounded, there exists py > 0 such that the distance
function d belongs to C%(,,). Set p1 = max{2R, pp}. Theorem 1.1 yields that

—4t®(u(z,t)) — d(z)* ast— 0 uniformly on Q,, \ Q. (2.16)
Then there exists 7. > 0 such that for every t € (0,71 ] and every z € ,, \ 2,
1 1
|-4t@(u(z,t)) — d(z)?| < -2—n5p(2, < -2-1;Ed(m)2.

Thus it follows that for every t € (0,71] and every z € Q,, \ Q,,

(1 — 37) d(z)? (1 + 37) d(z)?
v (—— 1 : ) > u(z,t) > ¥ (— 1 : ) : (2.17)

From (2.15), we have
1O = el VT T 9> ¥ (-5 (1-2) ) it e > —Eo s 21)
O =hdyTFm O < (-5 (14 L)) e . (ag)
Define the two functions ws = wa(z, ) by
wi(z,t) = fu (t74d()) for (z,1) € 2 x (0, +00). (2.20)

Hence it follows from (2.17), (2.18) and (2.19) that there exists 75, € (0, 71,¢] satis-

fying
w- <u<wy in (Q \ Q) x (0,72 (2.21)

Since d € C?(Q,,) and |Vd| = 1 in Q,,, we have
Byws — Ad(ws) = —fit™ {hi +t ¢'(fi)Ad} in Q, x (0,+00).  (2.22)

Therefore, it follows from the former formula of (2.14) that there exists 73, € (0, T2,¢]

satisfying

Btw_ - A¢('LU_) <0< Btw+ - A¢(w+) n on X (0, 7'3,5]. (223)
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Observe that

w_=u=w; =0 in Q, x {0}, (2.24)
w-=f(0)<1=fi(0)=u< f(0) =w; on 9N x (0,73.], (2.25)
w- <u<wy on Iy x (0,73 (2.26)

Note that (2.26) comes from (2.21). Thus it follows from the comparison principle
and (2.21) that |
' w- <u<wy in Q, x (0,73, (2.27)

Here we quote a geometric lemma from [MS1] adjusted to our situation:

Lemma 2.1 ([MS1, Lemma 2.1, p. 376]) Suppose that k;(yo) < 5 for every j =
1,...,N — 1. Then we have:

N-1
lim s‘N_;lHan(Fs N Br(zo)) = 2ALz__le—1 {H (% - "'J'(yo))} , (2.28)

o+
s§— =1

[

where HN=! is the standard (N — 1)-dimensional Hausdorff measure, and wy_; is
the volume of the unit ball in RN,

First of all, let us consider the case where x;(y) < % forevery j=1,...,N-1.
It follows from (2.27) that

/ w_ dz < / udr < / wy dz for every t € (0, 73] (2.29)
Br(zo) Br(zo) Br(zo)

Since with the aid of the co-area formula we have

N1 2Rt~ % P s
/B o dz =t /0 fe(6)€2 (t2§) H (Ft%EnBR(zo))df,

by using Lebesgue’s dominated convergence theorem and Lemma 2.1 we get

1
N-1 -2
+1 -1 1 © N-1
lim ¢4 / wy dz = 2" T wy_ ” (——n- ) / fe(6)¢ 7 dE.
m Ba(ea) £ | N-1 U R i(%0) A +(6)

Therefore, since & > 0 is arbitrarily small, the latter formula of (2.14) yields (1.20),

where we set

(6, N) = 2" s /0 (6™ de.
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It remains to consider the case where «;(y) =  for some j € {1,---,N — 1}.
Choose a sequence of balls {Bg, (zx)}52, satisfying:

Ri < R, yo € 0Bg, (zx) and Bg,(zx) C Br(zo) for every k > 1, and ;}H?o Ry = R.

Since j(yo) < § < le for every j = 1,...,N — 1 and every k > 1, we can apply

the previous case to each Bpg, (k) to see that for every k > 1

liminft~ "% u(z,t) dz > liminft‘#l/ u(z,t) dz
Br, (zx)

t—0% Br(zo) t—0%

- aanffi )

liminf¢t=—"%" u(z,t) dz = +o0,
t—0+ Br(zo)

Hence, letting k — oo yields that

which completes the proof for problem (1.2)-(1.4).
Let us consider case (IVP) and let u = u(z,t) be the solution of problem (1.5).
We replace problem (2.2)-(2.4) by the following problem for every ¢ > 0:

S VU

(#(f) +560i=0 in R | (230)
fo(6) > c as € —00, fo(§) 0 as £ — +oo, (231)
fl<0 in R. (2.32)

By writing v, = v.(§) = ¢ (f.(£)) for € € R, we have:

1 [ -
—v,(0) = —2—/ fe(s) ds for ¢ > 0; (2.33)
0
0< fe; < fe, on R if 0<c; < <+oo; (2.34)
0> v, (0) > v, (0) if 0<c <cp <-+oo. (2.35)

Then [AtP, Lemma 4, p. 383] tells us that (2.8) also holds for the solution f. of
this problem. Note that if we put w(s,t) = f. (t'%s) for s € R and ¢t > 0, then w

satisfies the one-dimensional initial value problem:

Ow = 2p(w) in R x (0,+00) and w = cx(-c00 On R x {0}.



Let 0 < € < ;. We can find a sufficiently small 0 < 7, << ¢ and two C? functions
fe = f+(€) for £ € R satisfying:

fo() = frae (VIF20:§) €2 (236)
fi <0 inR; (2.37)
f-(~00) < 1= fi(~00) < fy(~00) and f-<fi<fr inR; (239
(#()fs) + 56F. = he@)f mR (239)

Then we also have (2.14).

Moreover, it follows from (2.8) that there exists & > 1 satisfying (2.15). Pro-
ceeding similarly yields (2.16), (2.17), (2.18) and (2.19). Let us consider the signed
distance function d* = d*(z) of z € R" to the boundary 99 defined by

&*(z) = { dist(z,00) if z €, (2.40)

— dist(z,00) if z¢& Q.

Since 99 is of class C? and bounded, there exists a number pp > 0 such that d*(z)
is C?-smooth on a compact neighborhood N of the boundary 89 given by

N ={z eR": —py < d*(z) < po}. (2.41)
For simplicity we have used the same py > 0 as in (2.16). Define wy = wy(z,t) by
we(e,?) = fa '(t‘v%d*(ax)) for (z,t) € RV x (0, +00). (2.42)

Then we also have (2.21). Since d* € C*(N) and |Vd*| = 1 in NV, we have
Brws — Ad(ws) = —fit7) {hi + Vi ¢l(fi)Ad*} in N x (0,+00).  (2.43)

Therefore, it follows from the former formula of (2.14) that there exists 73 € (0, 73]
satisfying:

Ow_ — Ap(w-) < 0 < Quwy — Ad(w;) in N x (0,73, (2.44)
w_<u<w, in N x {0}, (2.45)
w_o <u<wiy on ON x (0,73 (2.46)
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Note that in (2.46) the inequality on I'5 x (0, 73,] comes from (2.21) and the in-
equality on (ON \T',) X (0, 73] comes from the former formula of (2.38). Thus it

follows from the comparison principle and (2.21) that
w- <u<wy in NUQ, x (0,73) (2.47)
Then, with the aid of (2.47) the rest of the proof runs similarly.
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